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Figure 1: Rectangling a panoramic image. (a) Stitched panoramic image. (b) Image completion result of “content-aware fill” in Adobe
Photoshop CS5. The arrows highlight the artifacts. (c) Cropped using the largest inner rectangle. (d) Our content-aware warping result.

Abstract

Stitched panoramic images mostly have irregular boundaries.
Artists and common users generally prefer rectangular boundaries,
which can be obtained through cropping or image completion tech-
niques. In this paper, we present a content-aware warping algorithm
that generates rectangular images from stitched panoramic images.
Our algorithm consists of two steps. The first local step is mesh-
free and preliminarily warps the image into a rectangle. With a grid
mesh placed on this rectangle, the second global step optimizes the
mesh to preserve shapes and straight lines. In various experiments
we demonstrate that the results of our approach are often visually
plausible, and the introduced distortion is often unnoticeable.
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1 Introduction

With the advance of image alignment and stitching techniques
[Szeliski 2006], creating panoramic images has become an
increasingly popular application. Due to the projections (e.g., cylin-
drical, spherical, or perspective) that warp the source images for
alignment, and also due to the casual camera moving, it is almost
unavoidable that the stitched panoramic images exhibit irregular
boundaries (Fig. 1(a)). But most users favor rectangular bound-
aries for publishing, sharing, and printing photos. For example,
over 99% images in the tag “panorama” in Flickr (flickr.com) have
rectangular boundaries. In this paper, we study the issue of gener-
ating a rectangular panoramic image from the irregular one, termed
as “rectangling” the image.

A simple solution is to crop a panoramic image with a rectangle.
But cropping may lose desired content and reduce the impression
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Figure 2: Algorithm pipeline. (a) Input. (b) Local warping via Seam Carving, shown with all the seams. (c) A grid mesh placed on the local
warping result. (d) The grid mesh is warped backward and placed on the input. (e) The optimized mesh of global warping. (f) Result.

of a wide field of view (Fig. 1(c)). Another solution is to synthe-
size the missing region in a bounding box using image completion
techniques (e.g., [Criminisi et al. 2004; Wexler et al. 2007; Barnes
et al. 2009]). Though these techniques are suitable for extending
textures or simple structures like straight lines, they may fail syn-
thesizing semantic content (Fig. 1(b)). Recently Kopf et al. [2012]
combine cropping and completion to address this problem.

In this work, we propose to adopt warping for rectangling panoram-
ic images. We argue that warping is an attractive strategy for this
task, thanks to the long-realized fact that panoramic/wide-angled
images inevitably exhibit distortion [Zorin and Barr 1995; Zelnik-
Manor et al. 2005]. General users appear accustomed to and tol-
erant of this distortion - millions of panoramic images have been
shared in the websites like Flickr, photosynth.net, 360cities.net, etc.
Photographers and artists seem to be willing to trade warping dis-
tortion for the impressive wide fields of view. With this observa-
tion, we believe that the extra distortion introduced by a properly
designed warping algorithm for rectangling can be acceptable and
visually unnoticeable (Fig. 1(d)).

The challenges of developing such a warping approach come from
the irregular boundaries. Improperly stretching the input boundary
to a rectangle might bring in unexpected distortion, so a content-
preserving solution is desired. But most existing content-preserving
warping techniques, either for projection manipulations [Carroll
et al. 2009; Kopf et al. 2009; Carroll et al. 2010], image retargeting
[Wang et al. 2008; Zhang et al. 2009; Chang and Chuang 2012],
or video stabilization [Liu et al. 2009], are based on grid meshes
and assume the input images are rectangular. Shape deformation
methods [Igarashi et al. 2005; Schaefer et al. 2006] require prede-
fined meshes and user-specified control points as input/output con-
straints. Interpolation-based deformation methods [Ju et al. 2005;
Joshi et al. 2007; Lipman et al. 2008] require user-specified poly-
gon cages as input/output and are not content-aware.

We present a novel content-preserving warping method for rectan-
gling panoramic images. The key idea is a two-step method that
first locally warps the image to fit a rectangle and then globally op-
timizes a mesh placed on this rectangle. In the first step, we modify
the Seam Carving algorithm [Avidan and Shamir 2007] to expand
the irregular image to a rectangle (Fig. 2 (b)). We consider Seam
Carving as a warping method that displaces all pixels on one side of

each seam. In the second step, we place a grid mesh on the rectan-
gle image generated by Seam Carving. With the displacement field
of the first step, this mesh is warped back and placed in the origi-
nal irregular image (Fig. 2 (c, d)). Then we globally optimize this
mesh, fitting it to a rectangle while preserving perceptual properties
including shapes and straight lines. Our method is fully automatic.
It is purely content-based and requires no prior knowledge about
the projections.

