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Abstract—Image completion involves filling missing parts in images. In this paper we address this problem through novel statistics of

similar patches. We observe that if we match similar patches in the image and obtain their offsets (relative positions), the statistics of

these offsets are sparsely distributed. We further observe that a few dominant offsets provide reliable information for completing the

image. Such statistics can be incorporated into both matching-based and graph-based methods for image completion. Experiments

show that our method yields better results in various challenging cases, and is faster than existing state-of-the-art methods.

Index Terms—Image completion, image inpainting, natural image statistics

Ç

1 INTRODUCTION

IMAGE completion involves the issue of filling missing
parts in images. This is a non-trivial task in computer

vision/graphics: on one hand, the completed images are
expected to be visually plausible and has little noticeable
artifacts; on the other hand, the algorithm should be effi-
cient, because in practice an image completion tool is often
applied with user interactions and needs quick feedbacks.
For today’s consumer-level multi-mega-pixel cameras,
high-quality and fast image completion is still a challenging
problem.

One category of image completion methods are
diffusion-based [1], [2], [3], [4], [5]. These methods solve
Partial Differential Equations (PDE) [1] or similar diffusion
systems, so as to propagate colors into the missing regions.
They are mainly designed for filling narrow or small holes
(also known as “inpainting” [1]). They work less well for
large missing regions due to the lack of semantic texture/
structure synthesis.

Another category of image completion methods are
exemplar-based. They perform more effectively for large
holes. In this paper, we further categorize exemplar-based
methods into two groups: matching-based [6], [7], [8], [9],
[10], [11], [12], [13], [14] and graph-based [15], [16], [17].
Matching-based methods explicitly match the patches in the
unknown region with the patches in the known region, and
copy the known content to complete the unknown region.
This strategy makes it possible to synthesize textures [6]
and more complex structures [7], [8], [9], [10], [11], [12], [13].
Unlike many matching-based methods using greedy fash-
ions, the method proposed by Wexler et al. [11] optimizes a
global cost function called the coherence measure. This cost
function encourages that each patch in the filled region is as

similar as possible to a certain known patch. It has been gen-
eralized for image retargeting/reshuffling in [14]. This mea-
sure helps to yield more coherent results for image
completion. But because this cost function inherently has
multiple local optima, this method is sensitive to initializa-
tion and optimization methods.

Matching patches can be a computationally expensive
operation. A fast PatchMatch algorithm [18] largely relieves
this problem and is combined with Wexler et al.’s methods
[11]. This combination is implemented as the Content Aware
Fill in Adobe Photoshop [19], is arguably among the current
state-of-the-arts in terms of both visual quality and speed.

Besides the matching-based strategy, exemplar-based
methods can also be realized by optimizing graph-based
models like Markov Random Fields (MRFs), as in the works
of Priority-BP [15] and Shift-map [17]. Rather than match
patches, these methods rearrange the patch/pixel locations
to complete the image. The rearrangement is formulated as
an MRF, where each node in the graph takes its value
among a set of discrete labels. These labels can represent the
absolute coordinates of the patches/pixels as in Priority-BP
[15], or the relative offsets as in Shift-map [17]. The edges in
the graph encourages that the neighboring nodes should
have visually coherent content. The MRFs are optimized via
well-studied techniques like belief propagation (BP) [20] or
graph-cuts [21].

Although avoiding matching patches, the graph-based
methods are still computationally expensive: the complexity
is linear in the number of labels and also in the number of
unknown pixels, so is approximately quadratic in the num-
ber of image pixels. Priority-BP [16] adopts label pruning,
and Shift-map [17] adopts hierarchical solvers [17]. But they
may still take tens of seconds to process small images (e.g.,
400 � 300 pixels).

We note that exemplar-based methods, both matching-
based and graph-based, should implicitly or explicitly assign
each unknown pixel/patch an offset—the relative location
from where it copies the content. Both the coherence mea-
sure in Wexler et al’s method [11] and the MRFs in Shift-
map [17] can be viewed as optimization w.r.t. the offsets
(Section 2). But existing methods do not predict reliable
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offsets beforehand, and generally accept all possible offsets
in the optimization. We will show that it is beneficial to con-
strain the offsets using certain statistics of patch offsets. In
terms of quality, our constrained offsets may produce better
results for both graph-based and matching-based methods.
Typically, we find unexpected biases may present for
graph-based methods if the offsets are not restricted (c.f.
Section 3.3). In terms of speed, a small set of pre-defined off-
sets lead to efficient algorithms.

