Learning Deep Representations for Visual Recognition

CVPR 2018 Tutorial

Kaiming He Facebook AI Research (FAIR)

Deep Learning is Representation Learning

Representation Learning: worth a conference name © (ICLR)

Represent (raw) data for machines to perform tasks:

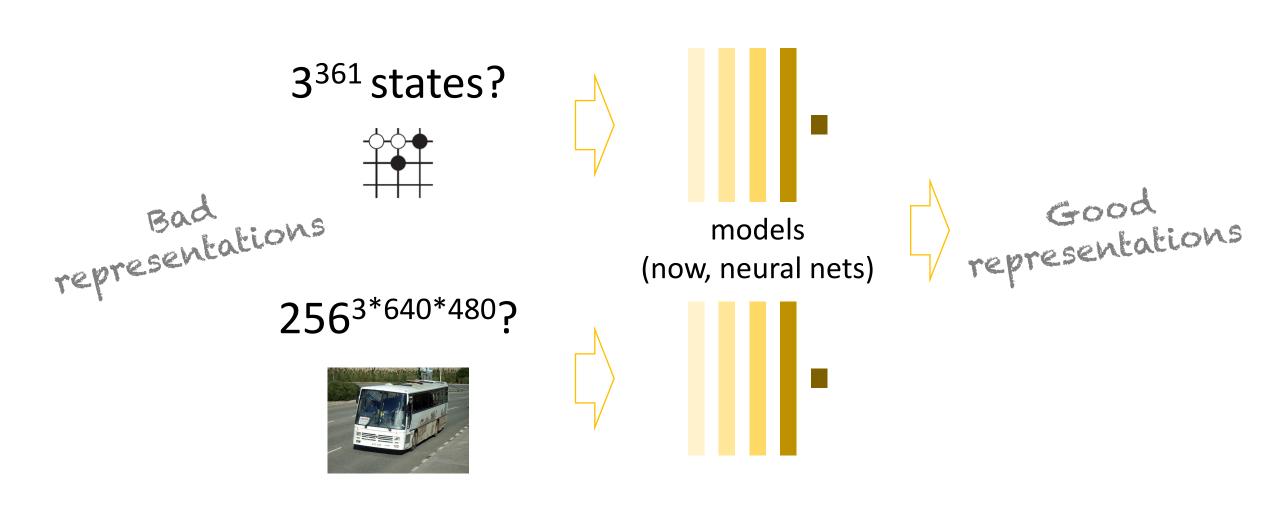
- Vision: pixels, ...
- Language: letters, ...
- Speech: waves, ...
- Games: status, ...

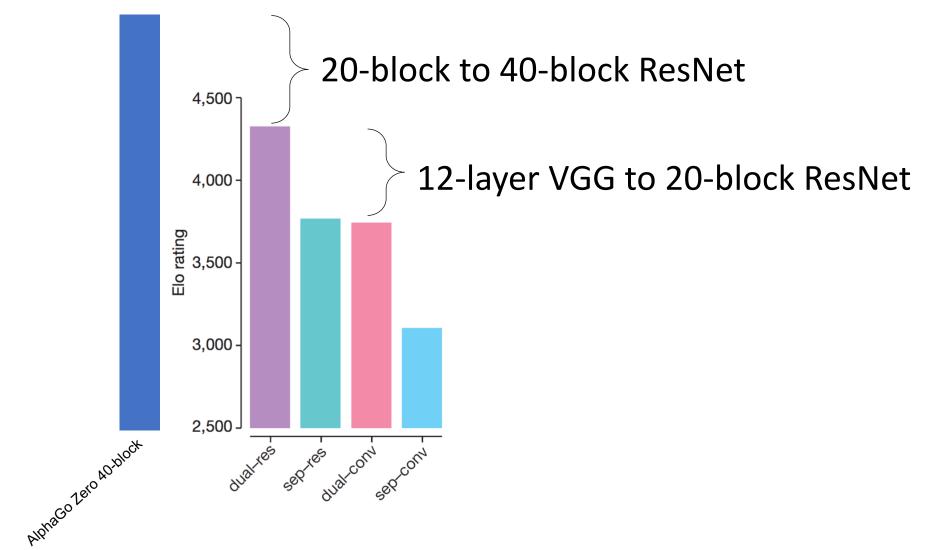
3³⁶¹ states?

3³⁶¹ states?