Our warping scheme works well in a variety of cases, typically
when the irregular boundaries come from the projections required
for alignment and from the casual camera moving. Yet, our method
may fail when the irregular boundaries are the outcome of the miss-
ing images required for stitching the full scene (e.g., Fig. 13).

This paper has two main contributions. Firstly, we are the first (to
the best of our knowledge) to adopt the warping idea for rectangling
panoramic images. Secondly, we develop an automatic content-
aware method for warping irregular panoramas, without any re-
quirement of user-provided mesh/cage/control-point.

2 Related Work

We review the related work on panorama imaging, image warping,
and image completion.

Image alignment and stitching. We briefly summarize a typical
pipeline of panorama composition as follows (see [Szeliski 2006]
for a comprehensive survey). The source images are registered us-
ing image features [Brown and Lowe 2003] and projected onto the
same coordinate system [Szeliski and Shum 1997]. A graph-cut
technique [Boykov et al. 2001] is applied to stitch the images [A-
garwala et al. 2004], followed by Poisson blending [Pérez et al.
2003]. Recent improvements involve efficient blending [Agarwala
2007] and flexible seam manipulation [Summa et al. 2012].

Projections. It has been long realized [Zorin and Barr 1995;
Zelnik-Manor et al. 2005] that projecting 3D scenes onto 2D im-
ages unavoidably leads to warping distortion. Commonly used pro-
jections include perspective, cylindrical, and spherical projections
[Szeliski and Shum 1997]. The perspective projection preserves
straight lines but may severely stretch the shapes. The cylindri-
cal and spherical projections maintain local shapes, but they bend
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Figure 3: Local warping via Seam Carving. (i): Find the longest
“boundary segment”. (ii):Compute a seam using Seam Carving
in a sub-image containing this boundary segment, and shift all the
pixels on one side of the seam by one pixel (marked as green). (iii)
& (iv): Compute the next seam.

straight lines. These projections contribute to the irregular bound-
aries of the stitched images.

The method in [Peleg et al. 2000] projects and stitches the images
on adaptive manifolds based on the knowledge about camera mo-
tions. It is able to create a “rectified” panorama (but still with irreg-
ular boundaries) when the camera is tilted. This method adapts to
camera motions, but is not content-aware.

To maintain the perceptual properties like straight lines and/or un-
stretched shapes, substantial effort has been paid on locally adap-
tive projections [Carroll et al. 2009; Kopf et al. 2009; Carroll et al.
2010]. The idea is to re-distribute the warping distortion to the vi-
sually insignificant regions. Given some user-specified constraints,
these methods optimize spatially-varying projections parameterized
by meshes. Notice that despite the visual plausibility, it is still in-
herently impossible to remove all warping distortion.

Because warping distortion is unavoidable in global/local projec-
tions, we believe that reasonable warping distortion can be unno-
ticeable and tolerable when rectangling panoramic images.

Image retargeting and warping. Image retargeting is to resize the
image based on the content. The Seam Carving method [Avidan
and Shamir 2007] removes/inserts seams to change the image size.
A variety of other methods are explicitly based on warping [Wolf
et al. 2007; Wang et al. 2008; Zhang et al. 2009; Chang and Chuang
2012]. They optimize a displacement field with considerations on
content-based properties like saliency, shapes, and/or straight lines.

All the above retargeting methods assume rectangular inputs; some
of these methods further require grid meshes to preserve high-level
properties like shapes [Wang et al. 2008; Zhang et al. 2009] and
straight lines [Chang and Chuang 2012].

Image completion. Image completion has been considered as a
way to creating rectangular panoramic images, e.g., in [Criminisi
et al. 2004; Adobe 2009; Kopf et al. 2012]. Advancing image
completion techniques are exemplar-based [Criminisi et al. 2004;
Wexler et al. 2007; Komodakis and Tziritas 2007; Hays and Efros
2008; Barnes et al. 2009; Pritch et al. 2009; He and Sun 2012; Kopf

Figure 4: A zoom-in region near the fountain in Fig. 2.

et al. 2012]: they copy content from the known part to synthesize
the missing part. This strategy can yield visually plausible results,
typically in the case of textural and less semantic regions. But it
is less suitable for synthesizing higher-level semantic content, and
may fail occasionally when the missing region is large. Further,
even the successfully synthesis is not a faithful record of the real
scene. This may not be desired by all users.

