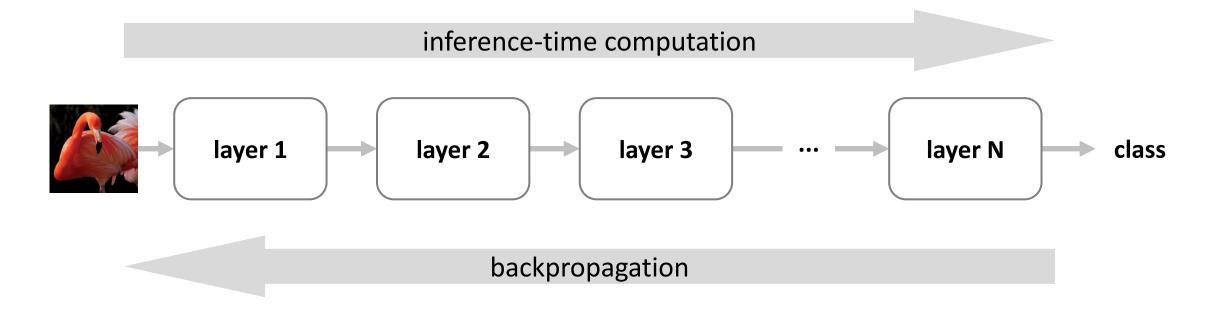
Towards End-to-End Generative Modeling

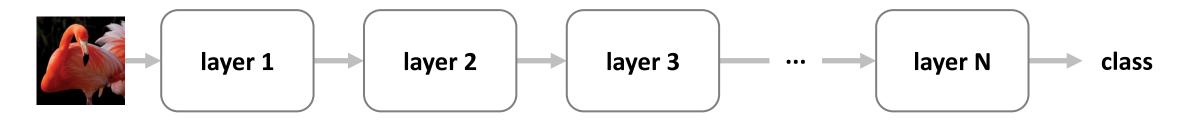
Kaiming He Associate Professor, EECS, MIT

Tutorial/Workshop at CVPR 2025

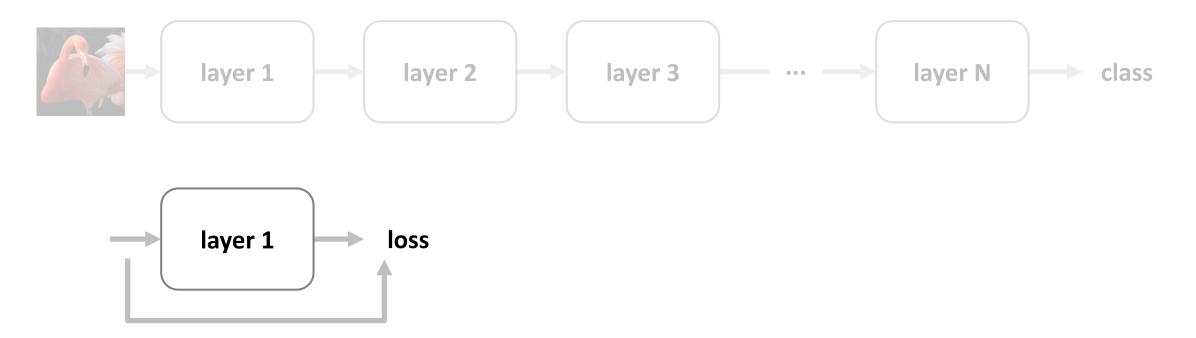
• Since AlexNet, recognition models have been generally end-to-end ...



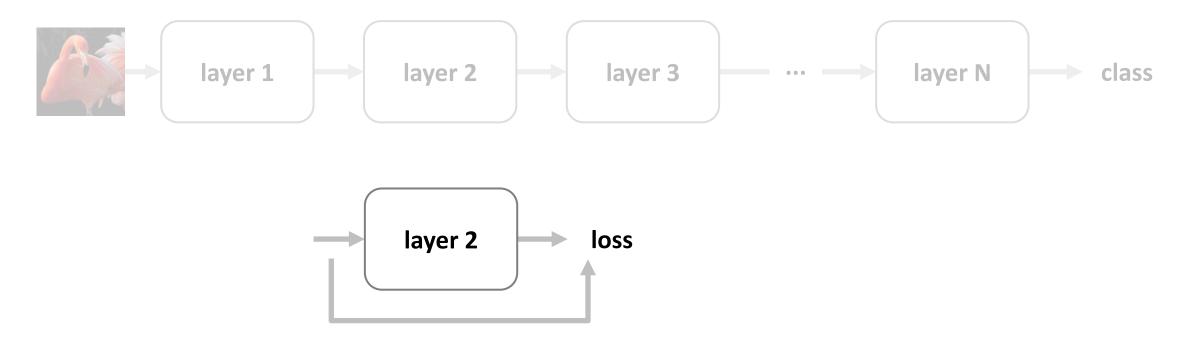
- But before AlexNet, layer-wise training was a more popular solution
 - Deep Belief Nets (**DBN**) [Hinton et al, 2006]
 - Denoising Autoencoders (DAE) [Vincent et al, 2010, 2011]



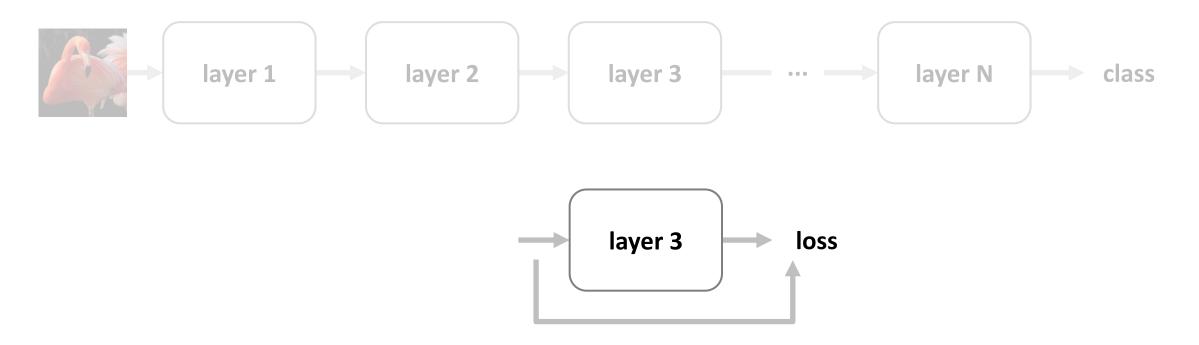
- But before AlexNet, layer-wise training was a more popular solution
 - Deep Belief Nets (**DBN**) [Hinton et al, 2006]
 - Denoising Autoencoders (DAE) [Vincent et al, 2010, 2011]