In this paper, we present novel statistics of similar
patches for high-quality and fast image completion. We
observe that if we match similar patches in the image, the
statistics of patch offsets are sparsely distributed (Fig. 1c): a
majority of patches have similar offsets, forming several
prominent peaks in the statistics. Such dominant offsets
describe how the patterns are most possibly repeated, and
thus provide reliable clues for completing the missing
region. We observe that these offsets are predictive for com-
pleting linear structures, textures, and repeated objects.
Then we show that the statistics of patch offsets can be
incorporated into both graph-based and matching-based
methods for image completion. In our graph-based solution,
we create a stack of shifted images corresponding to a few
dominant offsets, and combine them via graph-cuts to fill
the missing region (Fig. 1d). In our matching-based solu-
tion, we optimize the coherence measure but only allow
patches to be matched to those shifted by the dominant off-
sets. In experiments, both methods produce high-quality
results in various cases that are challenging for many state-
of-the-art methods. The graph-based method is also faster
than the competitors including Content-Aware Fill in
Adobe Photoshop.

The statistics of patch offsets is a way of representing
image self-similarities. In the literature, various definitions
of image self-similarities have been investigated for texture
synthesis [22], object detection/classification [23], [24],
image segmentation [25], and nearest-neighbor field search
[26]. In this work, we show that image self-similarities can
help to synthesize more content beyond textures.

A preliminary version of this work has been published in
ECCV ’12 [27]. The statistics of patch offsets have witnessed

other applications beyond image completion. Chen et al.
[28] use the dominant offsets to initialize optical flows. They
present top-ranked results in optical flow benchmarks.
Zhang et al. [29] use the the dominant offsets with the
graph-cuts algorithm to extrapolate images. We expect the
statistics of patch offsets, as a kind of natural image statis-
tics, will find more applications in the future.

2 APPROACHES

We first introduce a way of computing the statistics of patch
offsets. Based on this, we develop both matching-based and
graph-based methods for image completion. We provide
analysis in the next section.

2.1 Computing the Statistics of Patch Offsets

To compute the statistics, we first match similar patches in
the known region and obtain their offsets (Fig. 1b). For each
patch P in the known region, we find another known patch
that is the most similar with P and compute their relative
position s. Formally, the offset s is:

sðxÞ ¼ arg min
s

kP ðxþ sÞ � P ðxÞk2

s:t: jsj > t:
(1)

Here, s ¼ ðu; vÞ is the 2d coordinates of the offset, x ¼ ðx; yÞ
is the position of a patch, and P ðxÞ is a w� w patch centered

at x. We represent each patch as a 3w2-dimensional vector
of its RGB colors. The similarity between two patches is
measured by the squared Euclidean distance between their
representations. The threshold t is to preclude nearby
patches. This constraint is to avoid trivial statistics as we
will discuss.

The solution to Eq. (1) can be approximately obtained by
nearest-neighbor field algorithms like the PatchMatch [18]
or its improvements [30], [31]. Because we will compute the
statistics, the approximation in these algorithms almost
does not impact the dominant offsets. In this paper we
adopt [31] due to its fast speed.

Given all the offsets sðxÞ for all the known pixels x, we
compute their statistics by a 2d histogram hðu; vÞ:

Fig. 1. Outline. (a) Input image with a mask overlayed. (b) Matching similar patches in the known region. (c) The statistics of the offsets of the similar
patches. The offsets of the highest peaks are picked out. (d) Combining a set of shifted images with the given offsets. (e) Our graph-based result.
(f) Result of Content-Aware Fill.
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hðu; vÞ ¼
X

x

dðsðxÞ ¼ ðu; vÞÞ; (2)

where dð�Þ is 1 when the argument is true and 0 otherwise.
We pick out the K highest peaks of this histogram. They
correspond to the first K dominant offsets. We empirically
useK ¼ 60 throughout this paper.

Fig. 1c shows an example of this histogram. There are
two major peaks in the horizontal direction. The offsets
given by these two peaks indicates how the patterns are
mostly repeated in the image. In Section 3 we will discuss
various cases and explain how these dominant offsets influ-
ence the image completion algorithms.

2.2 Image Completion Using the Statistics of Patch
Offsets

As discussed in the introduction, both matching-based and
graph-based methods can be viewed as assigning an offsets
sðxÞ to each unknown pixel/patch at x. The algorithms will
copy content from the location xþ s and paste it (pixel-wise
or patch-wise) into the position x. Next we show how the
statistics of patch offsets can be applied to both matching-
based and graph-based methods.

2.2.1 Graph-Based Image Completion Using the

Statistics of Patch Offsets

In our graph-based solution, we treat image completion as a
photomontage [32] problem. Given the K dominant offsets,
we combine a stack of shifted images corresponding to
these offsets (see Fig. 1d). Formally, we optimize the follow-
ing MRF energy function:

EðLÞ ¼
X

x2V
EdðLðxÞÞ þ

X

ðx;x0Þjx2V;x02V
EsðLðxÞ; Lðx0ÞÞ: (3)

Here V is the unknown region (expanded by one pixel to
include boundary conditions). The neighboring pixels ðx; x0Þ
are four-connected. The argument L is a labeling map. It
assigns a label to each unknown pixel x, where the labels

represent the pre-selected offsets fsigKi¼1 or s0 ¼ ð0; 0Þ. Here
s0 is valid if and only if x is on the boundary of V, so as to
impose boundary constraints. Intuitively, “LðxÞ ¼ i” means
that we copy the pixel at xþ si to the location x.

