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Haze is a natural phenomenon that obscures scenes, reduces visibility, and
changes colors. It is an annoying problem for photographers since it degrades
image quality. It is also a threat to the reliability of many applications, like
outdoor surveillance, object detection, and aerial imaging. So removing haze
from images is important in computer vision/graphics.

But haze removal is highly challenging due to its mathematical ambiguity,
typically when the input is merely a single image. In this thesis, we propose
a simple but effective image prior, called dark channel prior, to remove haze
from a single image. The dark channel prior is a statistical property of out-
door haze-free images: most patches in these images should contain pixels
which are dark in at least one color channel. Using this prior with a haze
imaging model, we can easily recover high quality haze-free images. Exper-
iments demonstrate that this simple prior is powerful in various situations
and outperforms many previous approaches.

Speed is an important issue in practice. Like many computer vision prob-
lems, the time-consuming step in haze removal is to combine pixel-wise con-
straints with spatial continuities. In this thesis, we propose two novel tech-
niques to solve this problem efficiently. The first one is an unconventional
large-kernel-based linear solver. The second one is a generic edge-aware fil-
ter which enables real-time performance. This filter is superior in various
applications including haze removal, in terms of speed and quality.

The human visual system is able to perceive haze, but the underlying
mechanism remains unknown. In this thesis, we present new illusions showing
that the human visual system is possibly adopting a mechanism similar to
the dark channel prior. Our discovery casts new insights into human vision
research in psychology and physiology. It also reinforces the validity of the
dark channel prior as a computer vision algorithm, because a good way for
artificial intelligence is to mimic human brains.
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Chapter 1

Introduction

Haze is an atmospheric phenomenon where turbid media obscure the scenes.
Haze brings troubles to many computer vision/graphics applications. It re-
duces the visibility of the scenes and lowers the reliability of outdoor surveil-
lance systems; it reduces the clarity of the satellite images; it also changes
the colors and decreases the contrast of daily photos, which is an annoying
problem to photographers (see Fig. 1.1 left1). Therefore, removing haze from
images is an important and widely demanded topic in computer vision and
computer graphics areas.

The main challenge lies in the ambiguity of the problem. Haze attenuates
the light reflected from the scenes, and further blends it with some additive
light in the atmosphere. The target of haze removal is to recover the re-
flected light (i.e., the scene colors) from the blended light. This problem is
mathematically ambiguous: there are an infinite number of solutions given
the blended light. How can we know which solution is true? We need to
answer this question in haze removal.

Ambiguity is a common challenge for many computer vision problems.
In terms of mathematics, ambiguity is because the number of equations is
smaller than the number of unknowns. The methods in computer vision to
solve the ambiguity can roughly categorized into two strategies. The first
one is to acquire more known variables, e.g., some haze removal algorithms
capture multiple images of the same scene under different settings (like po-
larizers). But it is not easy to obtain extra images in practice. The second
strategy is to impose extra constraints using some knowledge or assumptions

1All the images in this thesis are best viewed in the electronic version.
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Figure 1.1: Haze removal from a single image. Left: input hazy image. Right:
haze removal result of our approach.

known beforehand, namely, some “priors”. This way is more practical since
it requires as few as only one image. To this end, we focus on single image
haze removal in this thesis. The key is to find a suitable prior.

Priors are important in many computer vision topics. A prior tells the al-
gorithm “what can we know about the fact beforehand” when the fact is not
directly available. In general, a prior can be some statistical/physical prop-
erties, rules, or heuristic assumptions. The performance of the algorithms
is often determined by the extent to which the prior is valid. Some widely
used priors in computer vision are the smoothness prior, sparsity prior, and
symmetry prior.

In this thesis, we develop an effective but very simple prior, called the dark
channel prior, to remove haze from a single image. The dark channel prior
is a statistical property of outdoor haze-free images: most patches in these
images should contain pixels which are dark in at least one color channel.
These dark pixels can be due to shadows, colorfulness, geometry, or other
factors. This prior provides a constraint for each pixel, and thus solves the
ambiguity of the problem. Combining this prior with a physical haze imaging
model, we can easily recover high quality haze-free images. Experiments
demonstrate that our method is very successful in various situations (e.g.,
Fig. 1.1 right) and outperforms many previous approaches.

Besides quality, speed is another concern in practical applications, typi-
cally in real-time video processing and interactive image editing. The time-

2



Figure 1.2: An illusion experiment. The roofs pointed by the arrows have
exactly the same color, but they are perceived very differently by human
eyes. This striking illusion suggests that the dark channel prior may be
closely related with some human visual mechanisms. Details are given in
Chapter 5.

consuming procedure in haze removal is to combine pixel-wise constraints
and spatial continuities, which is a common problem in many computer vi-
sion topics. In this thesis, we propose two novel techniques to efficiently
handle this problem. In the first technique, we achieve a faster speed by
solving a large kernel linear system. This discovery is against conventional
theories but we can prove its validity theoretically and experimentally. The
second technique is a novel edge-aware filter. It is non-iterative and can be
computed in real-time, but still exhibits very high quality. We find this filter
superior to previous techniques in various edge-aware applications including
haze removal. Thus, we advance the state-of-the-art in a broader area.

Our study on haze is not limited in computer vision. The human visual
system (HVS) is also faced with the inherent ambiguities in many vision
problems, including haze perception. But the HVS has good abilities to
solve these ambiguities. People have long realized that the only way the HVS
could do so is to use certain priors [25]. However, most of these priors remain
mysterious in psychology and physiology. In this thesis, we design several
psychologically based illusion experiments (e.g., Fig. 1.2), which suggest that
the dark channel prior is related to the mechanism used by the HVS to
perceive haze. Our discovery casts new insights into human vision research
area. It also reinforces the validity of the dark channel prior as a computer

3



1.1. PUBLICATIONS

vision algorithm, because a good way for artificial intelligence is to mimic
human brains.

1.1 Publications

This thesis involves the following publications during my PhD training peri-
od. The main concept and methods are published in:

• [30] Kaiming He, Jian Sun, and Xiaoou Tang. Single Image Haze Re-
moval using Dark Channel Prior. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2009 (accepted as oral).

• [33] Kaiming He, Jian Sun, and Xiaoou Tang. Single Image Haze Re-
moval using Dark Channel Prior. In IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 2010.

Our work [30] receives the CVPR Best Paper Award in 2009. The two fast
algorithms discussed in this thesis are published in:

• [31] Kaiming He, Jian Sun, and Xiaoou Tang. Fast Matting using Large
Kernel Matting Laplacian Matrices. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2010.