3 Algorithm

Our warping algorithm contains two steps: a local warping step via
Seam Carving, and a global warping step based on meshes. The
local step provides a preliminary rectangular image. Its main pur-
pose is to place a grid mesh on the input (Fig. 2(b)(c)). The global
step optimizes this mesh to preserve perceptual properties including
shapes and straight lines (Fig. 2(d-f)).

3.1 Mesh-free Local Warping

Our local warping step is a modification of the Seam Carving al-
gorithm [Avidan and Shamir 2007]. The original Seam Carving
algorithm inserts a horizontal/vertical seam through the image, so
expands it by one pixel vertically/horizontally. If we allow a seam
to be not through the image, we can change the boundary shape of
the image and fit it to a rectangle. Recently it has been proposed [Qi
and Ho 2012] to use Seam Carving to tailor a rectangle image into
an irregular shape (like circles or ovals). This is like an opposite
task to ours.

Suppose the bounding box of the irregular input image is the tar-
get rectangular boundary. We define a “boundary segment” as
a connected sequence of missing pixels on one of the four sides
(top/bottom/left/right) of the target rectangular boundary. Fig. 3(i)
shows an example. Each time we select the longest boundary seg-
ment and insert one seam. For the situation when the boundary
segment is on the right side (as in Fig. 3(i)), we insert a vertical non-
through seam in the image. This seam shares the same starting and
ending y-coordinates as the selected boundary segment (Fig. 3(ii)).
Then we shift all the pixels on the right of this seam by one pixel
to the right. The situation of a seam on the top/bottom/left side can
be treated similarly. We repeatedly insert seams in this way (see
Fig. 3(iii)(iv)), until the rectangle boundary has no missing pixel.

To find the non-through seam, we run the Seam Carving algorithm
to find a through seam in a “sub-image”. For example, the sub-
image in Fig. 3(ii) has the same starting and ending y-coordinates as
the boundary segment. Then we apply the Seam Carving algorithm
on this sub-image (in our implementation we adopt the Improved
Seam Carving [Rubinstein et al. 2008]). Because the sub-image
may contain missing pixels, we assign an infinite cost (10%) to these
pixels to prevent the seam from passing them.

In the viewpoint of filling the unknown regions, inserting a seam
would reduce the number of missing pixels in the image (this num-
ber equals to the number of pixels on the seam). In the viewpoint



of warping, inserting a seam is equivalent to computing a displace-
ment field u(x). We use x = (z, y) to denote the coordinates of an
output pixel, and u = (uz, uy) to denote displacement. The output
pixel value can be obtained by warping the input image:

Tout(x) = Lin(x + u(x)), )

where I, and I, represent the input and the current output im-
ages. For the example in Fig. 3(ii), the displacement u is (—1,0)
for all pixels on the right of this seam, and is zero for all other pix-
els. With all the seams computed, we obtain a displacement field u
accordingly. We term this step as local warping because the distor-
tion is locally distributed near the seams (see Fig. 4).

3.2 Mesh-based Global Warping

To generate a rectangular image while preserving high-level prop-
erties like straight lines and shapes, we optimize a global energy
based on meshes.

3.2.1 Mesh Placement

To generate a grid mesh on the input irregular image, we first place
a grid mesh on the rectangular result of the local warping step
(Fig. 2(c)). We use a grid mesh with around 400 vertexes through-
out this paper. We warp back all the grid vertexes to the input im-
age domain using the displacement field of local warping. Thus we
obtain a mesh placed on the input image (Fig. 2(d)). The global
warping step is based on this mesh. The resulting image of local
warping is discarded afterward.

3.2.2 Energy Function

We design an energy function that imposes rectangular boundary
constraints while preserving shapes and straight lines. Our energy
definition is partially based on [Chang and Chuang 2012], but is in
a simpler form and involves much fewer parameters.

We parameterize the grid mesh V as {v;}, where v; = (z;,y;) is
the position of a grid vertex. We denote the input mesh as V. We
optimize an energy function about the output mesh V.