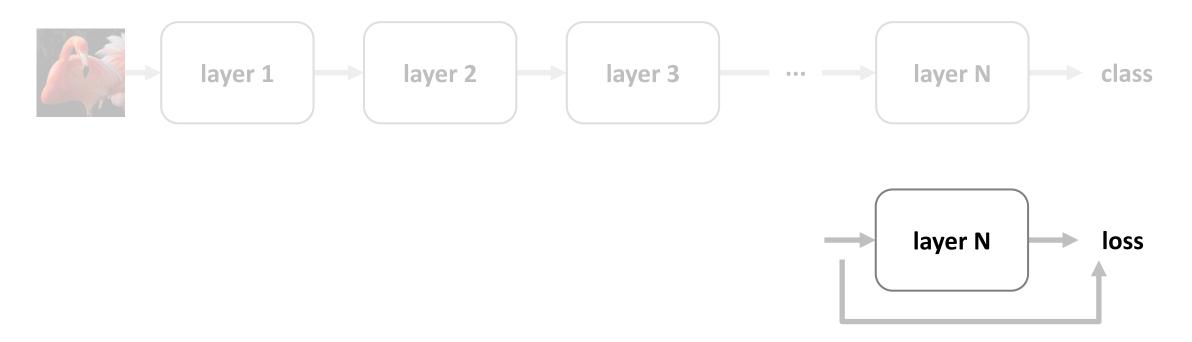
- But before AlexNet, layer-wise training was a more popular solution
 - Deep Belief Nets (**DBN**) [Hinton et al, 2006]
 - Denoising Autoencoders (DAE) [Vincent et al, 2010, 2011]



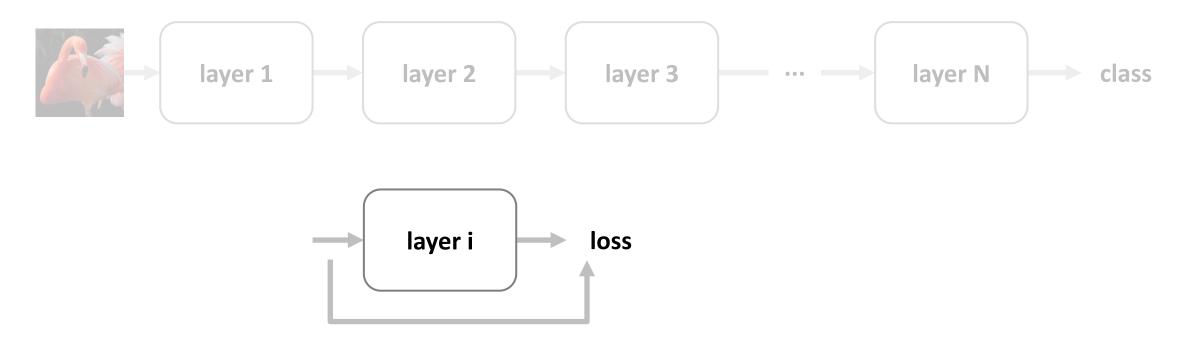
- But before AlexNet, layer-wise training was a more popular solution
 - Deep Belief Nets (**DBN**) [Hinton et al, 2006]
 - Denoising Autoencoders (DAE) [Vincent et al, 2010, 2011]



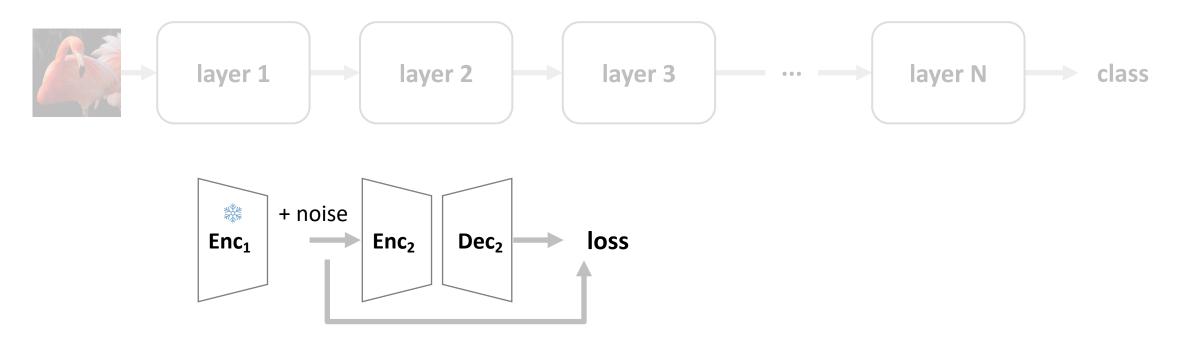
- But before AlexNet, layer-wise training was a more popular solution
 - Deep Belief Nets (DBN) [Hinton et al, 2006]
 - Denoising Autoencoders (DAE) [Vincent et al, 2010, 2011]



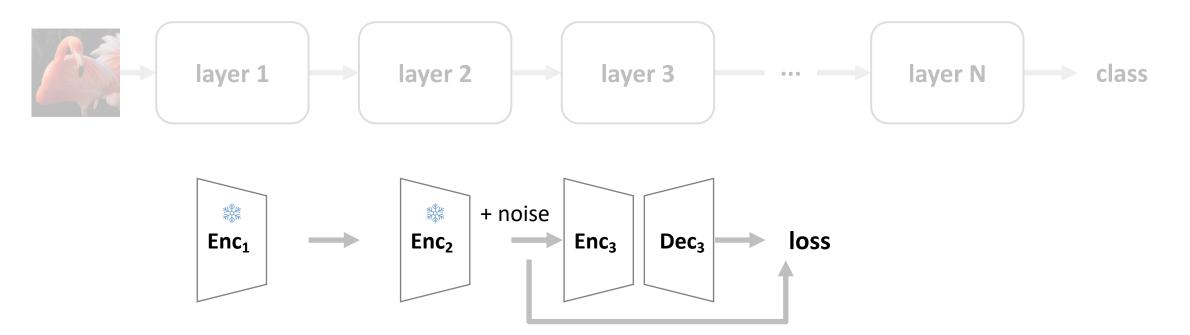
- But before AlexNet, layer-wise training was a more popular solution
 - Deep Belief Nets (**DBN**) [Hinton et al, 2006]
 - Denoising Autoencoders (DAE) [Vincent et al, 2010, 2011]



- But before AlexNet, layer-wise training was a more popular solution
 - Deep Belief Nets (**DBN**) [Hinton et al, 2006]
 - Denoising Autoencoders (DAE) [Vincent et al, 2010, 2011]