• [32] Kaiming He, Jian Sun, and Xiaoou Tang. Guided Image Filtering.
In The 11th European Conference on Computer Vision (ECCV), 2010
(accepted as oral).

These two techniques are generic and applicable in haze removal, alpha mat-
ting, and edge-aware filtering. The above papers inspired a novel alpha
matting method, which is not included in this thesis:

• [29] Kaiming He, Christoph Rhemann, Carsten Rother, Xiaoou Tang,
and Jian Sun. A Global Sampling Method for Alpha Matting. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2011.

1.2 Thesis Overview

This thesis is organized as follows. In Chapter 2 we introduce the physical
model of haze and give a comprehensive study on existing haze removal

4



1.2. THESIS OVERVIEW

methods. In Chapter 3 we introduce the dark channel prior and apply it to
single image haze removal. In Chapter 4 we discuss two fast algorithms and
their applications in haze removal and other cases. In Chapter 5 we study the
relationship between the dark channel prior and the human visual system.
We conclude in Chapter 6.

� End of chapter.
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Chapter 2

Background

In the first part of this chapter, we study the physical model of the haze
effect, which is given by a concise haze imaging equation. This equation is
the focus of the whole thesis. We also formulate the haze removal problem
and point out the challenges in this problem.

In the second part of this chapter, we review the previous works on haze
removal. We investigate both multiple-image and single image cases, on their
advantages and limitations.

2.1 Haze Imaging Model

The haze imaging equation is given by [49, 18, 79]:

I(x) = J(x)t(x) +A(1− t(x)). (2.1)

An example of the haze imaging equation is given in Fig. 2.1. The variables
are explained in the following:

• x = (x, y) is a 2D vector representing the coordinates (x, y) of a pixel’s
position in the image.

• I represents the hazy image observed. I(x) is a 3D RGB vector of the
color at a pixel.

6



2.1. HAZE IMAGING MODEL

tI J

A

Figure 2.1: Variables in the haze imaging equation. The transmission map t
is shown as white when t=1, and black when t=0.

• J represents the scene radiance image. J(x) is a 3D RGB vector of
the color of the light reflected by the scene point at x. It would be the
light seen by the observer if this light were not through the haze. So we
often refer to the scene radiance J as a haze-free image. See Fig. 2.1.

• t is a map called transmission or transparency of the haze. t(x) is a
scalar in [0, 1]. Intuitively, t(x) = 0 means completely hazy and opaque,
t(x) = 1 means haze-free and completely clear, and 0 < t(x) < 1 means
semi-transparent. See Fig. 2.1.

• A is the atmospheric light. It is a 3D RGB vector usually assumed
to be spatially constant. It is often considered as “the color of the
atmosphere, horizon, or sky” [49, 18, 79].

A physical view is shown in Fig. 2.2. The haze is formed by the particles
in the atmosphere absorbing and scattering light. The term J(x)t(x) in (2.1)
is called direct attenuation. The light reflected from an object is partially
absorbed by the particles in the atmosphere and is attenuated. The trans-
mission t is the ratio of “the light that is not attenuated and reaches the
observer” to “the light reflected from the object”. The term A(1 − t(x)) is
called airlight [40, 18]1. The particles scatter the light they absorb, playing
as an infinite number of tiny light sources floating in the atmosphere. The
airlight is due to these light sources. A detailed physical derivation of the

1Sometimes researchers call A “airlight” instead.
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2.1. HAZE IMAGING MODEL

atmosphere
scene

camera
J(x) I(x)

A(1 - t(x))

J(x)t(x)

reflected light
airlight

attenuation

Figure 2.2: A macro physical picture of the haze imaging model.

haze imaging equation is in Appendix A. Note the direct attenuation is a
multiplicative effect, whereas the airlight is an additive one.

The atmospheric phenomena of haze, fog, and mist are all due to the
particles in the atmosphere, like dust, sand, water droplets, or ice crystals. In
meteorology, all these phenomena mainly differ in their particle material, size,
shape, and concentration[87], but their physical influences on imaging are
similar[49]. The haze imaging equation (2.1) is valid for all these phenomena,
and a haze removal algorithm should handle all of them. In this thesis, we do
not distinguish their meteorological properties, and refer to them as “haze”
for simplicity unless specified. But one should keep in mind that we are
handling a more general concept including haze, fog, and mist.

2.1.1 Depth

Suppose that a scene point in the position x has the distance d(x) from
the observer. d is called the depth of the scene point. It is found that the
haze transmission t is physically related to the depth d (see Appendix A for
details):

t(x) = exp

(
−
∫ d(x)

0

β(z)dz

)
. (2.2)

Here, β is the scattering coefficient of the atmosphere. β is determined by
the physical properties of the atmosphere, like particle material, size, shape,

and concentration. The integral
∫ d(x)

0
is on a line between a scene point and

the observer.
If the physical properties of the atmosphere are homogenous, the scatter-

8



2.1. HAZE IMAGING MODEL

ing coefficient β is a spatial constant. Thus, we can rewrite (2.2) as

t(x) = exp (−βd(x)) , (2.3)

or equivalently:

d(x) = − ln t(x)

β
. (2.4)

Equation (2.4) says if we can estimate the transmission t, we can calculate
the depth up to an unknown scale2. In computer vision, depth estimation is
a very important yet difficult problem [64]. In this sense, the bad haze can
be put to good use if we can separate the transmission t. This is another
important motivation in haze removal.

The constant-β assumption is invalid when the atmosphere is inhomoge-
neous, e.g., when the haze is concentrated in some regions and forms cloud-
like media. In this case, we cannot use (2.4) to estimate the depth.

2.1.2 Image Degradation

Given the haze imaging equation I(x) = J(x)t(x) + A(1 − t(x)), let us see
how haze degrades images.

The first degradation is the visibility reduction due to the direct atten-
uation. Visibility is a measure of how well the object can be discerned. In
computer vision visibility is often described by the gradient of the image.
From (2.1) we have:

∇I(x) = t(x)∇J(x), (2.5)

where we consider t as uniform so the gradient of t is ignored. Because t is
in the range [0, 1], ∇I has a smaller magnitude than ∇J. So the visibility is
reduced and the objects are more difficult to discern (see Fig. 2.3). We can
see that visibility reduction is due to the direct attenuation J(x)t(x), or say,
due to the multiplicative t.