Shape Preservation. Our shape-preserving energy Es encour-
ages each quad to undergo a similarity transformation (i.e., trans-
lation+rotation+scaling), as used in [Zhang et al. 2009; Chang and
Chuang 2012]. It is defined as:

NZH ) A =DV @

Here N is the number of quads in the mesh, ¢ is a quad index, [ is
a unit matrix, and A, is a 8x4 matrix and V, is a §x 1 vector on
the quad:

fo 7@0 1 0 Xo
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Here we use (zo, Y0), ..., (3, y3) to denote the four pairs of coor-
dinates of the output quad, and (%o, 9o), ..., (£3,93) those of the
input quad. The derivation of E's can be found in [Zhang et al.
2009]. Es is a quadratic function of V.

Unlike the previous works, we do not introduce any saliency weight
into the shape preserving term. This is because panorama images

(d) warp w/ line preservat|on
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Figure 5: An example of line preservation. We remove the line
preservation through setting A\, = 0 and obtain the result in (c).

often cover a wide variety of content and contain no particularly
salient object.

Line Preservation. We follow a similar way as in [Chang and
Chuang 2012] to preserve lines. Our line-preserving energy Er, en-
courages that the straight lines are kept straight, and parallel lines
are kept parallel. We use the code of [Von Gioi et al. 2010] to de-
tect line segments in the input image'. We cut all the detected line
segments with the edges of the input mesh, so that each resulting
line segment is located inside one quad. We quantize the line ori-
entation range [—7, %) into M=50 bins. To preserve straightness
and parallelism, we encourage that all the line segments in the same
bin share a common rotation ar;;le 0. The line preserving term Ep,
involves all these angles {0 }r—1-

Given a line segment, we compute its orientation vector (with a
scale) e using the difference vector of its two end points. If we
represent the two end points of a line segment as a bilinear interpo-
lation of its quad vertexes V4, we can write e as a linear function
of V,. We denote the input orientation vector of this line segment
as é. Given a target rotation angle 6,,,, we want to minimize the
following distortion of a line segment:

IsRe — e|?, )
cos@,, —sinb,, . . . .
where R = . is a rotation matrix, and s is
sin 0y, cos O,
a scaling factor of this line segment. Minimizing with respect to s

gives: s = (678)7'é” RTe. Substituting s into (4), we can show

that the distortion in (4) is a quadratic function of e:
[ Cel?, o)
where the matrix C'is
C = Re@"e) 'e"R" — I (6)

Because e is a linear function of Vg, the distortion in (5) can be
written as a quadratic function of V.

Our line preserving energy E'r, is defined as the mean distortion for
all line segments:

Er(V,{0n}) = Z I1Ci Bmz)eqin I, )

where Ny is the number of line segments. A line segment is
indexed by j, and ¢(j) is the quad containing it. The matrix

]www.ipol.im/pub/art/ZOlZ/gjmrflsd/
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C;(0mjy), computed using (6), depends on the desired rotation
angle 0,,,(;) of the bin that contains this line segment. Er is a
quadratic function of V.

Unlike [Chang and Chuang 2012], our energy is decoupled from
the scaling factor (s) and the translation of each line segment. Thus
our energy has fewer variables and parameters.

Boundary Constraints. We want to drag the vertexes on the mesh
boundary to a rectangle. The boundary constraint term E'g is sim-
ply defined as:

Ep(V) =Y ai+ Y (zi—w)+>_ yi+ > (wi—h)*. (8

v; €L v; €ER v; €T v; EB

Here L/R/T/B denote the left/right/top/bottom boundary vertexes,
and w/h denote the width/height of the target rectangle (e.g., a
bounding box). Notice that we only constrain one of the two coor-
dinates of each boundary vertex, e.g., a vertex on the top boundary
is free to move horizontally.

Total Energy. Our total energy function F is:
E(V,{0m}) = Es(V) + ALEL(V,{0m}) + ApEB(V), (9)

where Az and A\ p are two weights. We set the boundary weight A
as infinity (10%) to impose a hard boundary constraint.

The line preservation weight Az, is the main influential parameter
in our algorithm. In experiments we find it works consistently well
when Az, is sufficiently large (e.g., > 10). This means the impor-
tance of line preservation (Fr) is higher than shape preservation
(Es). This implies that human eyes are more sensitive to bended
straight lines than to distorted shapes. We fix Az,=100 throughout
this paper. Fig. 5 shows the effect of line preservation.

