ML Research, via the Lens of ML

Kaiming He Associate Professor, EECS, MIT

New In ML Workshop, NeurIPS 2024

• The way we see the world is shaped by our personal context.

• In this talk - Inspect ML research by ML models

Research is SGD in a chaotic landscape

Figure 1: The loss surfaces of ResNet-56 with/without skip connections.

Community SGD

your own research

the bigger picture

Community SGD, a longer time frame

Research is SGD in a chaotic landscape

- Noisy and uncertain
- Large vs. small lr
- Exploration vs. exploitation
- Stand on the shoulders of giants

ML concerns 'Expectation'; Research looks for 'Surprise'

ML concerns 'Expectation'

$\min \mathbb{E}_x[\mathcal{L}(x)]$

A "Generative Model" Perspective

A "Generative Model" Perspective

A "Generative Model" Perspective

Research looks for 'Surprise'

Research looks for 'Surprise'

Research looks for 'Surprise'

- Challenging common wisdom
- Extending the horizon of knowledge
- "Surprise" will become new "expectation"; repeat
- Research is SGD, w/ large or small Ir

Future is the Real Test Set

Generalization: At the Core of ML

Generalization: At the Core of ML

Future is the Real Test Set

what you have seen

- your "train/val/test" data
- your config
- your use cases
- your context

what you haven't seen

- new data
- new config
- new use cases
- new context

Future is the Real Test Set

Reduce "overfitting" of your research

• Less is More - Occam's Razor

- Validate your research on real "val" scenarios
 - Predict your experiments' outcome before running them
 - You know what's "post-hoc" and "pre-hoc"

- Focus on the "future"
 - Your "state-of-the-art" is about the past
 - Help the community to achieve the next "sota"

On the Scaling Laws of ML Research

Deep Blue, 1997 - first to beat humans in chess

- "Supercomputer"
- 30 CPUs
- 480 custom "chess chips"

Today - phones can easily beat human grandmasters (actually, 15 years ago)

ResNet, 2015

- >1 month to train (8x K80 GPUs)
 ResNet, 2020
- <1 min to train (1000's A100 GPUs)

People used to call them "big models":

- AlexNet (2012): 60-million parameters
- ResNet-50 (2016): 25-million parameters

"Small Language Models (SLM)" today:

- 100-million, 1-billion, 10-billion?
- e.g., "TinyLlama": 1.1 billion

"Large/Small" should be put into context, of the history

If Moore's Law persists...

• ML research should adapt to the growth of compute

- How to make good use of compute?
 - What if our phone can train ChatGPT in 1 day? 1 hour?

- Focus on the "future"
 - today's gigantic models can be future's daily routine

Case study: Diffusion Models

2015, first Diffusion Model was proposed

• 1000's of steps at inference --- too heavy?

2019/2020, NCSN/DDPM made work

• 1000's of steps --- affordable, if they are good

now to next 3 or 5 years:

• scaling models by 1000x? inference steps by 1000x?

⁽complexity/data/time/...)

Takeaways

• Research is SGD in a chaotic landscape

• Look for 'surprise'

- Future is the real test set
- Scalability: Your research vs. Moore's law

Thank you!