The data term Ed is 0 if the label is valid for x, i.e., xþ s is
a known pixel; otherwise Ed is þ1. The smoothness term
Es penalizes the incoherent seams. Denoting a ¼ LðxÞ and
b ¼ Lðx0Þ, we define Es as:

Esða; bÞ ¼ kIðxþ saÞ � Iðxþ sbÞk2

þ kIðx0 þ saÞ � Iðx0 þ sbÞk2:
(4)

Here IðxÞ is the RGB color of x. Note Iað�Þ , Ið� þ saÞ is an
image shifted by sa (Fig. 1d); and likewise Ibð�Þ , Ið� þ sbÞ. If
sa 6¼ sb, the neighboring pixels x and x0 will be assigned dif-
ferent offsets, i.e., LðxÞ 6¼ Lðx0Þ, so there will exist a seam
between x and x0. In this sense, Eq. (4) penalizes the neigh-
boring labels if the two shifted images Ið� þ saÞ and Ið� þ sbÞ
are not similar near this seam. This smoothness term is simi-
lar to the those used in the GraphCuts texture [33], Photo-
montage [32], or Shift-map [17] methods.

As in the photomontage problem [32], we optimize the
energy (3) using multi-label graph-cuts [21] and then further
suppress the seams by Poisson blending [34]. More imple-
mentation details are in Section 4. Fig. 1e shows an image
completion result of our graph-based solution.

2.2.2 Matching-Based Image Completion Using the

Statistics of Patch Offsets

The statistics of patch offsets can also be incorporated into
the coherence measure dcohere proposed in [11], [13]. In this
paper we adopt the definition used in [14], [18]:

dcohere ¼
X

P2V
min
Q2V

kP �Qk2; (5)

where P is a patch in the synthesized region V, and Q is a

patch in the known region V. This measure penalizes any
patch P in the synthesized region if its best match Q in the
known region is not similar to it. In our current implementa-
tion we do not apply the weights used in [13].

We can rewrite Eq. (5) in a way of offset assignments:

dcohere ¼
X

x2V
min

s;xþs2V
kP ðxÞ � P ðxþ sÞk2; (6)

where P ðxþ sÞ is a known patch. Eq. (6) clearly shows that
each patch in the V will be assigned an offset s. It also
implies that there is no constraint on the selection of s: it

accepts all valid s such that xþ s 2 V.
Based on Eq. (6), it is easy to incorporate the statistics of

patch offsets into the coherence measure:

d̂cohere ¼
X

x2V
min
1�i�K

kP ðxÞ � P ðxþ siÞk2: (7)

This equation means that the offsets can only be chosen
from the dominant offsets fsigKi¼1 obtained from the statis-
tics. Note the patch size here need not be the same as the
one used for computing the statistics. We denote this patch
size as w0 � w0.

The coherence measure in Eq. (7) can be optimized in an
EM fashion just as in [14], [18]. In the E-step, the algorithm
computes a nearest neighbor field (each unknown pixel
assigned an offset) that maps a patch P 2 V to its most simi-
lar patch Q. This was done by the PatchMatch algorithm in
[18]. In contrast, here we simply exhaust i 2 ½1; K� for each
P ðxÞ to find the most similar patch P ðxþ siÞ. In the M-step,
the color of each unknown pixel is reconstructed by
“voting” as in [18]: because each unknown pixel is covered
by multiple overlapping patches, all the corresponding pix-
els in these patches are averaged to give the new color of
this pixel. This algorithm is iterated.

As in [14], [18], we also adopt a multi-scale strategy.
More implementation details are in Section 4.

2.2.3 Discussions

We have shown the statistics of patch offsets can be natu-
rally incorporated into both graph-based and matching-
based methods. In Section 5 we show the results of our both
methods. Between the two methods using the statistics, we
recommend the graph-based one. Our graph-based solution
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does not require patch representations in the optimization
step, so it is less involved in the issue of choosing patch
sizes (see Section 3.4). Besides, we find our graph-based
solution is faster (see Section 5) thanks to the efficiency of
graph-cuts [21]. Unless specified, the results in these paper
are obtained from our graph-based solution.

3 ANALYSIS

In this section, we analyze the statistics of patch offsets and
their impacts to image completion.