The second degradation is chrominance shift due to the airlight. The
chrominance describes the colorfulness regardless of the luminance, which is
represented by the direction of the color vector in the RGB color space. The
haze imaging equation (2.1) suggests the vector I(x) is a linear combination
of the two vectors J(x) and A (see Fig. 2.4). Due to the additive A, the

2This scale is less important in many cases, because people are often interested in
relative depth.
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2.1. HAZE IMAGING MODEL

Figure 2.3: Images degraded by haze. On the left are the scene radiance J.
On the right are the observed hazy images I.

Figure 2.4: The color vector I is a linear combination of J and A in the RGB
space.

vectors I(x) and J(x) are not in the same direction: the chrominance is
shifted. Usually the atmosphere is white or gray, so a hazy image appears
grayish and less vivid. See Fig. 2.3.

In sum, the multiplicative attenuation reduces the visibility, and the addi-
tive airlight changes the chrominance. Haze is troublesome in many computer

10



2.1. HAZE IMAGING MODEL

vision/graphics applications. The reduced visibility impacts object detection
and recognition, lowers the reliability of outdoor surveillance systems, and
obscures the satellite images. In consumer-level photography, haze changes
the colors and reduces the contrast of the photos. The degradation cannot
be avoided by higher level cameras or better lens, because it happens in the
atmosphere before reaching the apparatus. Therefore, removing the haze
effects from images is demanded in computer vision/graphics.

2.1.3 Problem Formulation and Ambiguity

We have introduced the haze imaging equation:

I(x) = J(x)t(x) +A(1− t(x)) (2.1)

with
t(x) = e−

∫ d
0
β(z)dz. (2.2)

The target of haze removal is: given the input hazy image I, recover the scene
radiance image J. Usually we also need to recover t and A (see Fig. 2.1).
Next we explain why this problem is mathematically ambiguous.

Denote the number of pixels in an image as N . If the input I is an RGB
color image, we have a set of 3N equations:

Ic(x) = Jc(x)t(x) + Ac(1− t(x)), (2.6)

where the scalars Ic(x), Jc(x), andAc are the color components in the channel
c ∈ {r, g, b}. However, we have 3N unknown reflections Jc, N unknown
transmission t, and 3 unknown atmospheric light Ac. The total number of
unknowns are 4N + 3, much greater than the number 3N of equations. In
computer vision, we refer to this problem as ambiguous, ill-posed, or under-
constrained. The ambiguity is mainly due to the spatially variant t, which
contributes N variables. So we require at least one extra constraint for each
pixel to solve the ambiguity.

The physical meaning of the ambiguity can be understood in the following
way. the haze plays a role like a semi-transparent glass filter. The color of
the filter is A, and the transparency is t. An object with a color J is seen
through the filter (see Fig. 2.5). Objects in different colors can be observed

11



2.2. RELATED WORKS

objects

glass filters

observed

Figure 2.5: The same observed color can be explained by objects in different
colors seen through filters in different colors.

as the same, if they are seen through filters in different colors with proper
transparency. So given the observed color, how can we know the object color?
We are faced with a similar question in haze removal.

2.2 Related Works

In computer vision, the methods to handle the ambiguity are roughly on two
ways. The first way is to acquire more known variables, reducing the dis-
crepancy between the number of equations and the number of unknowns. In
haze removal, this is often by capturing two or more images of the scene. The
second way is to use some knowledge or assumptions known beforehand, i.e.,
priors. The priors impose extra constraints/dependency among the unknown
variables.

In the following, we review the previous haze removal methods in both
categories. We do not discuss the technical details of these methods. Instead,
we are interested in how they introduce extra constraints. All the methods
are reformulated in a same framework, though they may be expressed in
different forms in the original works. We believe that this is helpful to better
compare these methods.

2.2.1 Multiple-Image Haze Removal

Some earlier methods take two or more images of the same scene. Though
this strategy increases the number of known variables, at the same time it

12



2.2. RELATED WORKS

Figure 2.6: Haze removal based on varying atmospheric conditions. On the
left are two images taken in two hazy conditions. On the right are the
estimated scene radiance and depth (the sky is ignored). Images from [48].

brings in more unknowns. So the setting must under certain constraints to
avoid too many unknowns being introduced.

Methods Based on Varying Atmospheric Conditions

The dichromatic method proposed in [52, 48, 50] takes at least two images
of the same scene, under different atmospheric conditions (Fig. 2.6 left). The
two images are strictly aligned. Thus the two images shares the same depth
d(x) and the same reflectance3 ρc(x).

It further assumes that the atmospheric light A is the only light source
of the scene. Then the reflection J satisfies:

Jc(x) = ρc(x)Ac. (2.7)

Under the constant β assumption, the haze imaging equations of the two

3The term reflectance refers to the ratio of the reflected light to the incident light,
whereas the term reflection refers to the reflected light alone.

13



2.2. RELATED WORKS

Figure 2.7: Polarization-based methods. On the left are two images taken
in two polarizer states. On the right are the estimated scene radiance and
depth. Images from [65].

images are:

I1c (x) = ρc(x)A
1
ct

1(x) + A1
c(1− t1(x))

I2c (x) = ρc(x)A
2
ct

2(x) + A2
c(1− t2(x)), (2.8)

where the superscript (·1 or ·2) is the image index. This is called the dichromatic
model in [52, 48, 50].

The equations (2.8) provide 6N constraints, together with 3N unknown
ρc, 2N unknown t, and 6 unknown Ac: in total 5N + 6 unknown variables.
The constraints outnumber the unknowns, and the problem becomes over-
constrained. This problem can be solved by standard fitting algorithms.
Fig. 2.6 show an example result.

The above analysis is valid only when t1(x) �= t2(x). To ensure this
condition, the two images must be taken under very different atmospheric
conditions, e.g., one in denser haze and the other in thinner haze. This is
not an easy task: the weather may remain unchanged in several minutes or
even hours. This is the main limitation of this method.

14



2.2. RELATED WORKS

Polarization-based Methods

The methods in [65, 66] utilized a physical effect of the haze - polarization.
The airlight is highly polarized, but the direct attenuation is much less.

Using a polarizer (a glass filter) attached in the camera lens, these meth-
ods take two images of the same scene under two polarization states (see
Fig. 2.7). Assume the direct attenuation is completely unpolarized, the haze
imaging equations of the two images are:

I‖c (x) =
1

2
Jc(x)t(x) + A‖

c(1− t(x))

I⊥c (x) =
1

2
Jc(x)t(x) + A⊥

c (1− t(x)). (2.9)

Here ‖ and ⊥ denote two states, and the factor 1
2
is the influence of a polarizer

to unpolarized light.
The equations (2.9) provide 6N constraints, together with 3N unknown

Jc, N unknown t, 3 unknown A
‖
c and 3 unknown A⊥

c : in total 4N+6 unknown
variables. The problem becomes over-constrained and can be solved. Fig. 2.7
is an example.