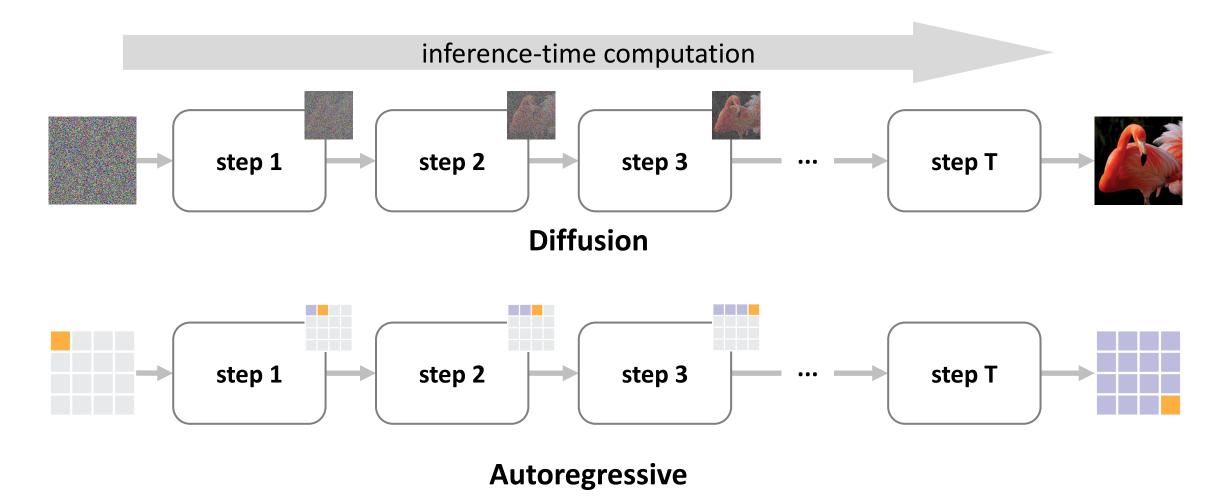


- But before AlexNet, layer-wise training was a more popular solution
 - Deep Belief Nets (**DBN**) [Hinton et al, 2006]
 - Denoising Autoencoders (DAE) [Vincent et al, 2010, 2011]



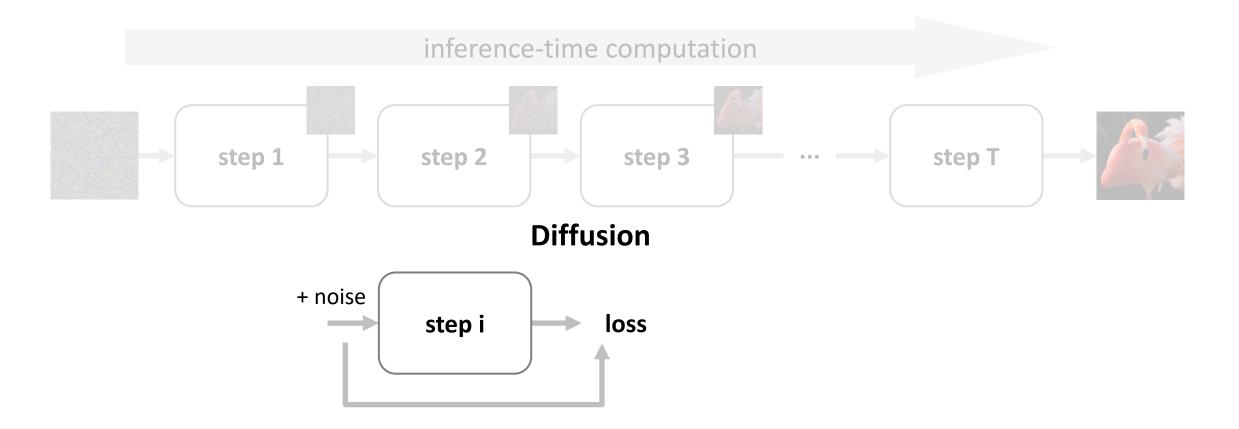
History Repeating in Generative Models?

• Today's generative models are conceptually like "layer-wise training"

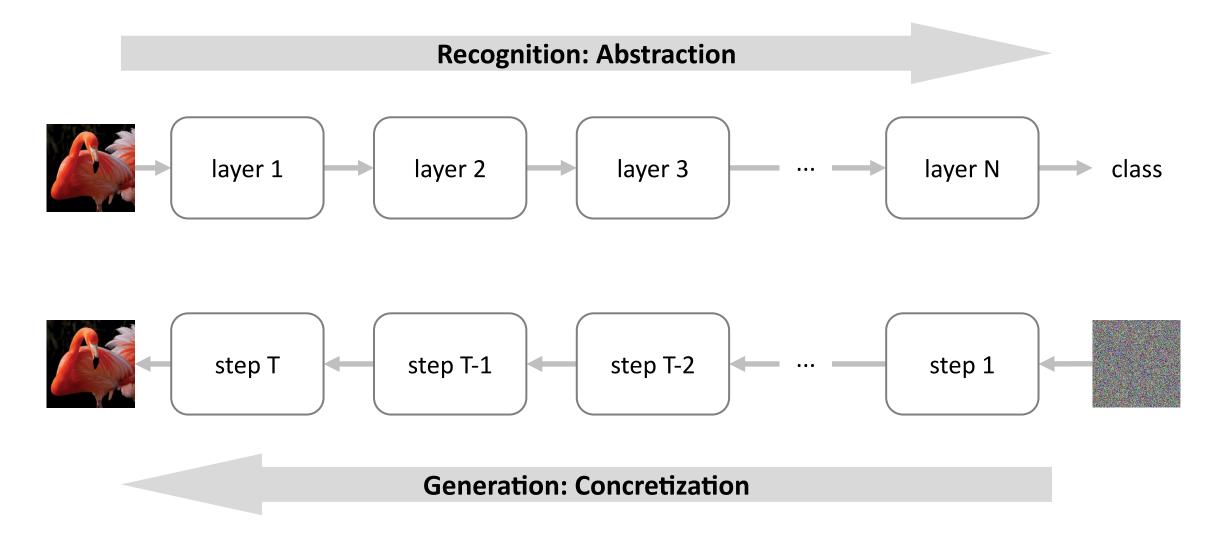


History Repeating in Generative Models?

• Today's generative models are conceptually like "layer-wise training"



Recognition vs. Generation: Two Sides of the Same Coin?



Recognition vs. Generation: Two Sides of the Same Coin?

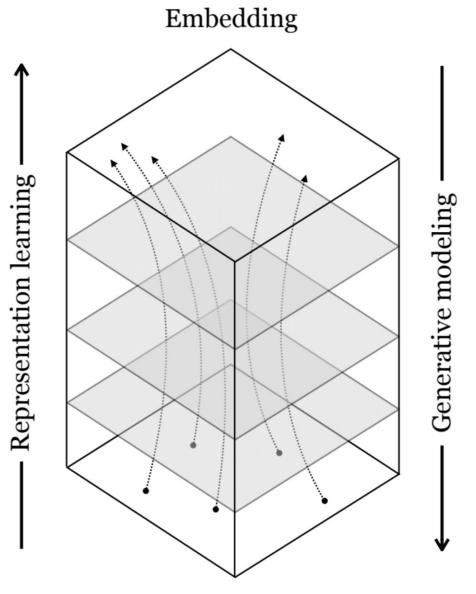
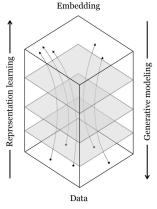
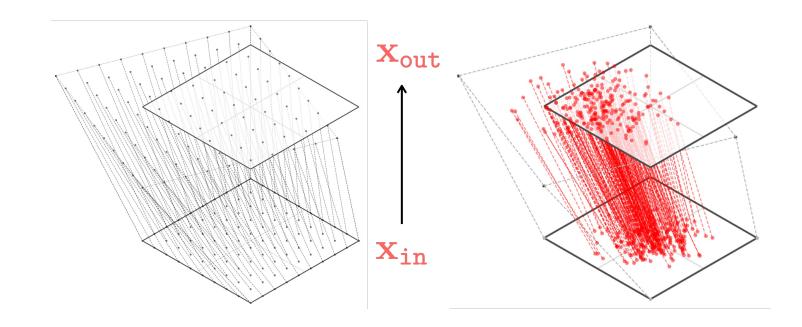