3.1 Sparsity of the Offsets Statistics

One of our key observations is that the offsets statistics are
sparse (Fig. 1c). We verify this observation in the MSRA
Salient Object Database [35] which contains 5,000 images
with manually labeled salient objects. We omit these
objects and compute the offsets statistics in the back-
ground. Note the background still contains various struc-
tures or less salient objects. We use 8 � 8 patches and test
t ¼ 16, 24, or 32 in Eq. (1). For each image, we sort the histo-
gram bins in the descending order of their magnitude (i.e.,
the number of offsets in a bin), and we cumulate the bins.
The cumulative distribution, averaged over 5,000 images,
is shown in Fig. 2a. We can see the offsets are sparsely dis-
tributed: (e.g.), when t ¼ 32, about 80 percent of the offsets
are in 7 percent of all possible bins (Fig. 2b). We also
observe the cumulative distribution changes only a little
with different t values (16, 24, or 32) (Figs. 2a and 2b). This
means the sparsity is insensitive to t in a wide spectrum.

It is worth mentioning that the non-nearby constraint
(jsj > t) in Eq. (1) is important. A recent work on natural
image statistics [36] shows that the best match of a patch is
most probably located near itself. We verify this by setting
t ¼ 0 (thus a patch can match any other patch rather than
itself). We can see that the offsets statistics have a single
dominant peak around ð0; 0Þ (e.g.), Fig. 3b). Although the
offsets distribution is even sparser (see Fig. 2a and Figs. 3a

and 3b), the zero offset is insignificant for inferring struc-
tures in holes.

3.2 Offsets Statistics for Image Completion

We further observe that the dominant offsets (with the non-
nearby constraint) are informative for filling the hole under
at least three situations: (i) linear structures, (ii) regular/
random textures, and (iii) repeated objects.

3.2.1 Linear Structures

As illustrated in Fig. 4a, a patch on a linear structure can
find its match that is also on this structure. The offsets statis-
tics will exhibit a series of peaks along the direction of the
structure (Fig. 4b). Here we use a dot to denote a dominant
offset in the histogram. These offsets will shift the image
along the linear structure, so can reliably complete the mis-
sion region.

Fig. 5 shows some real examples of this case. We find our
method works well for the linear structures including long
and thin objects (Fig. 5a), color edges (Fig. 5b), and textural
edges (Figs. 5c and 5d). Note that our method is tolerant to
the structures that are not salient (e.g., Fig. 5c) or that are
not strictly straight (e.g., Fig. 5d); it is sufficient if the struc-
tures have a “trend” along one or a few directions.

3.2.2 Textures

Textures can yield prominent patterns in the offset statistics.
Ideally, a regular texture should generate a regular pattern
of dominant offsets describing how the textures are
repeated (Fig. 6). We can complete the texture by shifting
the image using these offsets. Fig. 7 shows a real example of
regular textures. Because the “period” of the regular tex-
tures can be larger than some predefined patch sizes, com-
pleting such textures is a challenging task for other
techniques like Content-Aware Fill [19] (Fig. 7d). For irregu-
lar textures, we find the dominant offsets generate random
patterns (Fig. 8). In this case our method behaves just like
the Graphcut texture algorithm [33].

Fig. 2. (a): Cumulative distributions of offsets, averaged over 5,000
images. (b): zoom-in of (a).

Fig. 3. Offset statistics of Fig. 1 using t ¼32 or t ¼0 (shown in the same
scale).

Fig. 4. Illustration of completing linear structures. (a) matching patches. (b) ideal dominant offsets. (c) filling the hole by shifting the image using these
offsets. This figure is for illustration only. The real cases are in Fig. 5.
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3.2.3 Repeated Objects

Repeated objects can also generate prominent peaks in the
offset statistics. This is helpful in synthesizing semantic
content. As shown in Fig. 9, the partially missing circles
yield peaks in the offsets that correspond to the relative
positions of the circles. We can complete each circle by
shifting another circle with these offsets. In Fig. 10 we
show a real example in which our algorithm faithfully
recovers a fully missing sculpture. We find that Content-

Aware Fill might produce unsatisfactory results (see
Figs. 9e and 10f), mainly because it is unaware of how the
objects are repeated.

In sum, the offsets statistics can predict the structures in
the missing regions in the cases of linear structures, tex-
tures, and repeated objects. Our method can handle all of
them in the same framework. In the literature, Sun et al.’s
work [12] and the PatchMatch paper [18] have proposed to
preserve linear structures under the guidance of user

Fig. 5. Linear structures. Top: input. Middle: dominant offsets. Bottom: the results obtained by our graph-based solution. (a) Long/thin objects.
(b) Linear color edges. (c), (d) Linear textural edges.

Fig. 6. Illustration of completing textures. The notations are as in Fig. 4.