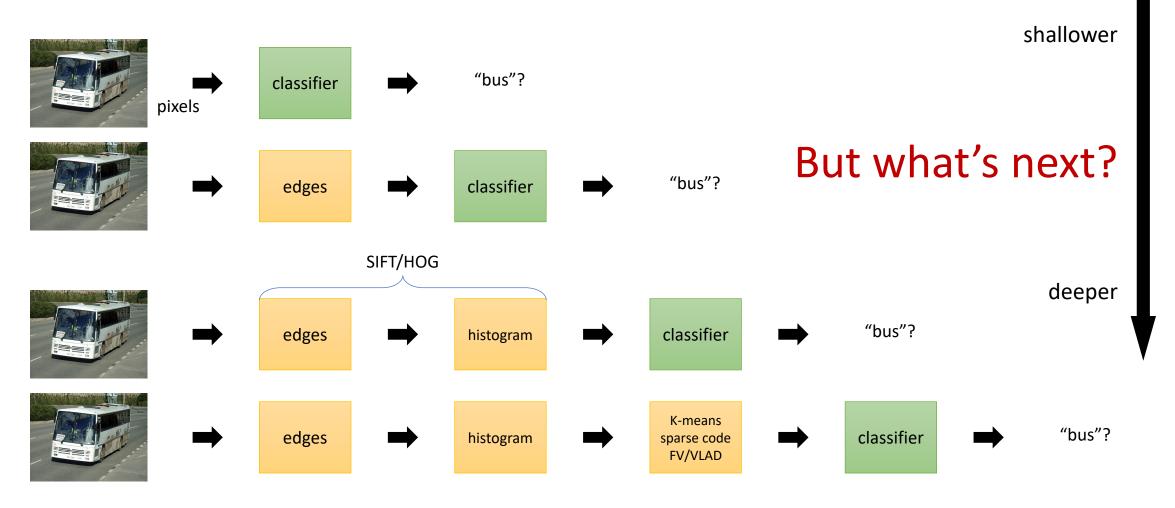
representations

256^{3*640*480}?



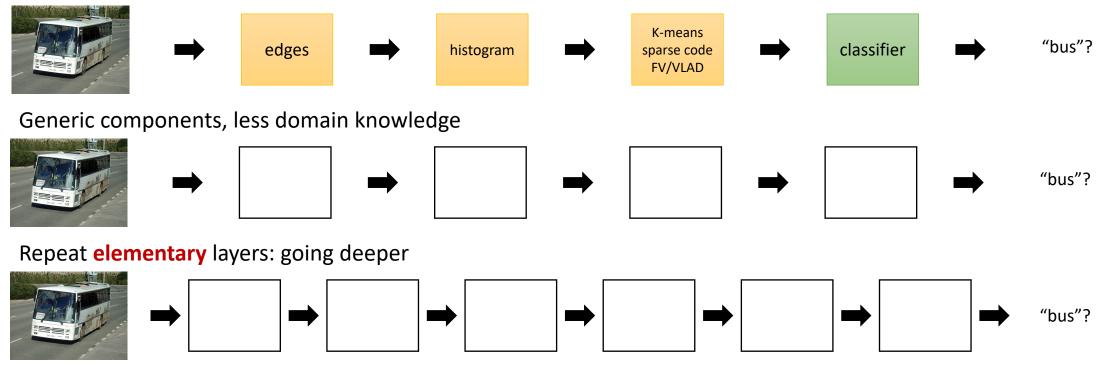


How was an image represented?



Learning to represent

Specialized components, domain knowledge required

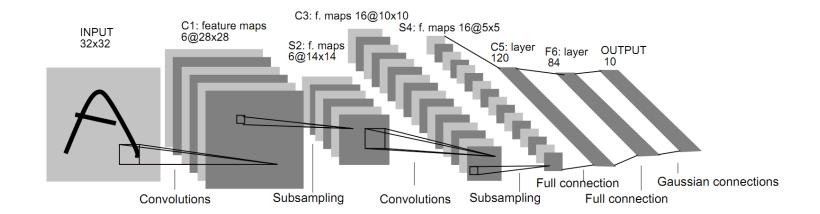


End-to-end by BackProp

LeNet

- Convolution:
 - locally-connected
 - spatially weight-sharing
 - weight-sharing is a key in DL (e.g., RNN shares weights temporally)
- Subsampling
- Fully-connected outputs
- Train by BackProp

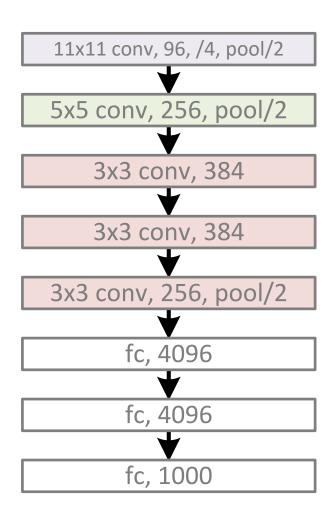
All are still the basic components of modern ConvNets!



AlexNet

LeNet-style backbone, plus:

- ReLU [Nair & Hinton 2010]
 - "RevoLUtion of deep learning"*
 - Accelerate training; better grad prop (vs. tanh)
- Dropout [Hinton et al 2012]
 - In-network ensembling
 - Reduce overfitting (might be instead done by BN)
- Data augmentation
 - Label-preserving transformation
 - Reduce overfitting



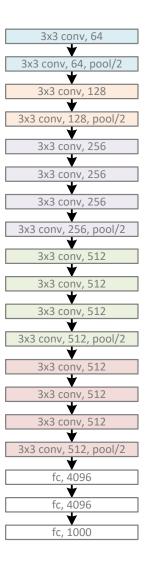
VGG-16/19

"16 layers are beyond my imagination!"

-- after ILSVRC 2014 result was announced.

Simply "Very Deep"!