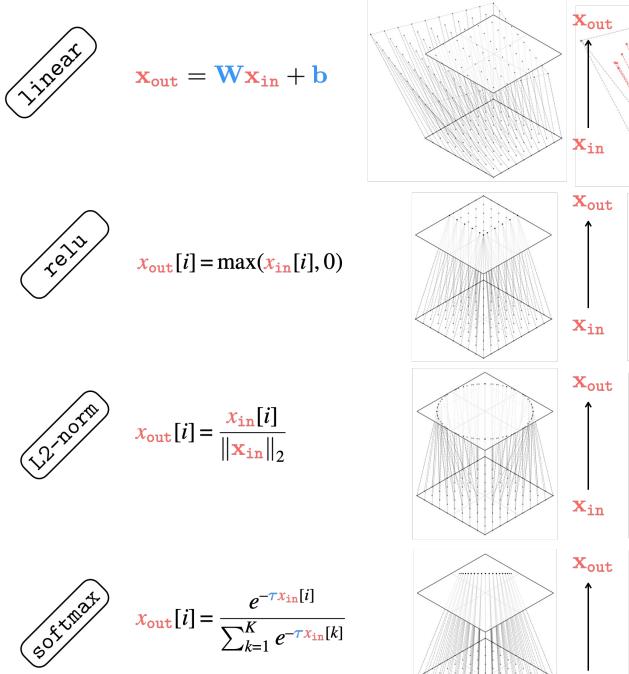
Illustration Credit: Phillip Isola

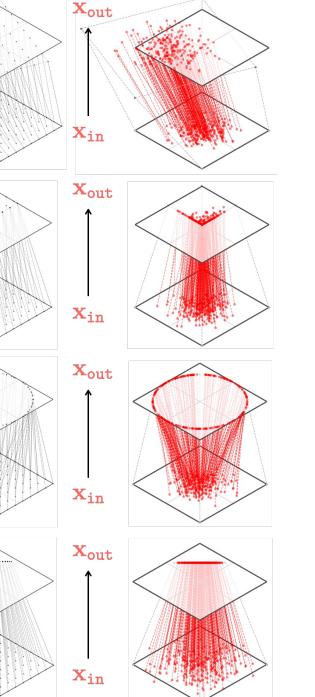
Data

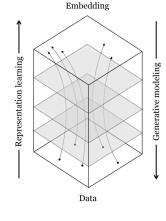


$\mathbf{x}_{\texttt{out}} = \mathbf{W}\mathbf{x}_{\texttt{in}} + \mathbf{b}$



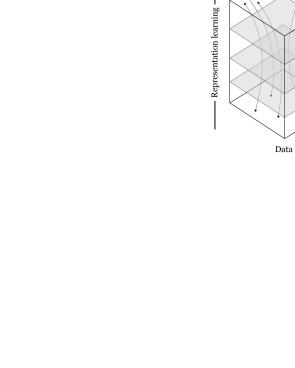


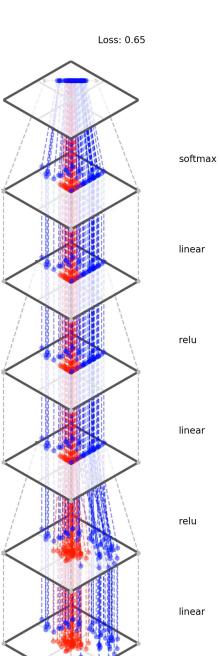


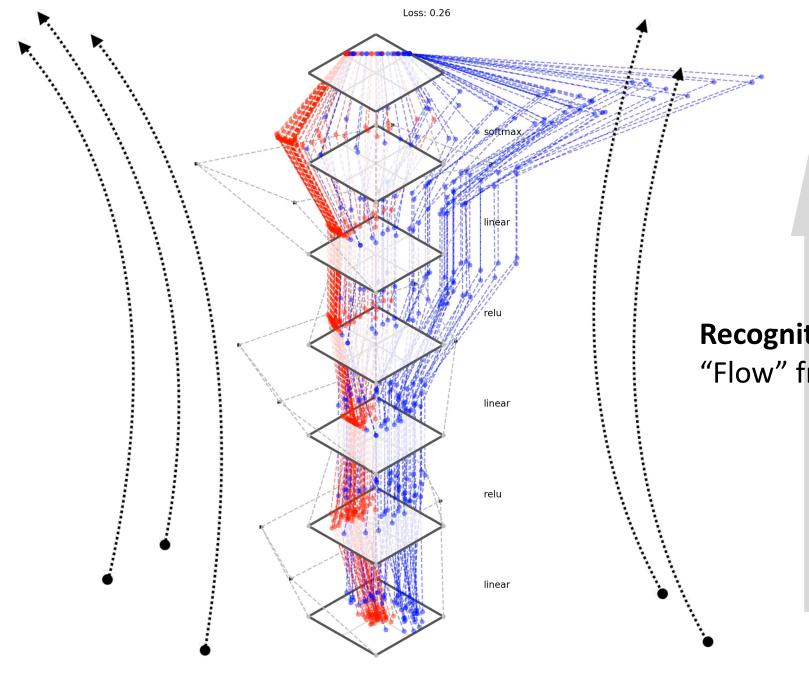


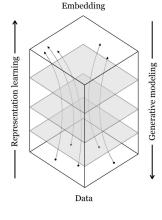
Embedding

Generative modeling

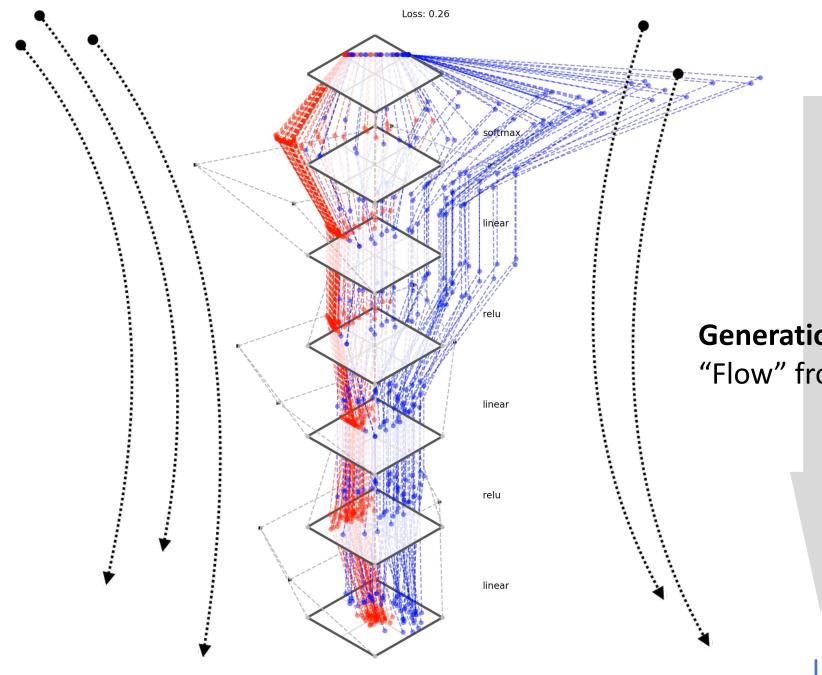


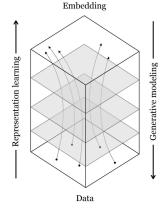






Recognition: "Flow" from data to embeddings

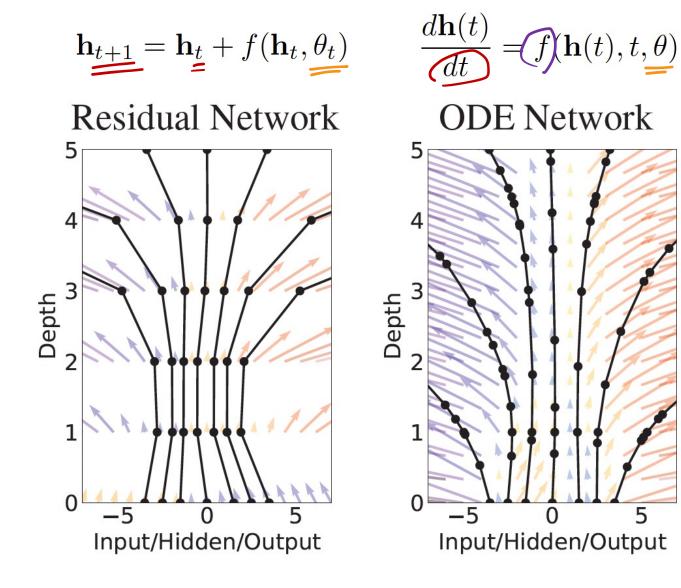




Generation: "Flow" from embeddings to data

Neural ODE [Chen et al, NeurIPS 2018]

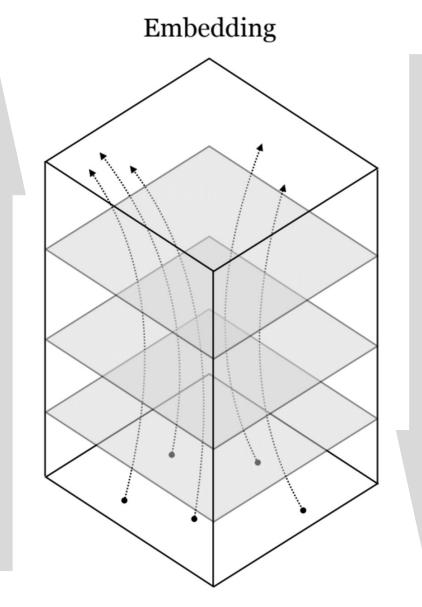
- discrete time
- time-dependent parameterization



- continuous time
- time-shared parameterization
- *f* is often a ResNet

Recognition:

determined data-to-label mapping



Generation: unknown "noise"-to-data mapping (infinite possibilities)