Fig. 7. Regular textures. (a) input. (b) dominant offsets. They describe how the textures are repeated. (c) the result obtained by our graph-based solu-
tion. (d) result of Content-Aware Fill.

Fig. 8. Random textures. (a) input. (b) dominant offsets. (c) the result obtained by our graph-based solution.
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interactions, whereas extensive studies (to name a few, [6],
[22], [33]) have been focused on synthesizing texture. Both
cases are often encountered in image completion. Our
method has the advantages that it need not handle them
separately, need not know the cases of line/texture in
advance, and needs no user interaction.

3.3 Offsets Selection and the Graph-Based Energy
Optimization

Our graph-based method has an energy function Eq. (3)
similar to the Shift-map method [17]. The main difference is
that Shift-map allows all possible offsets. As a result, our
solution space is a very small subset of the one of Shift-map.
Theoretically, Shift-map can achieve a smaller energy than
our method (this is observed in experiments). However, we
find that the results of Shift-map may have unexpected bias,
and their visual quality can be unsatisfactory even if their
energy is much lower than ours.

In Fig. 11 we optimize the energy Eq. (3) respectively
using our selected K dominant offsets (Fig. 11b) and using
all possible offsets (Fig. 11c). The later is the way of Shift-
map [17] (except that [17] has an extra gradient smoothness

term). As expected, our energy (4:6� 106) is much larger

than the energy of Shift-map (1:1� 106). But our result is
visually superior.

We investigate this unexpected phenomenon through the
graph-cuts label maps (Figs. 11b and 11c). We find that with
a huge number of offsets, the Shift-map method can
decrease the energy by “inserting” a great number of insig-
nificant labels into the seam (see the zoom-in of Fig. 11c).
These labels correspond to a few isolated pixels that occa-
sionally “connect” the content on both sides of the seam.
When the offset candidates are in a great number, these
“occasional” pixels are not rare. We further observe that
this problem is inherent and cannot be safely avoided by a

hierarchical solver [17] (Fig. 11d) or by combining the gradi-
ent smoothness term (Fig. 11e, obtained from the authors’
demo [37]).

On the contrary, our method is less influenced by this
problem (Fig. 11b). Actually, an ideal exemplar-based
method should fill the missing region by copying large seg-
ments (like patches or regions). This means that only a few
offsets should take effect, which is ensured by our method.
The above experiments and analysis indicate that reliably
limiting the solution space is important for improving the
quality in image completion.

Although the dominant offsets selected by our method
can improve the quality (and also speed), it is non-trivial to
select a few reliable candidate offsets (e.g., 60) out of all pos-
sible ones (usually 104 � 106). We compare some naive off-
set selection methods in Fig. 12. We generate the same
number (K ¼ 60) of offsets, either on a regular grid
(Fig. 12b), randomly (Fig. 12c), or by our method (Fig. 12d).
We observe that the alternative methods cannot produce
satisfactory results, because the predefined offsets do not
capture sufficient information to predict the missing
structures.

3.4 Patch Sizes for the Offsets Statistics

Most exemplar-based methods (except [17]) involve the
issue of setting suitable patch sizes. Our graph-based
energy does not rely on patch representations as in [17]; the
patch sizes only impact the computation of the offsets statis-
tics (Eq. (1)). As analyzed above, the dominant offsets in the
statistics are mainly determined by how the patterns are
repeated in the known regions. Such repeatedness is insen-
sitive to the patch sizes.

In Fig. 13 we show two examples using our graph-based
solution. Here we test w� w ¼ 4� 4, 8� 8, 16� 16, 24� 24,
and 32� 32 patches used for computing the offsets

Fig. 9. Repeated circles. (a) input with a missing region in red. (b) offset histogram. (c) dominant offsets found by our algorithm. (d) our result (this is a
real result, not a synthetic illustration). (e) result of Content-Aware Fill.

Fig. 10. Repeated objects. (a) input with a sculpture missing. (b) dominant offsets. The arrows indicate the offsets of the relative positions of the
sculptures. (c) the label map obtained by graph-cuts: each color represents an offset. (d) the hole is mainly filled by copying the other sculptures,
using the offsets indicated in (b). (e) our result and zoom-in. (f) result of Content-Aware Fill and zoom-in.
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statistics. We can see that our method can produce visually
plausible results in a very side spectrum of patch sizes. This
experiment shows that our method is very robust to patch
sizes. In all other experiments in this paper, we fix the patch
size as 8� 8.

4 IMPLEMENTATION DETAILS

4.1 Computing the Statistics

To efficiently matching the patches as in Eq. (1), we apply a
nearest-neighbor field algorithm in [31] with a slight

Fig. 12. Comparisons of offsets selection methods. (a) input. (b) the result of regularly spaced offsets. (c) the result of randomly distributed offsets. (d)
our result. (e) our offsets. The dash line indicates the offsets used to complete the structure of the roof.