- Modularized design
 - 3x3 Conv as the module
 - Stack the same module
 - Same computation for each module (1/2 spatial size => 2x filters)
- Stage-wise training
 - VGG-11 => VGG-13 => VGG-16
 - We need a better initialization...



Initialization Methods

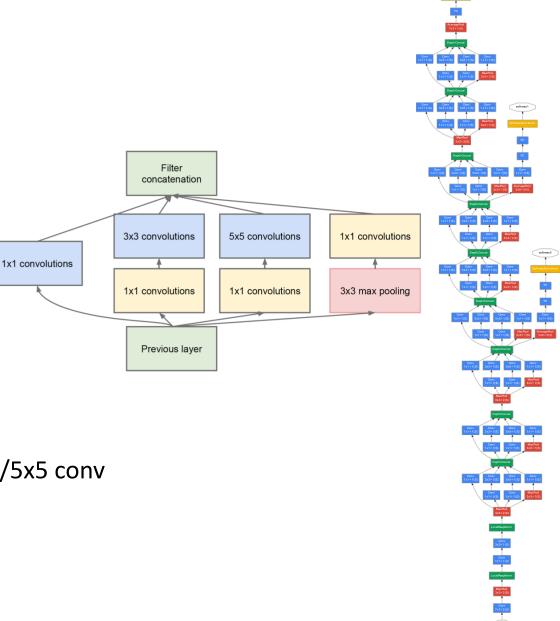
- Analytical formulations of <u>normalizing</u> forward/backward signals
- Based on strong assumptions (like Gaussian distributions)
- Xavier Init (linear): $n \cdot Var[w] = 1$
- MSRA Init (ReLU): $n \cdot Var[w] = 2$

GoogleNet/Inception

Accurate with small footprint.

My take on GoogleNets:

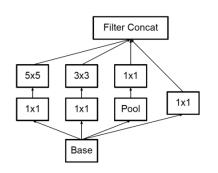
- Multiple branches
 - e.g., 1x1, 3x3, 5x5, pool
- Shortcuts
 - stand-alone 1x1, merged by concat.
- Bottleneck
 - Reduce dim by 1x1 before expensive 3x3/5x5 conv

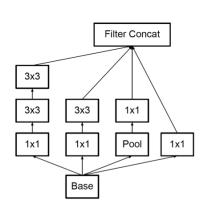


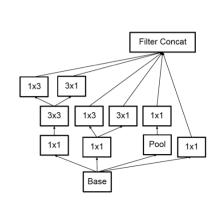
GoogleNet/Inception v1, v2, v3, ...

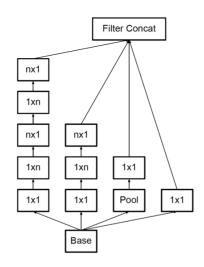
More templates, but the same 3 main properties are kept:

- Multiple branches
- Shortcuts (1x1, concate.)
- Bottleneck





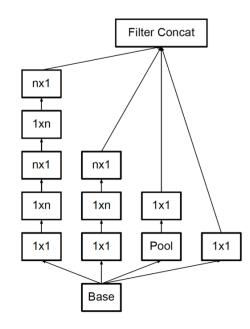




Xavier/MSRA init are not directly applicable for multi-branch nets

Optimizing multi-branch ConvNets largely benefits from BN

• including all Inceptions and ResNets



- Recap: Normalizing image input (LeCun et al 1998 "Efficient Backprop")
- Xavier/MSRA init: Analytic normalizing each layer

- BN: data-driven normalization, for each layer, for each mini-batch
 - Greatly accelerate training
 - Less sensitive to initialization
 - Improve regularization

$$x \rightarrow \hat{x} = \frac{x - \mu}{\sigma} \rightarrow y = \gamma \hat{x} + \beta$$

- μ : mean of x in mini-batch
- σ : std of x in mini-batch
- *γ*: scale
- β : shift

- μ , σ : functions of x, analogous to responses
- γ , β : parameters to be learned, analogous to weights

$$x \rightarrow \hat{x} = \frac{x - \mu}{\sigma} \rightarrow y = \gamma \hat{x} + \beta$$

2 modes of BN:

- Train mode:
 - μ , σ are functions of a batch of x
- Test mode:
 - μ , σ are pre-computed on training set

Caution: make sure your BN usage is correct! (this causes many of my bugs in my research experience!)