Construct the mapping?

- Continuous Normalizing Flow (in Neural ODE)
- Flow Matching

FLOW MATCHING FOR GENERATIVE MODELING

Yaron Lipman^{1,2} Ricky T. Q. Chen¹ Heli Ben-Hamu² Maximilian Nickel¹ Matt Le¹ ¹Meta AI (FAIR) ²Weizmann Institute of Science

Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow

> Xingchao Liu* University of Texas at Austin xcliu@utexas.edu

Chengyue Gong* University of Texas at Austin cygong@cs.utexas.edu

Qiang Liu University of Texas at Austin lqiang@cs.utexas.edu

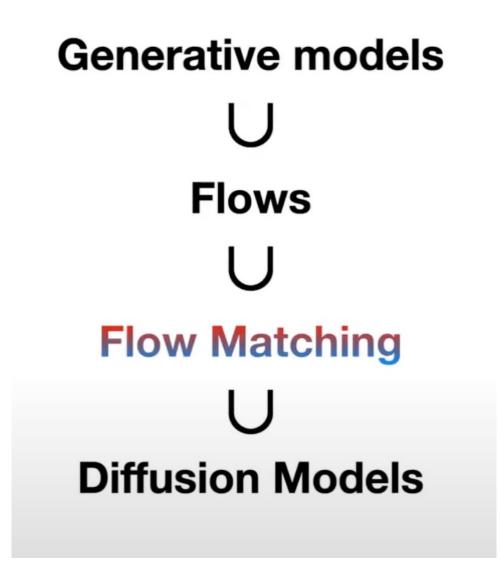
BUILDING NORMALIZING FLOWS WITH STOCHASTIC INTERPOLANTS

Michael S. Albergo

Center for Cosmology and Particle Physics New York University New York, NY 10003, USA albergo@nyu.edu

Eric Vanden-Eijnden

Courant Institute of Mathematical Sciences New York University New York, NY 10012, USA eve2@cims.nyu.edu



Credit: Yaron Lipman, "Flow Matching: Simplifying and Generalizing Diffusion Models"

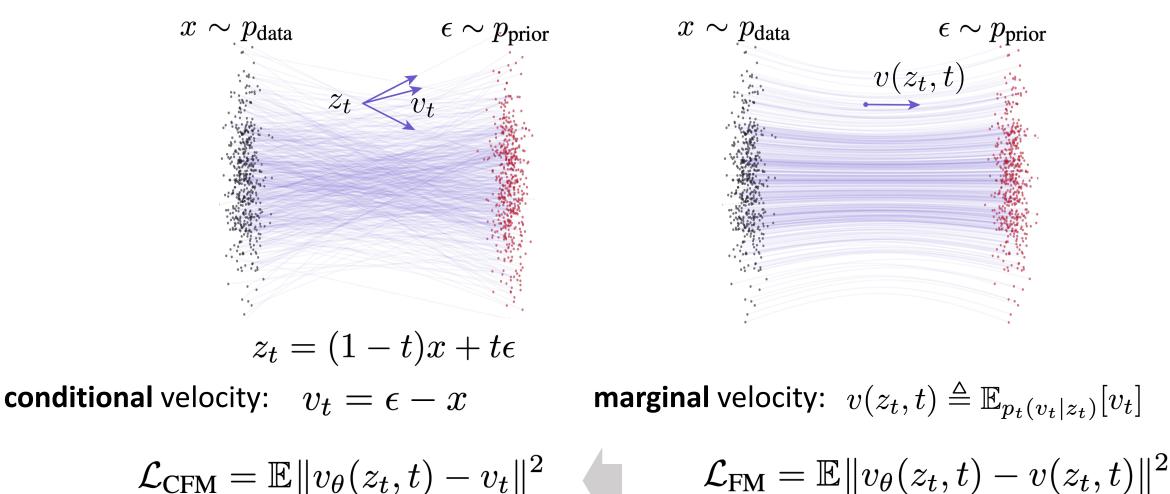
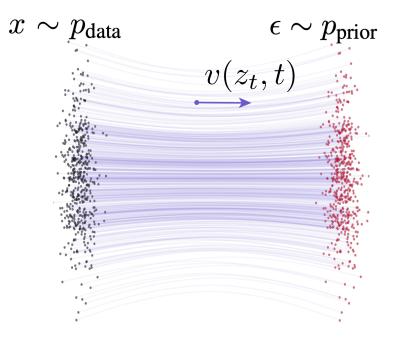