A limitation of the polarization-based methods is the settings. Capturing
two strictly aligned polarized images is troublesome in practice. Another
problem is that the direct transmission is not always completely unpolarized.
Besides, a recent work [81] finds that polarization-based methods increase the
noise and are not beneficial to visibility.

Methods Based on Given Depth

The methods in [51, 39] use some given depth information to remove the
haze. As the depth d is a map describing the structure of the scene, we
categorize these methods as multiple-image ones.

Under the constant-β assumption, the haze imaging equation becomes:

Ic(x) = Jc(x)e
−βd(x) + Ac(1− e−βd(x)) (2.10)

We have 3N equations in (2.10), together with 3N unknown Jc, 3 unknown
Ac, and one unknown β: in total 3N + 4 unknowns. The problem is almost
well-posed. The extra unknown variables (Ac and β) can be estimated by
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2.2. RELATED WORKS

Figure 2.8: Methods Based on Given Depth. From left to right: hazy image,
given 3D structure, haze removal result. Images from [39].

fitting [39].
But it is not trivial to obtain the depth information. In [51], the user

is asked to roughly draw the depth. In [39], the 3D structural model of the
scene is provided by some databases, such as Google Earth or NASA radar
images. The 3D structures are then aligned to the hazy image and provide
the depth. See Fig. 2.8 for an example. However, the 3D structure model is
not available in most cases.

Summary

The multiple-image haze removal methods share some common advantages
and limitations.

These methods turn the ill-posed problem into a well-posed or over-
constrained one. One benefit is the fast running time. The computation is
often pixel-wise and no complex optimization is needed. Another benefit is
that they may handle some special situations. For example, the dichromatic
methods can handle night images, and the polarization-based or depth-based
methods allow t to vary across color channels.

The common limitation of these methods is that the extra images are not
easily available. They all require special settings with carefully calibration.
This is not practical in most cases, such as for hand-held cameras and out-
door surveillance systems. The limitations of these methods motivate the
development of single image haze removal methods.
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2.2.2 Single Image Haze Removal

Single image haze removal methods have to rely on some priors. The priors
can be statistical/physical properties, heuristic assumptions, simplifications,
and application-based rules. In the haze imaging model (2.1), the discrepancy
between the number of equations (3N) and the number of unknowns (4N+3)
is about N . So the priors are expected to introduce at least one constraint
for each pixel.

Dark Object Subtraction

A straightforward assumption is that the transmission t can be treated as a
constant independent of the position x:

Ic(x) = Jc(x)t+ Ac(1− t) (2.11)

Thus the number of unknowns about the transmission t reduces from N to
1.

The dark object subtraction proposed in [9] is to find this sole unknown
variable. This method is first developed in remote sensing area where the
images are often multi-spectral (often more than three channels). Consider
a single channel c. It is assumed there must be an object that is dark in this
channel. Specifically, there exists at least a pixel satisfying:

Jc(x) = 0 (2.12)

and therefore:
Ic(x) = Ac(1− t). (2.13)

The pixel satisfying Jc(x) = 0 corresponds to the minimum value in Ic(x).
So we can obtain the constant t from (2.13) if Ac has been given.

However, the constant-t assumption limits its application. This method
is often applied in satellite images where all the scene points have the same
distance with the camera. But this is rarely true in other cases where the
depth is not constant. Fig. 2.9 shows an example. We can see that the
method cannot remove the distant haze.

The dark object subtraction partially inspires the dark channel prior pro-
posed in this thesis.
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Figure 2.9: Haze removal by dark object subtraction [9]. Left: input hazy
image. Right: haze removal result.

Visibility Maximization

Haze reduces visibility. Removing the haze will enhance the visibility of the
image. In [79] Tan proposes a method to maximize the visibility under the
constraint of the haze imaging model.

Consider a small local patch. The transmission t is treated to be constant
inside this patch, so ∇Ic(x) = t∇Jc(x). The total visibility inside the patch
is defined as the sum of the gradient magnitude:

∑
c,x

|∇Jc(x)| = 1

t

∑
c,x

|∇Ic(x)|. (2.14)

The visibility of the recovered image
∑

c,x |∇Jc(x)| will keep increasing when
the transmission t is decreasing. Tan supposes the atmospheric light is the
light source of the scene, so Jc(x) = ρc(x)Ac with 0 <= ρc(x) <= 1. This
leads to the following constraint:

0 <= Jc(x) <= Ac. (2.15)

In Tan’s method, the value Jc(x) outside this range is truncated. This op-
eration prevents the visibility of

∑
c,x |∇Jc(x)| from increasing because the

truncated values provides zero gradients. The optimal t is the value that
maximizes the visibility. This computation is performed in each patch, pro-
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Figure 2.10: Haze removal by maximizing visibility [79]. Left: input hazy
image. Right: haze removal result.

Figure 2.11: The color vectors in the RGB space. Three pixels at x1, x2, and
x3 have the same reflectance R, but different luminance and transmission.

viding a constraint for each pixel.
Tan’s method has the advantages of enhancing the visibility. But it has

some limitations. Although the scene radiance should have a better visibility
than the hazy image, it does not necessarily have the maximum visibility.
Moreover, the truncation operation is not physically valid. The resulting
images often look over-saturated and unnatural, as in Fig. 2.10.

Independent Component Analysis

In [18] Fattal solves the haze removal problem by Independent Component
Analysis (ICA). ICA is a statistical method to separate two additive compo-
nents from a signal. Fattal adapts this method to the haze problem.
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Figure 2.12: Haze removal using Independent Component Analysis. Left:
input hazy image. Right: haze removal result

This method considers the scene points with the same reflectance in a
local patch. Thus the colors J(x) of these scene points are in the same
direction R, as shown in Fig. 2.11. Denote the luminance by l(x). Then
J(x) is Rl(x), and the haze imaging equation becomes:

Ic(x) = Rcl(x)t(x) + Ac(1− t(x)) (2.16)

The two scalar components l(x) and t(x) are to be separated. The luminance
l(x) depends on the illumination, object reflectance, and the scene geometry,
whereas the transmission t(x) depends on the depth and the property of the
haze. Fattal’s assumption is that: these two components are due to unre-
lated sources and therefore statistically independent. Under this assumption
the method can recover the reflectance of the pixels and provides extra con-
straints. We omit the technical details. Unlike Tan’s method, this method is
physically valid. The results often looks more natural and visually pleasing
(see Fig. 2.12).