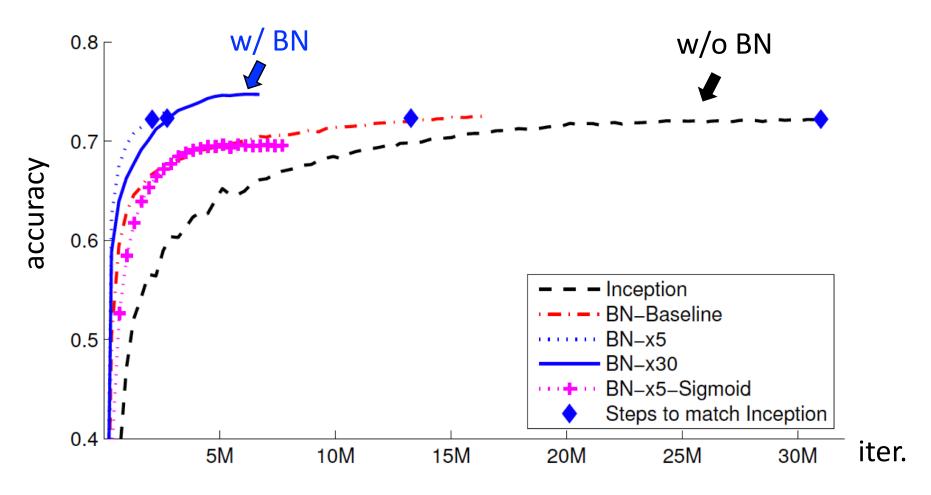
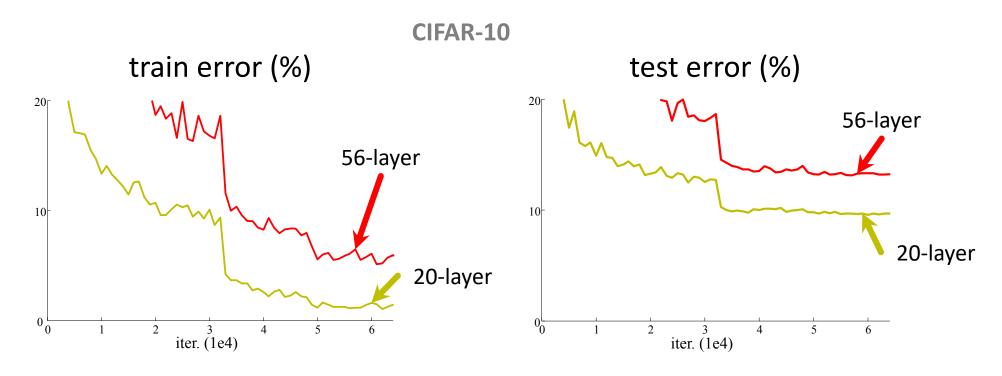


Figure credit: Ioffe & Szegedy

ResNets

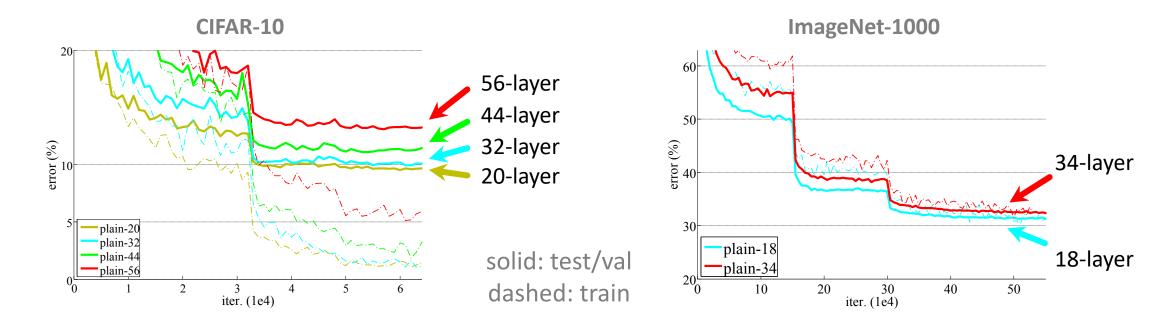
Credit: ???

Simply stacking layers?



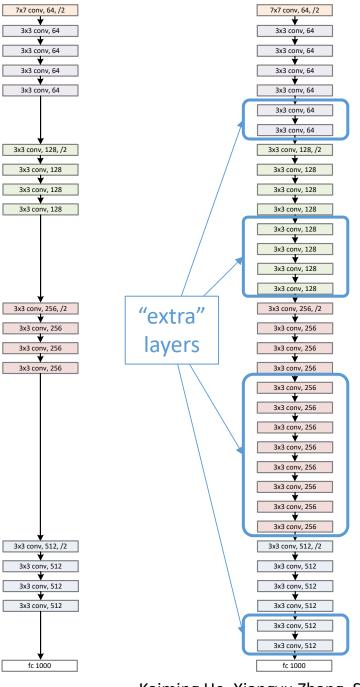
- Plain nets: stacking 3x3 conv layers...
- 56-layer net has higher training error and test error than 20-layer net

Simply stacking layers?



- "Overly deep" plain nets have higher training error
- A general phenomenon, observed in many datasets

a shallower model (18 layers)

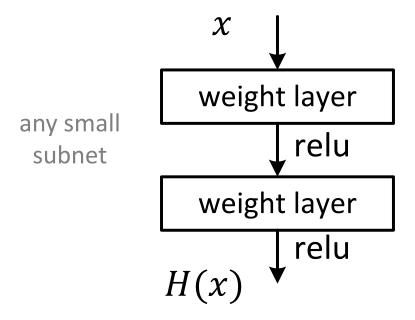


a deeper counterpart (34 layers)

- Richer solution space
- A deeper model should not have higher training error
- A solution by construction:
 - original layers: copied from a learned shallower model
 - extra layers: set as identity
 - at least the same training error
- Optimization difficulties: solvers cannot find the solution when going deeper...