Illustration inspired by: Fjelde, Mathieu, Dutordoir, "An Introduction to Flow Matching" https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html

Solve ODE: $\frac{d}{dt}z_t = v(z_t, t)$

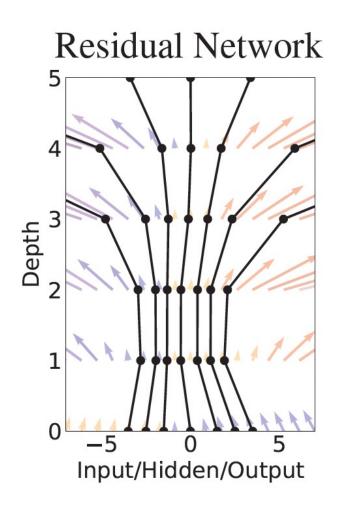
- In principle, w/ ground-truth field $v(z_t,t)$
- In practice, approximate by $v_{ heta}(z_t,t)$

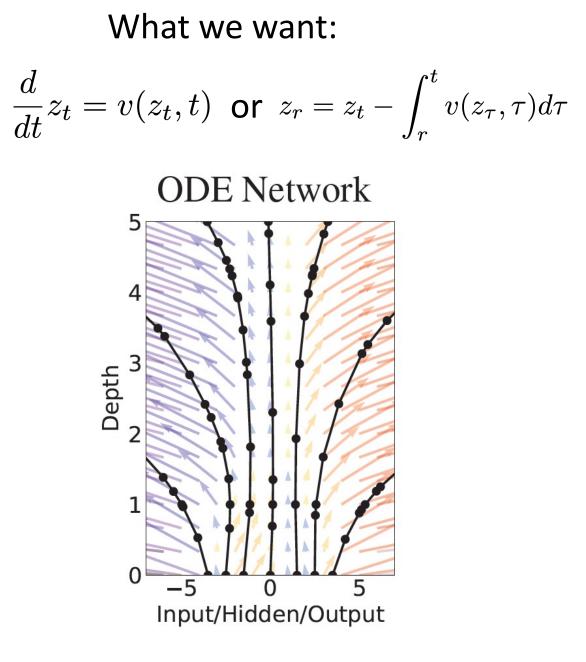


- Ideally, trajectory given by integral: $z_r = z_t \int_r^t v(z_ au, au) d au$
- In reality, approximate by finite sum: $z_r = z_t + (r-t)v(z_t,t)$

What we do:

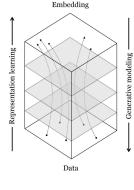
$$z_r = z_t + (r-t)v(z_t, t)$$

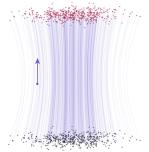


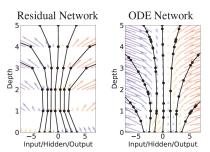


Key takeaways so Far ...

- Recognition vs. Generation: **flows** between distributions
- Flow Matching: builds ground-truth fields for training
 - implicit, pre-exist
 - network-independent
- We want integral, but in practice we do finite sum
 - ResNet-like discretization
 - numerical ODE solvers
- Towards feedforward, end-to-end generative modeling?







Mean Flows for One-step Generative Modeling

Zhengyang Geng¹ Mingyang Deng² Xingjian Bai² J. Zico Kolter¹ Kaiming He²

¹CMU ²MIT

arXiv, May 2025

Average Velocity

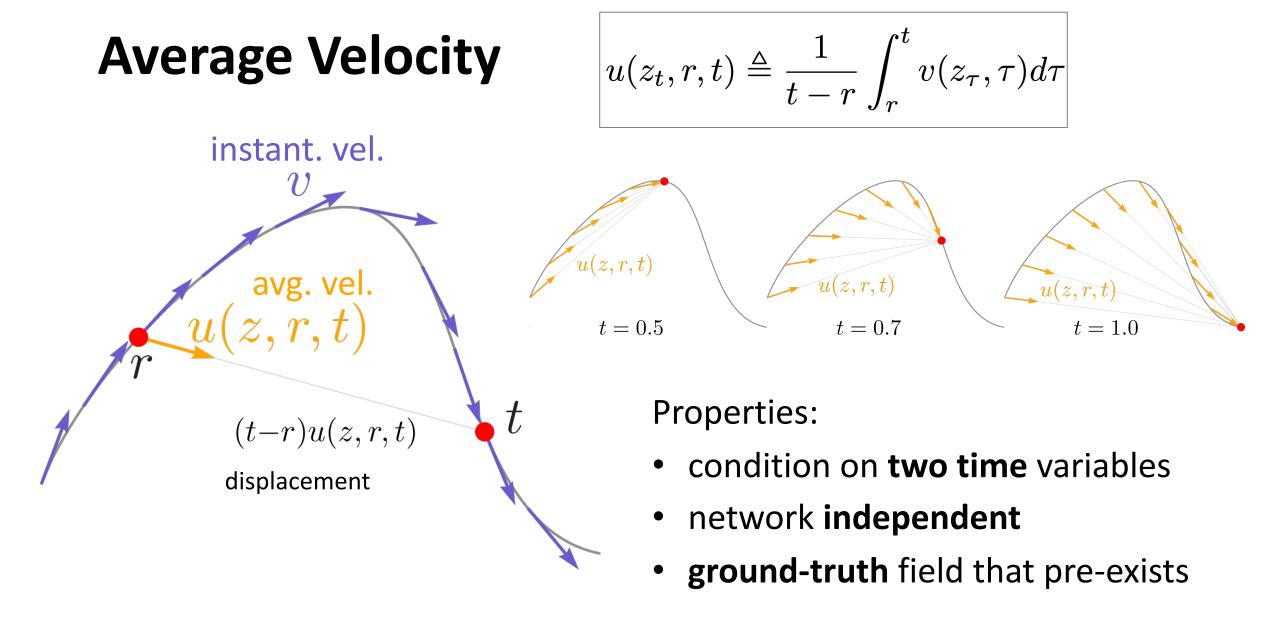
What we want:

$$z_r = z_t - \int_r^t v(z_\tau, \tau) d\tau$$

What we do:

u: average velocity

v: instantaneous velocity



The MeanFlow Identity

d

• Integral is intractable. Differentiate it instead.