The main limitation of this method results from the locally based statis-
tics. To ensure the statistics is reliable, the method requires the two com-
ponents l(x) and t(x) to vary significantly in a local patch. This condition
is not always satisfied. For example, a local patch of a distant scene usually
exhibit negligible variance in t(x). To handle this problem, the method only
apply the ICA to some reliable patches. The constraints are thus missed in
some pixels. This method uses a Markov Random Field (MRF) to extrapo-
late the missing values. But the results are not satisfactory when the reliable
pixels are insufficient. This method does not work well for dense haze.
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Summary

In single image haze removal, the difference between the number of unknowns
and the number of equations is about the number of pixels N . This suggests
the prior should impose at least one constraint for each pixel.

If each pixel is considered independently, it is perhaps impossible for us
to make any assumption, just as the glass filter experiment in Fig. 2.5. But
we can make assumptions or built priors for a group of pixels. Both Tan’s
method [79] and Fattal’s method [18] consider small local patches. Tan’s
visibility maximization assumption can be applied in each patch, but is less
physically valid. Fattal’s ICA method is physically based, but it is only
applied in some patches. Therefore, we expect a robust prior that is reliable
in as many patches as possible. The dark channel prior proposed in this
thesis is on this way.

� End of chapter.
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Chapter 3

Dark Channel Prior and Single

Image Haze Removal

In this chapter, we propose a novel prior - dark channel prior - for single
image haze removal. The dark channel prior is based on the statistics of
outdoor haze-free images. We find that, in most of the local regions which
do not cover the sky, it is very often that some pixels (called dark pixels)
have very low intensity in at least one color (RGB) channel. In hazy images,
the intensity of these dark pixels in that channel is mainly contributed by
the airlight. Therefore, these dark pixels can directly provide an accurate
estimation of the haze transmission. To improve the quality of the resulting
transmission map, we develop a soft matting interpolation method. Various
experiments show that we can recover a high quality haze-free image and
produce a good depth map.

Our approach is physically valid and is able to handle distant objects in
heavily hazy images. We do not rely on significant variance of transmission
or surface shading. The result contains few artifacts.
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3.1 Dark Channel Prior

A prior is the assumption or knowledge that can be built beforehand. Tan’s
method [79] is based on the prior that the scene radiance J should have a
better visibility than the hazy image I. Fattal’s method [18] is based on
the prior that the object luminance l and the transmission t are statistically
independent. We find that both priors talk about the interaction between
the scene radiance (J or l) and the haze influence (I or t). But let us consider
an image taken in a clear day in which no haze exists. Human beings are able
to tell whether it is a haze-free image, even there is no interaction between
the scene radiance and the haze at all. This motivates us to find a prior,
which concerns the scene radiance J (an haze-free image) alone.

We propose the dark channel prior which is solely about haze-free image.
In the following, we first propose our observation and give intuitive explana-
tion. Then we introduce the dark channel prior in a mathematical form. We
further design experiments to verify this prior.

3.1.1 Observation

Our observation is as following:

For outdoor haze-free images, in most patches that do not cover
the sky, there exist some pixels whose intensity is very low and
close to zero in at least one color channel.

We refer to the pixels “whose intensity is very low and close to zero in at
least one color channel” as dark pixels. To understand this observation, we
explain what factors contribute to the dark pixels.

Factors contributing to dark pixels

First, the dark pixels can come from the shadows in the image. Outdoor
images are full of shadows, e.g., the shadows of trees, buildings, and cars.
Objects with irregular geometry like rocks and plants are easily shaded. In
most cityscape images, the windows of the buildings look dark from the out-
side, because the indoor illumination is often much weaker than the outdoor
light. This can also be considered as a kind of shadows. See the first row in
Fig. 3.1 for examples.

Second, the dark pixels can come from colorful objects. Any object with
low reflectance in any color channel will result in dark pixels. For example,
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• Black objects

• Colorful objects

• Shadows

Figure 3.1: Shadows, colorful objects, and black objects contribute dark
pixels.

a green color has low intensity in its red and blue channels, and a yellow
color has low intensity in its blue channels. Outdoor images often contain
objects in various colors, like flowers, leaves, cars, buildings, road signs, or
pedestrians. See the second row in Fig. 3.1. The colorfulness of these objects
generates many dark pixels. Notice that by our definition a dark pixel is not
necessarily dark in terms of its total intensity; it is sufficient to be dark in
only one color channel. So a bright red pixel can be a dark pixel if only its
green/blue component is dark.

Third, the dark pixels can come from black objects, like vehicles tyres,
road signs, and tree trunks. See the third row in Fig. 3.1. These dark
pixels are particularly useful for in-vehicle camera which oversees the road
conditions.

If an image patch includes at least one of these factors, this patch must
have dark pixels. This is the intuitive explanation of our observation.

Remarks

It is worth mentioning some remarks on this observation.
(a) The observation only talks about haze-free images, i.e., the scene
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radiance J. This is because the above four factors contributing the dark
pixels concern the properties of the scene objects, such as shading, colors,
reflectance, and geometry. These factors do not concern the reflected light
traveling in the atmosphere. Actually, we shall see that this observation does
not hold for hazy images (so we can use it to remove haze).

(b) The observation is on most patches but not all. By “most” we mean
that there is a high probability that the observation is true. So this observa-
tion is in the sense of statistics. It is possible that some patches or images
do not obey it, but such cases are rare. We shall verify this observation by
statistical experiments.

(c) Currently we do not set the size of the patch. A larger patch has
a better chance to contain a dark pixel. But we expect the observation to
provide local constraints instead of global ones. So the patch size cannot be
too large. We discuss this problem in the experiments.

(d) The observation is on outdoor images. Haze only occurs in outdoor
images, so we are mainly interested in this case. Besides, a patch in an
outdoor image often covers richer contents than an indoor image, typically
when the scene objects are far away. So the probability that a patch covers
dark pixels is higher in outdoor images.

(e) We ignore the sky regions in this observation. This is because the
color of the sky is hard to predict. Fortunately, we shall see that our haze
removal method can gracefully handle both non-sky and sky regions. So
we do not have to treat the sky separately. More details are given in the
algorithm section.