Deep Residual Learning

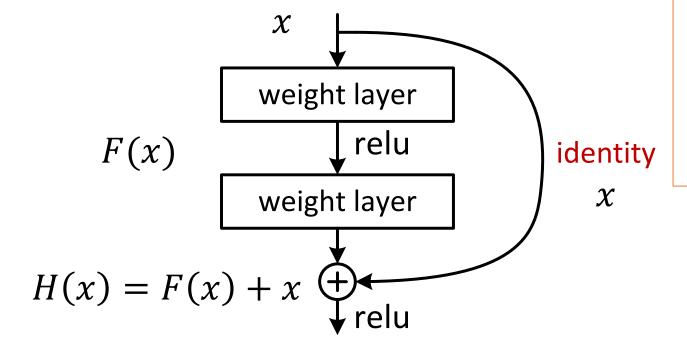
• Plain net



H(x) is any desired mapping, hope the small subnet fit H(x)

Deep Residual Learning

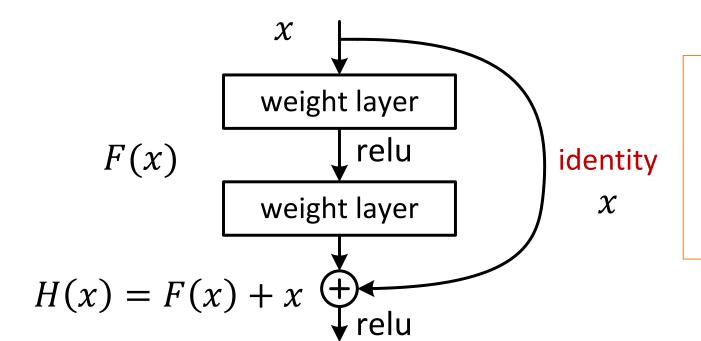
Residual net



H(x) is any desired mapping, hope the small subnet fit H(x)hope the small subnet fit F(x)let H(x) = F(x) + x

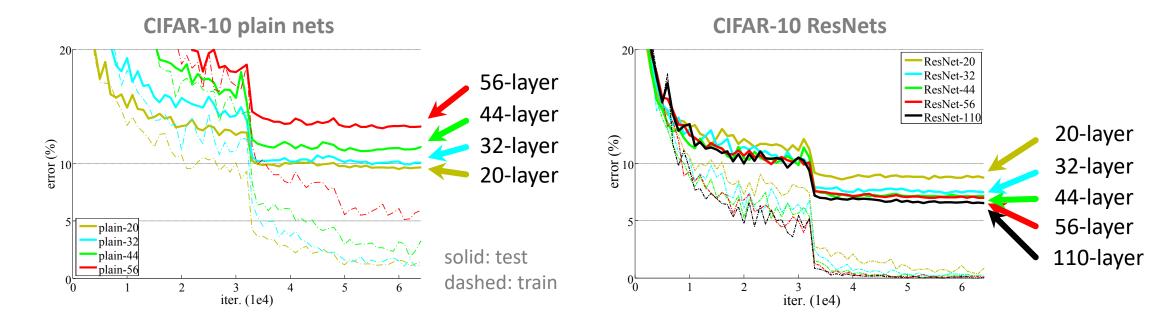
Deep Residual Learning

• F(x) is a residual mapping w.r.t. identity



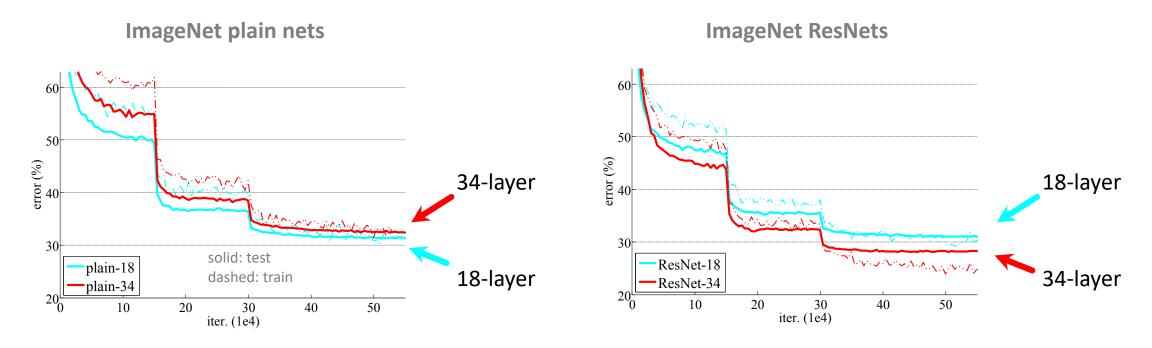
- If identity were optimal, easy to set weights as 0
- If optimal mapping is closer to identity, easier to find small fluctuations

CIFAR-10 experiments



- Deep ResNets can be trained without difficulties
- Deeper ResNets have lower training error, and also lower test error