$$u(z_{t},r,t) \triangleq \frac{1}{t-r} \int_{r}^{t} v(z_{\tau},\tau) d\tau$$

$$(t-r)u(z_{t},r,t) = \int_{r}^{t} v(z_{\tau},\tau) d\tau$$
ifferentiate wrt t

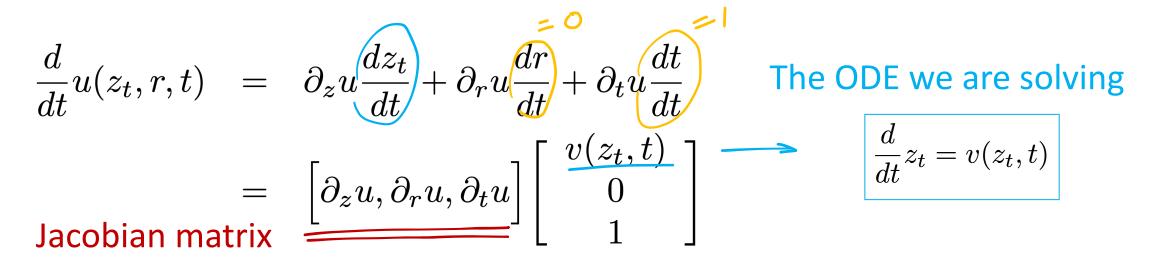
$$\frac{d}{dt}(t-r)u(z_{t},r,t) = \frac{d}{dt} \int_{r}^{t} v(z_{\tau},\tau) d\tau$$
Ihs:
product rule
$$u(z_{t},r,t) + (t-r)\frac{d}{dt}u(z_{t},r,t) = v(z_{t},t)$$
rhs: fundamental theorem of calculus
$$u(z_{t},r,t) = v(z_{t},t) - (t-r)\frac{d}{dt}u(z_{t},r,t)$$
MeanFlow Identity

The MeanFlow Identity

$$u(z_t, r, t) = v(z_t, t) - (t - r) \frac{d}{dt} u(z_t, r, t)$$

avg. vel. instant. vel. two time t-derivative variables

Computing the time derivative



- Jacobian-vector product (JVP): jvp(fn, (z, r, t), (v, 0, 1))
- *c.f.* vector-Jacobian product (**VJP**): "backpropagation"

See: <u>https://docs.jax.dev/en/latest/notebooks/autodiff_cookbook.html#how-it-s-made-two-foundational-autodiff-functions</u>

Training MeanFlow Models

$$u(z_t, r, t) = v(z_t, t) - (t - r) \frac{d}{dt} u(z_t, r, t)$$

avg. vel. instant. vel. t-derivative

No neural net up till now; only about the **ground-truth** field

$$\mathcal{L}(\theta) = \mathbb{E} \left\| u_{\theta}(z_t, r, t) - \underline{\mathrm{sg}(u_{\mathrm{tgt}})} \right\|_2^2$$

parameterize u directly

$$u_{tgt} = \underbrace{v(z_t, t)}_{instant. vel.} - (t - r) \underbrace{(v(z_t, t)\partial_z u_\theta + \partial_t u_\theta)}_{computed by JVP}$$

Training MeanFlow Models

- if u_{θ} has **zero loss**, it satisfies the **MeanFlow Identity**
- **no integral**; only derivatives. (proven equivalent; see paper)
- stopgrad prevents higher-order gradients
- a single-time function u_{θ} is insufficient

$$\mathcal{L}(\theta) = \mathbb{E} \left\| u_{\theta}(z_t, r, t) - \underline{sg(u_{tgt})} \right\|_2^2$$

parameterize u directly

$$u_{\text{tgt}} = \underbrace{v(z_t, t)}_{\text{instant. vel.}} - (t - r) \underbrace{(v(z_t, t)\partial_z u_\theta + \partial_t u_\theta)}_{\text{computed by JVP}}$$

Training MeanFlow Models

- marginal velocity is not explicitly accessible
- use **conditional** velocity instead (as in Flow Matching)

$$\mathcal{L}(\theta) = \mathbb{E} \left\| \underbrace{u_{\theta}(z_t, r, t)}_{t} - \underbrace{sg(u_{tgt})}_{2} \right\|_{2}^{2}$$
parameterize *u* directly target w/ stopgrad
$$u_{tgt} = \underbrace{v(z_t, t)}_{t} - (t - r) \left(\underbrace{v(z_t, t)}_{\partial_z} u_{\theta} + \partial_t u_{\theta} \right)$$

$$v_t = \epsilon - x$$
CFG can be handled similarly (see paper):
 $\tilde{v}_t \triangleq \omega v_t + (1 - \omega) u_{\theta}(z_t, t, t)$

Algorithm 1 MeanFlow: Training.

Note: in PyTorch and JAX, jvp returns the function output and JVP.

```
# fn(z, r, t): function to predict u
# x: training batch
t, r = sample_t_r()
e = randn_like(x)
z = (1 - t) * x + t * e
                               the main changes over
v = e - x
                                   Flow Matching
u, dudt = jvp(fn, (z, r, t), (v, 0, 1))
u_tgt = v - (t - r) * dudt
error = u - stopgrad(u_tgt)
loss = metric(error)
```

Sampling with MeanFlow

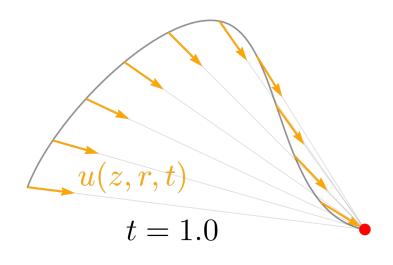
What we want:

$$z_r = z_t - \int_r^t v(z_\tau, \tau) d\tau$$

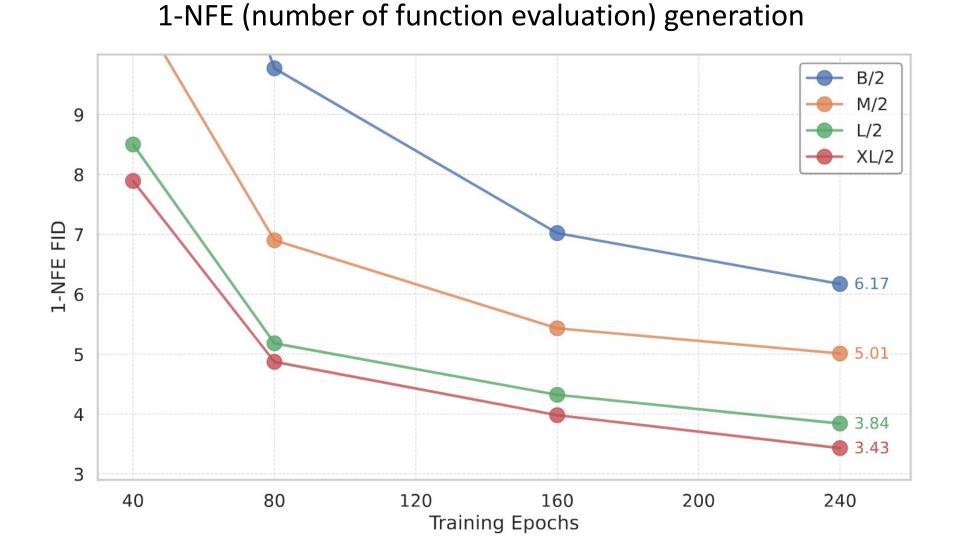
What we do:

$$z_r = z_t - (t-r)u(z_t,r,t)$$
avg. ve

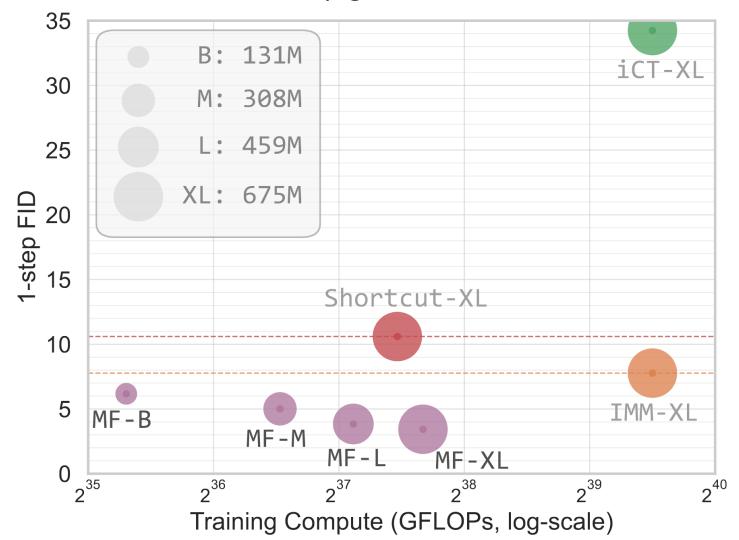
Algorithm 2 MeanFlow: 1-step Sampling



el.