Fig. 11. Offsets sparsity and optimized energy. (a) input. (b) our graph-based result and the label map. Energy: E ¼ 4:6ð�106Þ, running time: t ¼ 0:5s.
(c) the result using all possible offsets. E ¼ 1:1ð�106Þ, t ¼ 4;300s. (In this case the number of labels isK ¼ 3:8� 105, and the number of unknown pix-
els is N ¼ 2:2� 104.) (d) the result of a hierarchical solver [17]. E ¼ 1:9ð�106Þ, t ¼ 83s. (e) the result from the authors’ demo [37] (with gradient
smoothness terms).

Fig. 13. Image completion results obtained by our graph-based solution, using various patch sizes for computing the statistics of patch offsets.
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modification: to handle the non-nearby constraint (jsj > t),
before computing the difference between a pair of patches
we first check their spatial distance and reject them if the
constraint is disobeyed.

We perform this matching step in a rectangular region
centered around the bounding box of the hole. This rectangle
is three times larger (in length) than this bounding box. The
purpose of using such a rectangular region is to avoid unreli-
able statistics if the hole is too small in practical applications
(in most examples in this paper this region is the entire
image because the holes are large). The threshold t in Eq. (1)

is set as 1
15 maxðw; hÞwhere w and h are the width and height

of this region. We downsample this region to 800 � 600

pixels if it is larger than this size. Then we use 8� 8 patches
to perform the matching step.1 This step takes<0.1 s.

Given the nearest-neighbor field sðxÞ, we compute the 2d
histogram hðu; vÞ as in Eq. (2). We smooth this histogram by

a Gaussian filter (s ¼ ffiffiffi
2

p
). In this smoothed histogram, we

consider a “peak” as a bin whose magnitude is locally maxi-
mal inside a 9� 9 window. The highest K peaks are picked

Fig. 14. Comparisons with Content-Aware Fill. From left to right: input, our graph-based results, our matching-based results, and results of Content-
Aware Fill. The artifacts are highlighted by the arrows. Image size (from top to down): 0.12, 0.2, 0.26, 0.6, 2, 4, 10 Mp. The running time is in Fig. 15.

1. The method in [31] only supports patch sizes 4k� 4k for some
integer k. When computing the offset statistics, we need not use a
ð2rþ 1Þ � ð2rþ 1Þ patch that centered at a certain pixel; instead, we can
represent the spatial coordinates of a patch by its top-left corner. This
representation is also adopted in the public codes of [18] and [30].
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out, and their corresponding offsets give the offset candi-

dates fsigKi¼1 that will be used in the image completion
algorithms.

4.2 The Graph-Based Method

We adopt a two-scale solver in our graph-based method
(Section 2.2.1). We first downsample the rectangular region
(by a scale l) to 800� 600 pixels if it is larger than this size.
Then we build a graph as in Eq. (3) and optimize it using
graph-cuts [21]. We use the public code of the multi-label
graph-cuts in [38]. Its time complexity is OðNKÞ, whereN is
the number of unknown pixels and K is the number of
labels. The time of this graph-cuts step is 0.2-0.5 seconds for
an 800� 600 image with 10-20 percent pixels missing. As a
comparison, it takes over one hour to solve such an
800� 600 image if all possible offsets are allowed at this

scale (K ¼104-106, like Fig. 11c), or tens of seconds using a
hierarchical solver [17] with the coarsest level as small as
100� 100 pixels (like Fig. 11d). Thus our method is 1-2
orders of magnitude faster than Shift-map [17].

We upsample the above resulting label map to the full
resolution by nearest-neighbor interpolation and multiply
the offsets by l. To correct small misalignments, we opti-
mize a cost similar to Eq. (3) in the full resolution. We
allow each pixel to take five offsets: the upsampled offset
and 4 relative offsets: if the upsampled shift is s ¼ ðu; vÞ,
then the other four shifts are ðu� l

2 ; vÞ and ðu; v� l
2Þ. In

this cost function we only treat the pixels as unknowns if

they are in l
2-pixel around the seams. This upsampling

takes <0.1 s for typical 2 Mp images. We have also tested
our graph-based method in full resolution without down-
sampling, and found the visual qualities are similar to the
two-scale solver. We adopt the two-scale solver because it
is faster.

Finally a Poisson fusion [34] is applied to hide the possi-
bly visible seams. We adopt a recent OðNÞ time Poisson
solver proposed in [39]. In our implementation it takes
50 ms per Megapixel.

4.3 The Matching-based Method

As in [14], [18], we adopt a multi-scale solver in our
matching-based method (Section 2.2.2). We build an image
pyramid of L levels using a scaling factor 2, with a fixed
coarsest size (	100� 100). We start the EM algorithm from
the coarsest level, with an initialization discussed below.