(f) We should also notice that the intensity of a pixel depends not only
on the object colors or the light reflected, but also on the exposure settings
of the camera (shutter speed, aperture, ISO, etc.). Black surfaces or shaded
regions also reflect lights, and the corresponding pixels can be bright when
the exposure value is high. We assume the images are taken under proper
exposure settings so that a black color is correctly recorded by a low intensity
value.

3.1.2 Mathematical Formulation

Next we discuss the mathematical formulation of the above observation.
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Dark Pixel

Formally, we define a dark pixel as “the pixel whose minimum intensity
among the three RGB channels is below a small threshold δ”:

J(x) is a dark pixel ⇐⇒ min
c∈{r,g,b}

(Jc(x)) <= δ. (3.1)

Accordingly, if J(x) is a dark pixel, all the pixels J(x′) that satisfying the
following condition are also dark pixels:

min
c∈{r,g,b}

(Jc(x
′)) <= min

c∈{r,g,b}
(Jc(x)). (3.2)

Here x′ denote the coordinates of another pixel. This inequality suggests the
following necessary and sufficient condition for a patch to contain at least
one dark pixel:

A patch Ω contains at least one dark pixel ⇐⇒ min
x′∈Ω

( min
c∈{r,g,b}

(Jc(x
′))) <= δ.

(3.3)
In the following, we do not consider the small threshold δ explicitly, and
simply write the inequality as:

min
x′∈Ω

( min
c∈{r,g,b}

(Jc(x
′))) ≈ 0. (3.4)

We can see we only need to concern the quantity minx′∈Ω(minc∈{r,g,b}(Jc(x
′))).

This motives us to define a dark channel.

Dark Channel

Denote Ω(x) as the patch centered at the pixel x. Given an image J, the
dark channel of J is defined as a map satisfying:

Jdark(x) = min
x′∈Ω(x)

( min
c∈{r,g,b}

Jc(x
′)) (3.5)
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(a)

(c)

(b)

Figure 3.2: Computation of a dark channel. (a): An arbitrary image J.
(b): For each pixel, we calculate the minimum of its (r, g, b) values. (c):
A minimum filter is performed on (b). This is the dark channel of J. The
image size is 800× 551, and the patch size of Ω is 15× 15.
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Note each pixel in Jdark is a scalar. A dark channel is the outcome of two
minimum operators. The operator “minc∈{r,g,b}” is performed on each pixel.
See Fig. 3.2(b) for an example. The operator “minx′∈Ω(x)” is a minimum
filter [27]. See Fig. 3.2(c).

It is worth mentioning that the dark channel is an operation on an image,
no matter it is a haze-free or hazy one. We can also compute the dark channel
Idark(x) of a hazy image I by:

Idark(x) = min
x′∈Ω(x)

( min
c∈{r,g,b}

Ic(x′)). (3.6)

We shall see the “dark channel” operation is very useful in haze removal.

Definition: Dark Channel Prior

Now we are ready to describe the mathematical formulation of the dark
channel prior. Our observation says most patches should contain dark pixels.
Formally, we have the following mathematical expression of the observation:

For outdoor haze-free images, most patches Ω(x) not covering the

sky should satisfy:

min
c∈{r,g,b}

( min
x′∈Ω(x)

Jc(x′)) ≈ 0, (3.7)

or more simply:

Jdark(x) ≈ 0. (3.8)

We call this observation dark channel prior.
The dark channel prior is the core idea of this thesis. It has a concise

form as (3.8). It is a statistically and physically based law. Though it is
very simple, we shall demonstrate it is very powerful in haze removal. We
also discover a tight relationship between this prior and the human visual
system, which is discussed in Chapter 5.
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3.1.3 Experimental Verification

According to the prior, the dark channels of haze-free images should be most-
ly dark. Fig. 3.2 (c) shows an example. More visual examples are given in
Fig. 3.3. Carefully inspecting these images, we can find out the sources of the
dark pixels: shadows, colorful objects, and black objects. They exist almost
everywhere in the images.

To verify how good the dark channel prior is, we should test a large
collection of images and study their statistical properties. We download over
300,000 images from popular image search engines using 150 most popular
tags annotated by the Flickr users. We are interested in outdoor landscape
and cityscape scenes because they are the potential victims of haze. We only
focus on daytime images. Among them, we manually label the haze-free ones.
We randomly choose 5,000 images and cut out the sky regions. The images
are resized so that the maximum of width and height is 500-pixel. Fig. 3.3
(left) shows several samples from the data set.

To compute the dark channels, we should set the patch size. As mentioned
before, a larger patch has a better chance to contain a dark pixel. But we
expect the prior to provide local constraints instead of more global ones.
In this experiment, we set the patch as a rectangle of 15 × 15 pixels. We
compute the dark channels of all the 5,000 images. Fig. 3.3 (right) shows
some examples.

Fig. 3.4(a) is the distribution of the pixel intensity of all the 5,000 dark
channels1. Each bin contains 16 intensity levels. We find that about 86% of
the pixels fall in the first bin. Fig. 3.4(b) is the corresponding cumulative
distribution. We can see that about 75% of the pixels in the dark channels
have zero intensity, 90% of the pixels is below the intensity 25 (i.e., about
0.1 in the [0, 1] gray scale). This statistic gives a very strong support to the
dark channel prior.

We also concern whether some images have bright dark channels. We
compute the average intensity of each dark channel. The distribution is
shown in Fig. 3.4(c). Again, we find that most dark channels have very low
average intensity, indicating that most images obey our prior.

1In this experiment, the color intensity of the input images (and the dark channels) is
represented in [0, 255].
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Figure 3.3: Dark channel prior. Left: outdoor haze-free images. Right:
the corresponding dark channels. The dark channels are mostly dark. The
images are resized so that the maximum of width and height is 500 pixels.
Their dark channels are computed using a patch size 15× 15.
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Figure 3.4: Statistics of the dark channels. (a) Distribution of the pixel
intensity of all of the 5,000 dark channels (each bin represents 16 intensity
levels). (b) Cumulative distribution. (c) Distribution of the average intensity
of each dark channel.
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Figure 3.5: A hazy image and its dark channel.

3.2 A Novel Algorithm for Single Image Haze

Removal

In this section, we propose a single image haze removal algorithm using the
dark channel prior. We show that the dark channel prior introduces an extra
constraint to each pixel, providing an estimated transmission value. Then
we develop a method called “soft matting” to refine this transmission map.
We further propose a robust method to estimate the atmospheric light A,
which is also based on the dark channel prior.