1-step generation



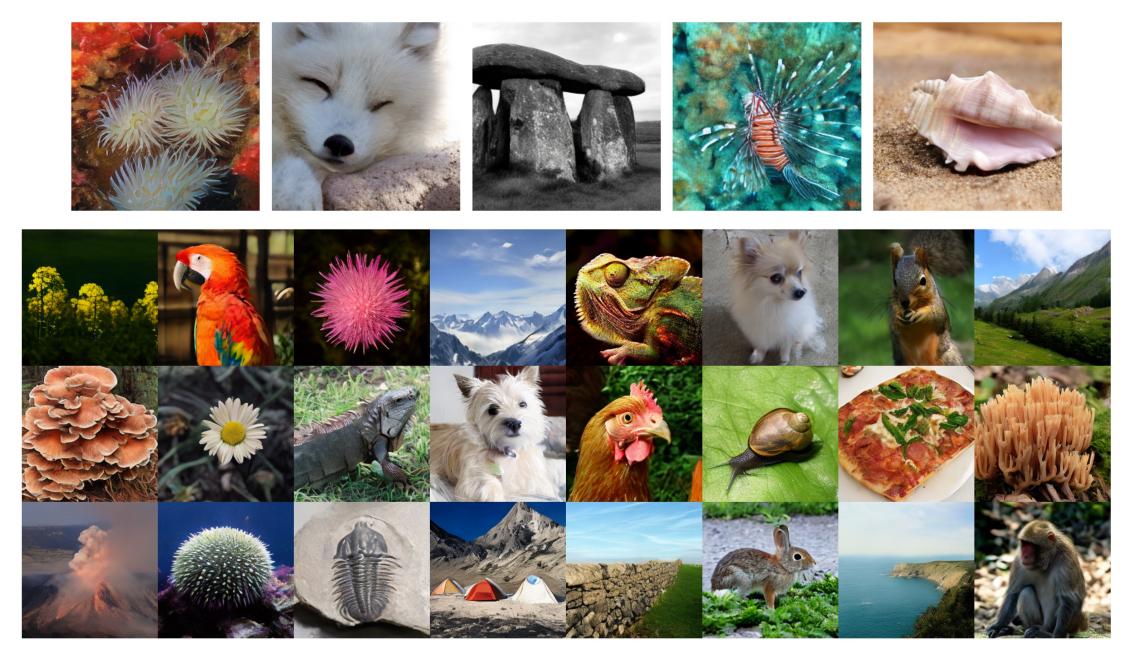
				_
method	params	NFE	FID	
1-NFE diffusion/flow f	-			
iCT-XL/2 [44] [†]	675M	1	34.24	
Shortcut-XL/2 [13]	675M	1	10.60	
MeanFlow-B/2	131M	1	6.17	
MeanFlow-M/2	308M	1	5.01	1 NEE 700/
MeanFlow-L/2	459M	1	3.84	1-NFE: 70%
MeanFlow-XL/2	676M	1	3.43	improvement

method	params	NFE	FID			
1-NFE diffusion/flow from scratch						
iCT-XL/2 [44] [†]	675M	1	34.24			
Shortcut-XL/2 [13]	675M	1	10.60			
MeanFlow-B/2	131M	1	6.17			
MeanFlow-M/2	308M	1	5.01			
MeanFlow-L/2	459M	1	3.84			
MeanFlow-XL/2	676M	1	3.43			
2-NFE diffusion/flow f	from scratcl	h				
iCT-XL/2 [44] [†]	675M	2	20.30			
iMM-XL/2 [53]	675M	1×2	7.77			
MeanFlow-XL/2	676M	2	2.93			
MeanFlow-XL/2+	676M	2	2.20			

improvement

method	params	NFE	FID	method	params	NFE	FID			
1 NEE diffusion /A out 4				GANs						
1-NFE diffusion/flow f	rom scraici	1		BigGAN [5]	112 M	1	6.95			
iCT-XL/2 [44] [†]	675M	1	34.24	GigaGAN [22]	569M	1	3.45			
Shortcut-XL/2 [13]	675M	1	10.60	StyleGAN-XL [41]	166M	1	2.30			
MeanFlow-B/2	131M	1	6.17	autoregressive/masking						
MeanFlow-M/2	308M	1	5.01	AR w/ VQGAN [10]	227M	1024	26.52			
		1		MaskGIT [6]	227M	8	6.18			
MeanFlow-L/2	459M	1	3.84	VAR-d30 [48]	2B	10×2	1.92			
MeanFlow-XL/2	676M	1	3.43	MAR-H [28]	943M	256×2	1.55			
2-NFE diffusion/flow f	diffusion/flow									
				ADM [8]	554M	250×2	10.94			
iCT-XL/2 [44] [†]	675M	2	20.30	LDM-4-G [38]	400M	250×2	3.60			
iMM-XL/2 [53]	675M	1×2	7.77	SimDiff [21]	2B	512×2	2.77			
MeanFlow-XL/2	676M	2	2.93	DiT-XL/2 [35]	675M	250×2	2.27			
				SiT-XL/2 [34]	675M	250×2	2.06			
MeanFlow-XL/2+	676M	2	2.20	SiT-XL/2+REPA [52]	675M	250×2	1.42			

narrows gap w/ multi-step counterparts



Qualitative result, 1-NFE generation (FID 3.43)

The Community Effort ...

Consistency Models

- Consistency Models (CM) [Song+ 2023]
- improved Consistency Training (iCT) [Song & Dhariwal 2024]
- Easy Consistency Training (ECT) [Geng+ 2024]
- simple/stable/scalable Consistency Models (sCM) [Lu & Song 2024]

• Two-time-variable Models

- Consistency Trajectory Models (CTM) [Kim+ 2023]
- Flow Map Matching [Boffi+ 2024]
- Shortcut Models [Frans+ 2024]
- Inductive Moment Matching [Zhou+ 2025]

• Revisiting Normalizing Flows

• TarFlow [Zhai+'24]

Looking ahead...

- Are we still in the **pre-AlexNet** era of generative modeling?
- MeanFlow is still driven by iterative Flow Matching (and diffusion)
- MeanFlow network plays two roles:
 - **construct** noise-to-data trajectories (pre-exist, but implicit)
 - summarize the fields via coarsening
- What's a good formulation for **end-to-end** generative modeling?