The result of a coarser level is interpolated into the next
finer level. We interpolate the color image and at the next
level start from the E-step. (Alternatively, we can interpo-
late the nearest neighbor field and at the next level start
from the M-step. We find the former way is better at hiding
the seams.) We run 20 iterations of EM steps in the coarsest
level, two iterations in the finest level, and five iterations in
other levels.

The result of the matching-based method is sensitive to
the initialization. We have tested two ways of initializing at
the coarsest level: using the Poisson equation [34] to roughly
propagate colors and generate a smoothed guess, or use our
graph-based solution to generate a structural guess. We
find the second way is more robust and we report the
results using this way.

Unlike the graph-based method, the matching-based
method requires to set a patch size in its cost function (7).
We fixed this size as w0 � w0 ¼ 9� 9 throughout this paper,
although in some cases we find adjusting this size can give
better results.

5 EXPERIMENTAL RESULTS

All experiments are run on a PC with an Intel Core i7
3.0 GHz CPU and 8 G RAM. We recommend viewing the
supplementary video, which can be found on the Computer

Fig. 15. Running timing comparisons between our graph-based method and Content-Aware Fill. The bars are sorted in the ascending order of
Content-Aware Fill’s time.

Fig. 16. Some results of Kopf et al.’s method [41]. The input images are
in Figs. 1, 5, 7, 11, and 13.
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SocietyQ1 Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2014.2330611, to experience the user
interactions and speed.

5.1 Comparisons with Content-Aware Fill

It is widely considered that Wexler’s method [11], combined
with PatchMatch [18], is one of the state-of-the-art image
completion techniques. We have tested a re-implementation
of this method using the public code in [40] and our own re-
implementation (as described in Section 2.2.2, without using
the patch statistics). We find that it is non-trivial to tune the
parameters (patch size, pyramid levels, etc.), while the
results are sensitive to them. To this end, we choose to com-
pare with the tool Content-Aware Fill in Adobe Photoshop.
It has shown compelling quality and speed in many practi-
ces. In the official website [19], it reports that Content-
Aware Fill in Photoshop CS 5 is based on [11]þ[18]. Our
experiments are on this version.

Some comparisons have been shown in the previous sec-
tions (Figs. 1, 7, 9, and 10). In Fig. 14 we show more exam-
ples using our both methods (graph-based and matching-
based). In all these examples our methods complete the
images using as few as K ¼ 60 pre-selected offsets. Our
both methods generate high-quality results, whereas the
Content-Aware Fill produces noticeable artifacts in these
examples.

Fig. 15 shows the running time of our graph-based solu-
tion and the Content-Aware Fill. Both methods are using

Fig. 17. Comparisons with Kopf et al.’s [41] method on interior holes. Kopf et al.’s results are from their website.

Fig. 18. Comparisons with Kopf et al.’s [41] method on panoramas. Kopf et al.’s results are from their website.

Fig. 19. Comparisons with state-of-the-art methods. (a) Input (640�430). (b) Ours (graph-based, 0.18 s). (c) Content-Aware Fill (0.3 s). (d) Priority-
BP [15] (117 s). (e) Shift-map [17] (13 s). (f) Criminisi et al.’s [7] (6.9 s).

Fig. 20. A comparison with Priority-BP [16]. For this 256� 163 image Pri-
ority-BP takes 40 s in a well parallelized quad-core implementation,
while our graph-based method takes 0.09 s.
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quad cores. (Our graph-based method benefits less than
Content-Aware Fill in multi-core, mainly because in
Content-Aware Fill the EM algorithm and PatchMatch are
fully parallelized, but the graph-cuts algorithm we used is
not. In our graph-based method, the parallelism is only for
matching patches and Poisson blending.) For small images
where the two-scale solution does not take effect (the first
six examples in Fig. 15), our graph-based method is slightly
faster than Content-Aware Fill. But for mega-pixel images
our graph-based method is two to five times faster. This is
because matching patches in mega-pixel images can be slow
at finer scales. Our matching-based method takes about 50-
100 percent more time than our graph-based method.

5.2 Comparisons with Kopf et al.’s [41]

In [41] Kopf et al. propose to improve Wexler et al.’s method
[11] by constraining the patch search region near the hole.
We have compared with this method in all 25 images used
in our paper and all 50 images provided by [41]. In [41] the
50 images are divided into two sets: interior holes (25 cases)
and panoramas (25 cases). All the 75 comparisons are in the
supplementary materials, available online.

In Fig. 16 we show some results of Kopf et al.’s method in
our successful cases. We can see that Kopf et al.’s method
fails synthesizing semantic structures like regular patterns
or lines. We also see that Kopf et al.’s method can produce
artifacts by tiling patches (see the second image in Fig. 16).
This is because when the patch search positions (instead of
offsets) are constrained as in [41], the patch source is limited,
and the same patches can be used multiple times.