3.2.3 Efficient Optimization

We adopt an alternating algorithm to minimize E(V, {0, }). The
initialization is given by the local warping result (i.e., simply a reg-
ular grid). We run 10 iterations of the following alternating algo-
rithm:

Fix {0,,} and update V. In this case E is a quadratic function on
'V and can be optimized via solving a linear system. Because there
are only a few hundreds of vertexes in V, the running time of this
step is ignorable (in a C++ implementation).

Fix V and update {6,, }. Because 6,,, is independent of each other,
we can separately optimize each 6,,,. In this case, we minimize:

min Y 7 [C;(0m)eqq | (10)

™ jebin(m)

This problem could be optimized by iterative solvers like the New-
ton’s method. Rather, we adopt a simple non-iterative solution driv-
en by the intuition of this energy function. The intuitive meaning
of (10) is to find a common rotation angle 6,,, for all the line seg-
ments in the m-th bin, such that 6,,, approximates the relative angle
between any line segment e; and its counterpart &;. So we simply
compute the relative angle between e; and €; for all line segments
in the m-th bin, and take their average as 6,,. We find this is a
sufficiently good solution to minimizing (10).

3.2.4 Stretching Reduction and Post-processing
We have assumed the bounding box is the target rectangular bound-

ary. But if this rectangle has an unwanted aspect ratio, the output
image may appear stretched. This problem is particularly obvious

(c) after stretching reduction

(b) warped to bounding box

Figure 6: Stretching reduction. (a) Input. (b) The image is
warped to the bounding rectangle of the input. The car is obvi-
ously stretched. (c) The target rectangle is re-scaled, and the mesh
is optimized again.

in the case of perspective projection (see Fig. 6). To reduce the
stretching, we update the target rectangle after the global warping
step. For each mesh quad, we compute its x-scaling factor s, sim-
ply through sz = (Zmax — Zmin)/(Zmax — Zmin). The mean x-scaling
factor 5, is the average of s, for all quads. The target rectangle
width is then scaled by 1/5,. The height is addressed similarly us-
ing the mean y-scaling factor 5,. We run the global warping step
again using this updated target rectangle. Fig. 6 shows this step
reduces the stretching distortion.

With the optimized mesh, we bilinearly interpolate the displace-
ment of any pixel from the displacement of the four quad vertexes.
But this may leave a few missing pixels on the boundary occasion-
ally, because a grid line may not well fit the irregular input bound-
ary. We simply fill each missing pixel using the color of the nearest
known pixels.

3.3 Implementation and Speed

Because the displacement map for warping is mostly smooth, we
compute it at a small image scale. We first downsample the input
image to a fixed size (1 mega-pixel). Both the local/global warping
steps are run on the downsampled image. Then we upsample the
resulting rectangular displacement map through bilinear interpola-
tion. We use this map to warp the full resolution input image.

In our implementation (C++, single-core), the algorithm processes
a 10-Mp panoramic image (Fig. 1) in 1.5 seconds on a PC with an
Intel Core i7 2.9GHz CPU and 8GB memory. The running time
is dominantly on warping (interpolating) the full resolution image
with the computed displacement map. In comparison, the image
completion tool “content-aware fill” in Adobe Photoshop processes
this 10-Mp image (with 18% pixels missing) in 19.1s.

4 Results

We demonstrate our results on a variety of real cases in
Fig. 1,2, 7, 8, and 9. Our method successfully maintains the con-
tent without introducing noticeable artifacts. Typically, Fig. 7 (top)
and Fig. 9 (top) are two challenging but practical 360°full-view
panoramic images. We believe our warping method is particularly
favored for creating such compelling photos.

In Fig. 1 and 7 we compare with “content-aware fill” in Adobe Pho-
toshop CS5. This image completion tool is based on [Wexler et al.
2007; Barnes et al. 2009] (according to [Adobe 2009]). In Fig. 8
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Figure 7: Comparisons with the image completion technique “content-aware fill”. The arrows and the zoom-in windows show the artifacts.

we compare with another recent completion technique [Kopf et al.
2012] on the public images/results provided by the authors. We see
that these state-of-the-arts image completion techniques are limited
in synthesizing semantically reasonable content, e.g., for the build-
ings in Fig. 1(b) and Fig. 8(left). They may also treat semantic
content as textures, e.g., for the city-view in Fig. 7(bottom). We
also show the cropping results in Fig. 1 and 7. We see that cropping
may severely limit the field of view.

