

Joint Inverted Indexing ICCV 13

Yan Xia, Kaiming He, Fang Wen, and Jian Sun Microsoft Research Asia

- Very Large Scale Nearest Neighbor Search
 - Compact code
 - Linear
 - Memory economic
 - Focus of our CVPR 13 (optimized product quantization)
 - Inverted file
 - Sub-linear
 - Real-time for **Billion** scale
 - Focus of our ICCV 13
 - Best practice
 - Inverted file + compact code

- Inverted File [Sivic 03]
 - Quantization
 - Inverted indexing
 - Short list scanning

- Multiple Inverted Files
 - Multiple quantization
 - Multiple indexing
 - Multiple short lists
 - LSH [Indyk 1998], Rand Trees [Silpa-Anan 2008], K-means LSH [Pauleve 2010]

• Multiple Inverted Files

	Individual Quantizer Accuracy	Inter-Quantizer Difference	
LSH [Indyk 1998] Random Trees [Silpa-Anan 2008]	Poor (reduced dim)	Good (highly random)	
K-means LSH [Pauleve 2010]	Good (min distortion by k-means)	Poor (k-means tend to be similar)	

• Our method

	Individual Quantizer Accuracy	Inter-Quantizer Difference			
Joint Inverted Indexing	Good (k-means alike)	Good (joint optimization)			
Joint k-means					
Quantizatio	on Q	uantization			

Joint Inverted Files

Algorithm

i. Center generation

3 quantizers, 8 centers each

Joint Inverted Files

Algorithm

- i. Center generation
- ii. Center clustering

3 quantizers, 8 centers each

Joint Inverted Files

Algorithm

- i. Center generation
- ii. Center clustering
- iii. Center assignment

Individual Quantizer	Inter-Quantizer	
Accuracy	Difference	
Good	Good	
(k-means alike)	(joint optimization)	

3 quantizers, 8 centers each

Joint Inverted Files K-means LSH vs. Joint

K-means LSH

Joint Inverted Files K-means LSH vs. Joint

K-means LSH

Joint

Experiments

• 1 million SIFT (retrieval)

Experiments

• 1 billion SIFT (retrieval)

R: recall of 100-NN N: # retrieved data 16 quantizers

Experiments

• 1 billion SIFT (retrieval + re-rank)

methods	parameters	R@100	R@300	R@1000	cost*
	NI-10000	0 749	0.740	0.751	
Multi-D-ADC		0.748	0.749	0.751	0.8 MS 20GB
KLSH-ADC	$K = 2^{19}$	0.836	0.854	0.861	5.6 ms 80GB
Joint-ADC	$K = 2^{19}$	0.884	0.904	0.911	5.6 ms 80GB
Multi-D-ADC	N=50000	0.929	0.932	0.934	27.9 ms 20GB
KLSH-ADC	$K = 2^{17}$	0.894	0.917	0.924	11.8 ms 80GB
Joint-ADC	$K = 2^{17}$	0.938	0.964	0.972	11.8 ms 80GB

*CPU single-thread

Multi-D-ADC: [Babenko CVPR 12]