We have seen the dark channels of haze-free images. But what does the
dark channel of a hazy image look like? Fig. 3.5 shows an example. We can
see that the dark channel of a hazy image is not dark (though we still use the
name “dark channel”). The reason is the additive airlight: the dark pixels
are brightened when the airlight is added. From Fig. 3.5 we also see that the
dark channel approximately tells the haze thickness: it is brighter in where
the haze is thicker. We show that this effect can be explained by combining
the haze imaging equation and the dark channel prior, and the transmission
and atmospheric light are estimated accordingly.
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3.2.1 Transmission Estimation

First we use the dark channel prior to estimate the transmission t. Recall
the haze imaging equation (2.1):

I(x) = J(x)t(x) +A(1− t(x)). (2.1)

Suppose the atmospheric light A has been estimated. We shall give an
automatic method to estimate A in Section 3.2.3. We normalize the haze
imaging equation (2.1) by A:

Ic(x)

Ac

= t(x)
Jc(x)

Ac

+ 1− t(x) (3.9)

Note that we normalize each color channel c independently. Then we compute
the dark channel on both sides of this equation, i.e., we insert the minimum
operators:

min
x′∈Ω(x)

min
c

Ic(x
′)

Ac

= min
x′∈Ω(x)

min
c

(
t(x′)

Jc(x
′)

Ac

+ 1− t(x′)
)

(3.10)

where we denote “minc∈{r,g,b}” by “minc” for simplicity.
We consider the transmission of a local patch Ω(x) as approximately

uniform, and denote this transmission value as t̃(x). The side effect of this
approximation will be handled in Section 3.2.2. Thus we replace the term
t(x′) in (3.10) by t̃(x). This allows us to move the transmission out of the
minimum operators:

min
x′∈Ω(x)

min
c

Ic(x
′)

Ac
= t̃(x) min

x′∈Ω(x)
min
c

(
Jc(x

′)
Ac

)
+ 1− t̃(x). (3.11)

The scene radiance J is a haze-free image. Due to the dark channel prior,
we have:

Jdark(x) ≡ min
x′∈Ω(x)

min
c

Jc(x
′) ≈ 0. (3.12)
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As Ac is always positive, this leads to:

min
x′∈Ω(x)

min
c

Jc(x
′)

Ac
≈ 0 (3.13)

Putting (3.13) into (3.11), we can eliminate the term containing J and ap-
proximate the transmission by:

t̃(x) = 1− min
x′∈Ω(x)

min
c

Ic(x
′)

Ac

. (3.14)

In fact, the term “minx′∈Ω(x) minc
Ic(x′)
Ac

” is the dark channel of the normalized

hazy image Ic
Ac
. So (3.14) can be expressed in a more concise form:

t̃(x) = 1− Îdark(x), (3.15)

where Î represents the normalized hazy image.
As we mentioned before, the dark channel prior does not concern the

sky regions. Fortunately, the color of the sky in a hazy image I is usually
very close to the atmospheric light A (because the depth d → ∞ and the
transmission t → 0, see (2.2)). So in the sky region we have:

min
x′∈Ω(x)

(min
c

Ic(x
′)

Ac

) → 1, (3.16)

and equation (3.14) will estimate t̃(x) → 0, which is consistent with the true
transmission (zero) of the sky. So (3.14) gracefully handles both sky and
non-sky regions. We do not need to separate the sky beforehand.

Equation (3.14) is the core method of our single image haze removal algo-
rithm. It provides an estimated transmission for each pixel, and thus solves
the ambiguity of the problem. Its computation is very simple. Fig. 3.6 shows
an example of the estimated transmission map by (3.14) and the recovered
scene radiance J. As we can see, this simple method is effective on recovering
the vivid colors and unveiling low contrast objects. The transmission maps
reasonably describe the thickness of the haze.
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We can also see the artifacts from Fig. 3.6. They are mainly due to
the locally-uniform-transmission assumption. This assumption is not true
near the depth edges, i.e., where the depth d (and t) changes abruptly. So
halo artifacts appear near depth edges (e.g., the white outlines of the leaves
in Fig. 3.6). Besides, the transmission maps have block-like artifacts. To
suppress these artifacts, we propose a soft matting method to refine the
estimated transmission.

3.2.2 Soft Matting

The dark channel prior provides a constraint for each pixel, but we should also
consider spatial continuities. Denote the refined transmission map by t. We
hope to find a map t that: (i) approximates the transmission t̃ estimated by
(3.14); (ii) has an edge when the depth is discontinuous; and (iii) is spatially
smooth otherwise. The first condition is the pixel-wise constraint, and the
other two are spatial continuity concerns. Since the depth is not known, we
approximate the depth discontinuity by the sharp edges in the hazy image I.

Combining pixel-wise constraints and spatial continuities is commonly
desired in many computer vision/graphics applications, such as stereo vision
[76], image denoising [21], surface interpolation [77], and alpha matting [42].
A popular solution to these problems is the Markov Random Fields (MRF)
model.

We adopt the following MRF model in our algorithm.

E(t) = λ
∑
x

‖t(x)− t̃(x)‖22 +
∑
x

∑
x′∈N(x)

w(I,x′,x)‖t(x)− t(x′)‖22 (3.17)

In this equation, the first term is a data term with a weight λ. It describes
the error between t and t̃. We set a small λ (10−4) in the experiments, so t is
softly constrained by t̃. The second term is the smoothness term where N(x)
is a small neighborhood around x. The weight w(I,x′,x) imposes continuity
conditions on t: a large weight suggests smoothness, and a small weight
suggests an edge. The smoothness is adjusted according to I.

The optimization is better written in matrix forms. We reorder the pixels
in t and t̃ to form column vectors t and t̃ respectively2. The quadratic cost

2For example, the pixel with the coordinates (x, y) corresponds to the (x+ y ∗ wid)th
entry in the vector, where wid is the image width.
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Figure 3.6: Haze removal using Equation (3.14). Left: input hazy images.
Middle: transmission maps estimated by (3.14). Right: recovered scene
radiance by these transmission maps.
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(b)(a) (e)

Figure 3.7: Soft matting results of Fig 3.6. (a): Input hazy images. (b): Re-
fined transmission t after soft matting. (c) Recovered scene radiance images.
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function (3.17) becomes:

E(t) = λ‖t− t̃‖22 + tTLt, (3.18)

where L is an N ×N Laplacian matrix3 containing the weights.
We adopt the matting Laplacian matrix [42] previously designed for alpha

matting. We choose this matrix for two reasons. First, the haze imaging
equation (2.1) is analogous to the alpha matting equation:

I(x) = F(x)α(x) +B(x)(1− α(x)), (3.19)

where F is the foreground, B is the background, and α is the foreground
transparency [70]. The map α plays a role like t in the haze equation. The
matting Laplacian matrix has been proven successful in recovering the profile
of α (e.g., in [42, 84]). Second, the matting Laplacian matrix is derived from
a local linear model. We can show that the haze imaging equation also leads
to this model. Thus, the matting Laplacian matrix is a proper choice in haze
removal. We discuss more details in Chapter 4.