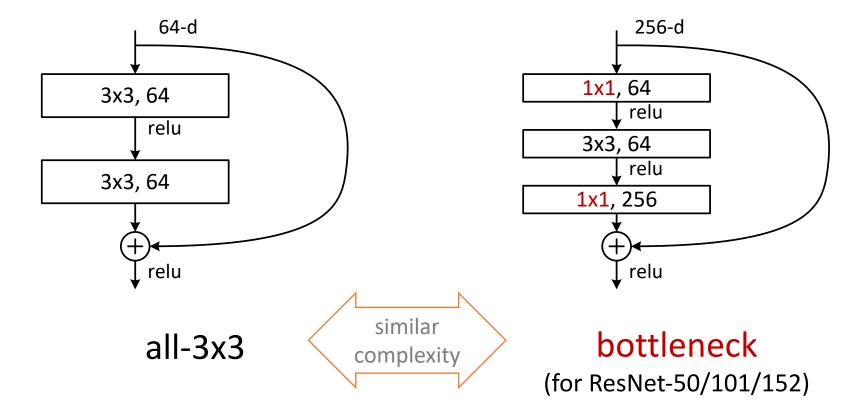
ImageNet experiments



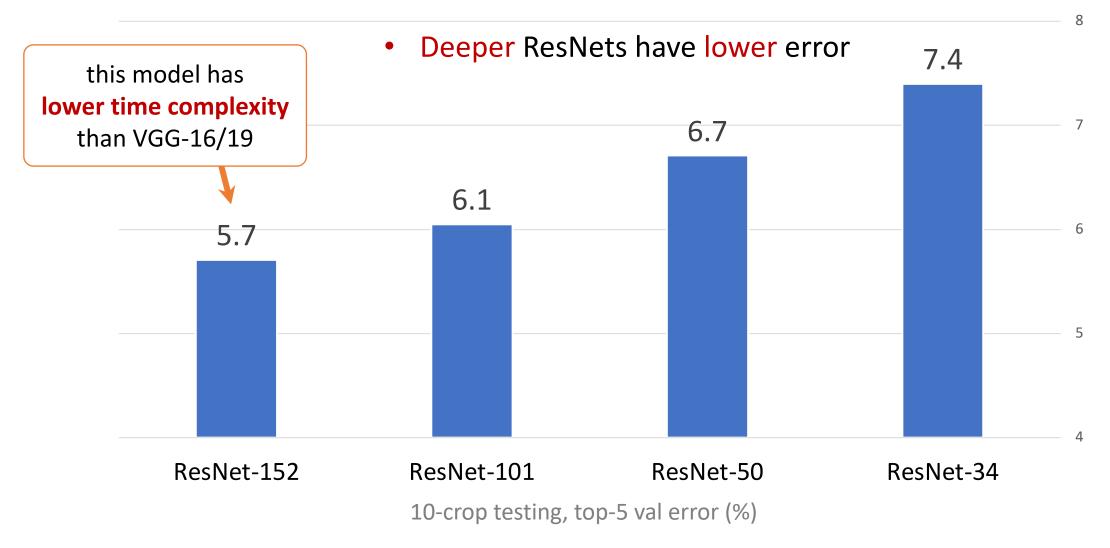
- Deep ResNets can be trained without difficulties
- Deeper ResNets have lower training error, and also lower test error