Fig. 10 shows an example combining image completion and crop-
ping. In this case we manually crop the image completion result
using a window that removes obvious artifacts. But we see this
operation still remove much image content.

User Study. To collect a large number of panoramic images with
irregular boundaries for user study, we construct a “semi-synthetic”
dataset from the MIT SUN360 database [Xiao et al. 2012]. This
database contains 10,405 real full-view (360° x 180°) panoramic
scenes contributed by Internet users. These scenes have been la-
beled as 80 categories, involving indoor/outdoor cases with various

man-made/natural scenarios (e.g., bedroom, street, mountain, etc).
We use the first 5 scenes (in the original order in the database) if a
category contains more than 5, and obtain a subset of 367 scenes.

Xiao et al. [2012] have provided code to simulate taking a photo
with a usual camera in a full-view scene®>. Thus we can simulate
the behavior of capturing a photo sequence for stitching. We use
three ways to synthesize the sequences (see Fig. 11 top). We gen-
erate a 5x 1 array of images used for cylindrical projections, a 3x 1
array for perspective projections, and a 3 X2 array for spherical pro-
jections. The nearby images have randomly 30-50% overlapping
area. The camera position of each image is slightly disturbed at
random to simulate casual camera moving. We synthesize 3 se-
quences (stitched using the specified projection) for each full-view
scene. Thus our dataset consists of 1,101 (367 x3) stitched images.
Some examples are in Fig. 11.

We compare our warping strategy with the image completion strat-

2nit.edu/jxiao/Public/software/pano2photo/
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Figure 8: Comparisons with Kopfet al.’s [2012] image completion technique. The input and completion results are from Kopf et al.’s’ website.
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Figure 9: More results of our method. The input of the “bridge” image on the bottom right is from Kopf et al.’s paper [2012].

egy in this dataset. We choose the content-aware fill as the im-
age completion tool. At each time three images are shown on one
screen: the input, our warping result, and the completion result. The
user is allowed to zoom-in the images. The user needs to answer
whether ours or the completion result is preferred, or no prefer-
ence. In case of “no preference” the user needs to answer whether
the two results are “both good” and “both bad”. Our study has 10
participants, including 5 researchers/students with computer graph-
ics/vision backgrounds and 5 volunteers outside this community.

Fig. 12 shows the user study results. Our method is substantially
preferred. This shows the superiority of a warping strategy for rect-
angling panoramas. We also see our advantage is more significant
in perspective projection. This is because the missing region is of-
ten larger in the perspective cases than in the cylindrical/spherical
cases, and the image completion is less likely to succeed.

5 Limitations and Future Work

Our method works well when the irregular boundaries are the re-
sults of projections and casual camera movements. But we notice
that our method is limited in the following aspects. (i) Our method
may fail when the scene is not completely shot, e.g., when a few im-
ages are missing in an image array. In this case our approach may
lead to obvious distortion (Fig. 13). (ii) Our method may distort
content near very concave boundaries (Fig. 14(a)(b)). To reduce
the concavity, one may manually introduce a transparent region,
warp the image with this region treated as known pixels, and fill
this region using image completion after warping (Fig. 14(c)). (iii)
Our method may bend undetected lines. This could be addressed
by a few user interactions. (iv) Our method may not preserve all
lines when a local region has a large number of lines. This appears
a common challenge for warping methods.

Our warping method is purely content-based, so can be widely ap-
plied in case the knowledge in the stitching step is not available.
But it would be an interesting problem if one is allowed to con-
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Figure 10: Comparisons with “image completion + cropping”. The completion tool is content-aware fill. The cropping window is manually

chosen to avoid image completion artifacts.
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Figure 11: Example images in our dataset. Top: three projections
used. Bottom: some examples of our warping results (input not
shown here). These images show the variety of the dataset.
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Figure 12: User study results. The numbers are shown in percent-
age and averaged on 10 participants. Left: the preference in each
projection. Right: the preference in all 1,101 images.

Figure 14: A very concave boundary (a) may lead to severe local
distortion (b). We introduce a transparent region (marked as check-
ered) to reduce the concavity. Then we warp this new input, and fill
the warped transparent region by image completion to obtain (c).

sider the rectangling issue during the stitching step. We leave this
problem for future study.
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