Fig. 17 shows some results on Kopf et al.’s image set of
interior holes. We notice that this image set can be roughly
categorized into two subsets: natural scenes (e.g., moun-
tains, grasses, trees; see Figs. 17a and 17b) and very compli-
cated man-made scenes (e.g., street-views, buildings,
fences; see Figs. 17c and 17d). The results show that both
ours and Kopf et al.’s method can mostly succeed for the

natural scenes (Figs. 17a and 17b). On the contrary, the sub-
set of man-made scenes are challenging and both methods
often produce artifacts (Fig. 17d). But in case when the man-
made scene exhibits regular patterns, our method can
potentially produce better results (Fig. 17c).

Fig. 18 shows some results on Kopf et al.’s image set of
panoramas. In this set we find that our method is still able
to generate acceptable results for simpler natural scenes
(Fig. 18 left). But our method is inferior to Kopf et al.’s
method for man-made scenes (Fig. 18 right). This is because
when “out-painting” the images, the missing pixels can be
far away from each other and so have little relationship.
Each local region may have its favorable offsets, so our
global statistics may fail capturing these offsets. On the con-
trary, image “out-painting” is particularly suitable for Kopf
et al.’s method, because when synthesizing the outside of
the image, the good candidate patches can be expected to be
located near the missing region. But we should indicate that
Kopf et al.’s method still produces obvious artifacts in a
large portion of the man-made scenes (see supplements,
available online), and cropping is still needed as investi-
gated in their paper.

5.3 Comparisons with Other Methods

In Fig. 19 we further compare with Priority-BP [15], Shift-
map [17], and Criminisi et al.’s method [7]. Our method
faithfully recovers the texture edges here, and is much faster
than the other three methods (see the caption in Fig. 19).
More comparisons are in the supplementary materials,
available online.2

Fig. 20 shows a comparison with Priority-BP [15]. This
method optimizes an MRF using the BP algorithm with on-
the-fly label pruning. Its running time for this 256� 163-
pixel image is 40s using a well parallelized quad-core imple-
mentation, while our graph-based method takes 0.09 s. Also

Fig. 21. A comparison with Shift-map [17]. Note how Shift-map behaves near inconsistent seams.

Fig. 22. More results of images from previous papers [8], [13]. These images are around 400� 300. Our methods complete each image in less than
0.3 seconds.

2. research.microsoft.com/en-us/um/people/kahe/eccv12.
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note Priority-BP cannot recover the pattern in the lamp in
this example.

Fig. 21 shows a comparison with Shift-map [17]. As also
in Fig. 11, Shift-map cannot preserve the structure in this
case. We can see (in zoom-in) how this method conceals a
seam when the content is not consistent on both sides of this
seam. This result is obtained from the authors’ on-line demo
[37]. We tried various parameter settings but observed simi-
lar artifacts.

In Fig. 22 we show more results in the example images
from previous papers [8], [13].

5.4 Limitations

Fig. 18 (right) has shown that our method is less suitable for
“outpainting”. Our methods may also fail when the desired
offsets do not form dominant statistics. Fig. 23b show a fail-
ure case. We can partially solve this problem by manually
introducing offsets. (e.g.,) we can paint an extra stroke on
the image (Fig. 23d), and treat this image as a new source
for patch statistics. This stroke contributes to the statistics
and overcomes the problem (Fig. 23e). Some other failure
examples are in the supplementary materials, available
online.

6 CONCLUSION

In this paper we have presented novel statistics of patch off-
sets. We have demonstrated the effects of these statistics for
image completion using both graph-based and matching-
based methods.

The usage of the patch offsets implies that we only con-
sider shifts of patches for image completion. More complex
transforms like scaling, rotation, reflection, and their combi-
nations have been studied, e.g., in Generalized PatchMatch
[42], Transforming Image Completion [40], and Image
Melding [43]. These transforms are necessary in case when
shifting is not sufficient, e.g., completing circles or reflec-
tion-symmetric objects). Since these transformations further
increase the dimensionality of the search space, it could be
useful to investigate the statistics and limit the search (some
successful attempts have been shown in a recent work [29]
inspired by our method). Image Melding [43] further
improves Wexler et al.’s method [11] by voting in the gradi-
ent domain. It is possible to combine this method with our
matching-based solution.

Our method is based on a kind of natural image statistics.
Natural image statistics are essential for many computer
vision problems. Gradient-domain statistics have been
applied in denoising [44], deconvolution [45], and diffu-
sion-based inpainting [3]. Patch-domain statistics have been

shown very successful in denoising [44] and super-resolu-
tion [46]. We believe our statistics of patch offsets, as a kind
of natural image statistics, will find more applications in the
future (e.g., [28], [29]).
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