ImageNet experiments

A practical design of going deeper



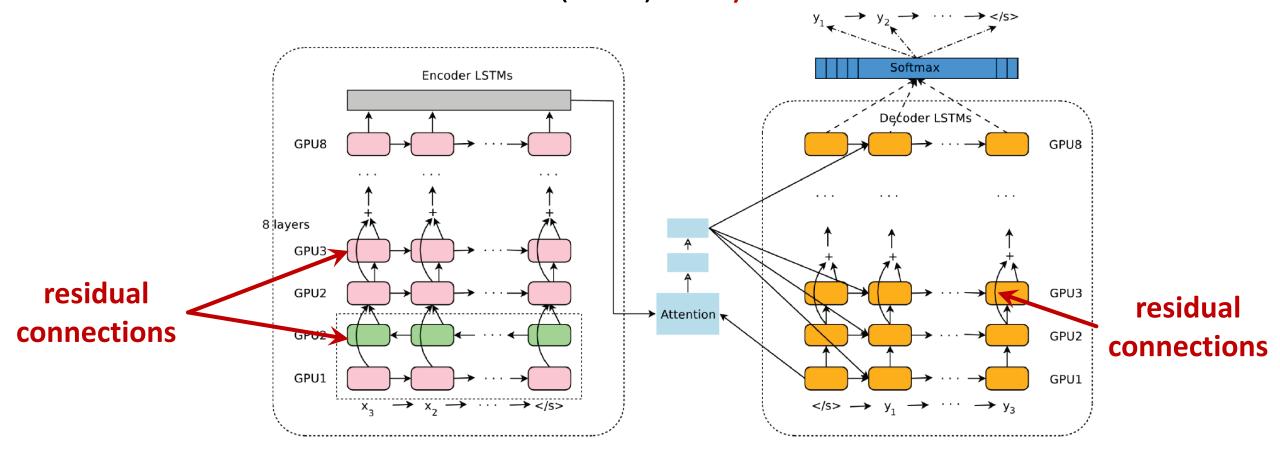
ImageNet experiments



Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

ResNet beyond computer vision

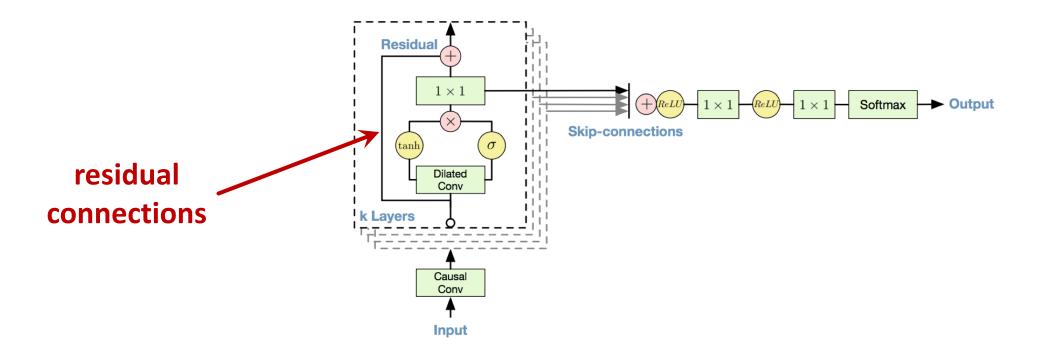
Neural Machine Translation (NMT): 8-layer LSTM!



Wu et al. "Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation". arXiv 2016.

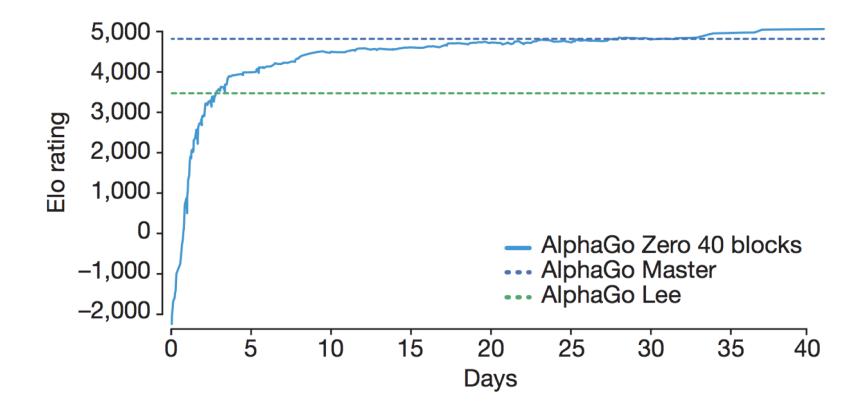
ResNet beyond computer vision

• Speech Synthesis (WaveNet): Residual CNNs on 1-d sequence



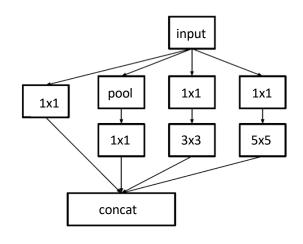
ResNet beyond computer vision

• AlphaGo Zero: 40 Residual Blocks

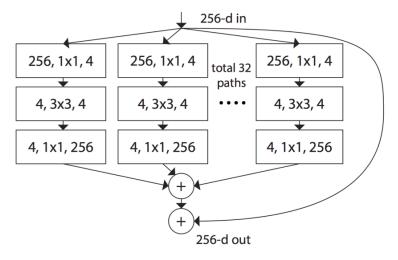


ResNeXt

• Recap: shortcut, bottleneck, and multi-branch



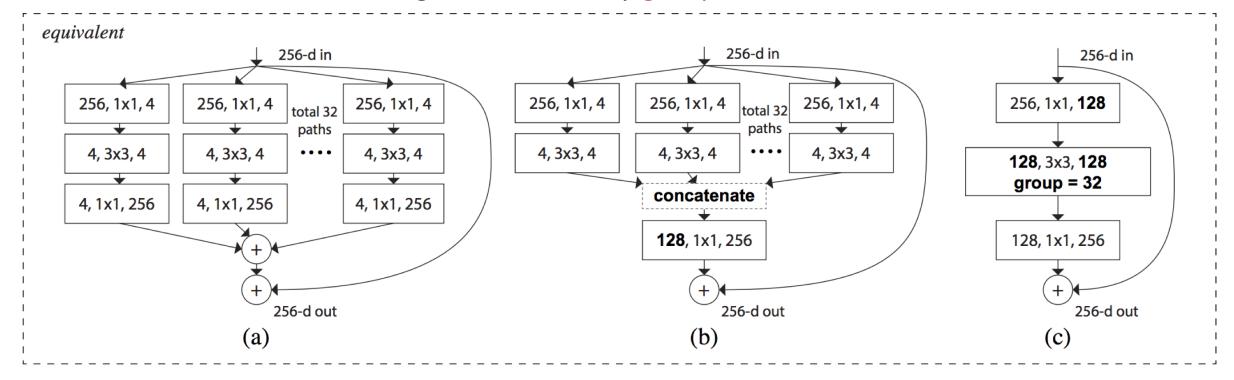
Inception: heterogeneous multi-branch



ResNeXt: uniform multi-branch

ResNeXt

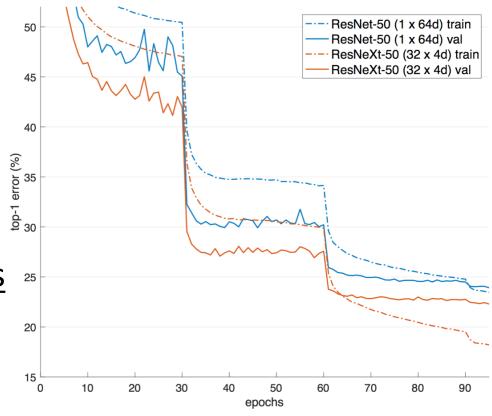
- Concatenation and Addition are interchangeable
 - General property for DNNs; not only limited to ResNeXt
- Uniform multi-branching can be done by group-conv



ResNeXt

- Better accuracy
 - when having the same FLOPs/#params as a baseline ResNet

• Better trade-off for high-capacity models



Competition winners using ResNeXt

ResNeXt is a good trade-off for high-capacity:

- ImageNet Classification 2017, 1st place
 - SE-ResNeXt
- COCO Object Detection 2017, 1st place
 - MegDet + ResNeXt
- COCO Instance Segmentation 2017, 1st place
 - PANet + ResNeXt
- COCO Stuff Segmentation 2017, 1st place
 - FPN + ResNetXt

• ...

ResNeXt: higher capacity for billion-scale images

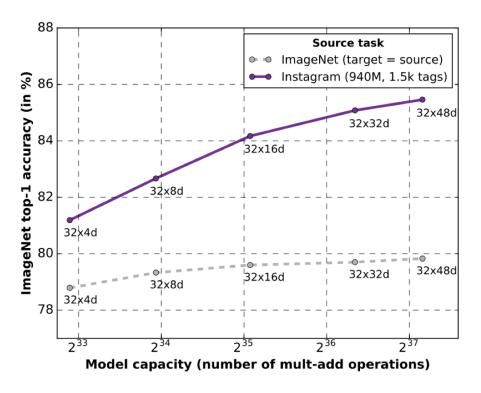
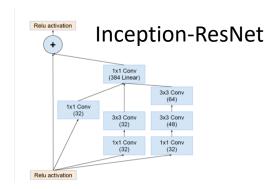


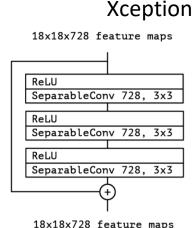
Fig. 5: Classification accuracy on val-IN-1k using ResNeXt-101 32×{4, 8 16, 32, 48}d with and without pretraining on the IG-940M-1.5k dataset.

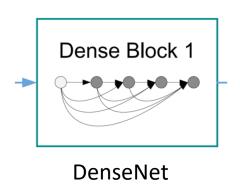
More architectures (not covered in this tutorial)

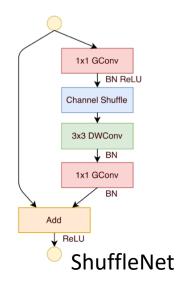
- Inception-ResNet [Szegedy et al 2017]
 - Inception as transformation + residual connection
- DenseNet [Huang et al CVPR 2017]
 - Densely connected shortcuts w/ concat.
- Xception [Chollet CVPR 2017], MobileNets [Howard et al 2017]
 - DepthwiseConv (i.e., GroupConv with #group=#channel)
- ShuffleNet [Zhang et al 2017]
 - More Group/DepthwiseConv + shuffle

•







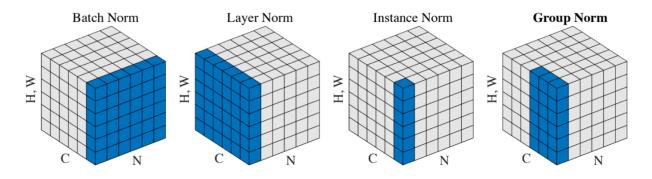


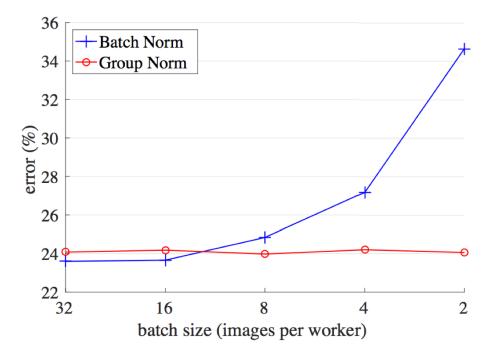
Teaser: Group Normalization (GN)

Independent of batch size

Robust to small batches

Enable new scenarios:
 e.g.: 41 AP on COCO
 trained from scratch





Conclusion

• Deep Learning is Representation Learning

• Represent data for machines to perform tasks (this talk)

Represent data for machines to <u>perform tasks</u> (next talks)