The (i,j) element of the matting Laplacian matrix is given by [42]:

∑
k|(i,j)∈wk

(δij − 1

|wk|(1 + (Ii − μk)
T (Σk +

ε

|wk|U3)
−1(Ij − μk))), (3.20)

Here, the subscript i, j, and k are the pixel indexes in a form like (x+y∗wid).
Ii and Ij are the colors of the input image I at pixels i and j, δij is the
Kronecker delta, μk and Σk are the mean and covariance matrix of the colors
in window wk, U3 is a 3×3 identity matrix, ε is a regularizing parameter, and
|wk| is the number of pixels in the window wk. Having defined the matrix
L, the optimal t in (3.18) is obtained by solving the following sparse linear
system:

(L + λU)t = λt̃, (3.21)

where U is an identity matrix of the same size as L. The linear system can
be solved by standard linear solvers like Conjugate Gradient [63].

The matting Laplacian matrix has also been applied in [36] to deal with

3A Laplacian matrix is a matrix whose elements in each row sum to zero.
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the spatially variant white balance problem. In [36] and in alpha matting
[42], the data term are known in some sparse regions, and the MRF is used
to extrapolate the values into the unknown regions. So the data constraints
are strict or fixed. In our application, the data term have already filled the
whole image, and the MRF is used to smooth and refine them. Our data
constraints are soft and loose. So we call our method soft matting.

Figure 3.7 shows the soft matting results of Figure 3.6. As we can see,
the halos and block artifacts are suppressed. The refined transmission maps
manage to capture the sharp edge discontinuities and outline the profile of
the objects. Besides, the transmission map is smooth in where no depth edge
exists.

In Chapter 4 we discuss more on the matting Laplacian matrix and soft
matting. We propose fast algorithms, alternatives, and generalizations.

3.2.3 Atmospheric Light Estimation

We have been assuming that the atmospheric light A is known. Next we
propose a method to estimate A. In previous works (e.g. [79, 18]), the color
of the most haze-opaque (smallest t) regions is considered as A. However,
the detection of the “most haze-opaque” regions is not trivial, because the
estimation of t is often after the estimation of A. So we cannot find such
regions by the criterion of “smallest t”. Some methods (e.g. [65]) require the
user to mark such regions. But in most applications automatic methods are
required.

In Tan’s work [79], the brightest pixels in the hazy image are considered
to be the most haze-opaque. This is true only when the atmospheric light
is the sole illumination source of the scene (see Fig. 3.8 top). Denote the
reflectance of the scene point by ρ. The scene radiance of each color channel
is given by:

Jc(x) = ρc(x)Ac. (3.22)

where 0 ≤ ρc ≤ 1. The haze imaging equation (2.1) can be written as:

Ic(x) = ρc(x)Act(x) + (1− t(x))Ac. (3.23)

Since ρc(x)t(x) + (1− t(x)) ≤ 1, we have:

Ic(x) ≤ Ac. (3.24)
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atmosphere

camera
J(x) I(x)

scene atmospheric light A

atmosphere

camera
J(x) I(x)

scene atmospheric light A

sunlight

Figure 3.8: Illumination sources in hazy days. Top: The atmospheric light
is the sole illumination source. Bottom: the sunlight is another illumination
source.

for any pixel in the image. The brightest Ic is the closest to Ac. If pixels
at infinite distance (d → ∞ and t ≈ 0) exist in the image, the brightest Ic
equals to the atmospheric light Ac.

Unfortunately, the atmospheric light is rarely the sole illumination source.
If the weather is not cloudy or overcast, the sunlight may go through the
atmosphere and illuminate the scene objects (see Fig. 3.8 bottom). The light
reflected or radiated by the clouds can also be another illumination source
in hazy weather. Denote the sunlight (or the light from clouds) by S. We
modify (3.22) by:

Jc(x) = ρc(x)(Sc + Ac), (3.25)
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Figure 3.9: Estimation of the atmospheric light A. (a) Input hazy image.
(b) Dark channel and the most haze-opaque region (bounded by the yellow
lines). (c) The patch from where our method automatically obtains the
atmospheric light. (d) and (e): Two patches that contain pixels brighter
than the atmospheric light.

and (3.23) by:

Ic(x) = ρc(x)Sct(x) + ρc(x)Act(x) + (1− t(x))Ac. (3.26)

The inequality Ic(x) ≤ Ac no longer holds. The brightest Ic(x) can be
brighter than the atmospheric light Ac. It can be on a white car or a white
building (Figure 3.9(d)(e)).

We develop a more robust method to estimate A based on the dark
channel prior. We notice that in (3.26), the sunlight term ρc(x)Sct(x) is more
negligible when t(x) is smaller. In the most hazy-opaque region (smallest t),
the impact of the sunlight is the smallest. Recall our transmission estimation
(3.14):

t̃(x) = 1− min
x′∈Ω(x)

min
c

Ic(x
′)

Ac

. (3.14)
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(a) (b) (c)

Figure 3.10: Estimation of the atmospheric light when there is no infinitely
distant pixel. (a): Input image. (b): Dark channel. The red pixels on the
top right corner are the most haze-opaque regions detected by our method.
(c): Our haze removal result.

Assume the color of the atmosphere is grayish, i.e., the three components of
A are identical: Ar = Ag = Ab ≡ A. Then (3.14) becomes:

t̃(x) = 1− 1

A
min

x′∈Ω(x)
min
c

Ic(x
′)

= 1− 1

A
Idark, (3.27)

where the dark channel Idark is given in (3.6). This equation indicates the
most haze-opaque region (smallest t̃) corresponds to the brightest values in
Idark (Figure 3.9(b)). This claim is true even if we do not know the value A
in (3.27).

So we can use the dark channel to detect the most haze-opaque region
and estimate the atmospheric light. We first pick the top 0.1% brightest
pixels in the dark channel. These pixels are most haze-opaque in the image
(bounded by yellow lines in Figure 3.9(b)). Among them, the pixels with
highest intensity4 in the input image Ic are selected as the atmospheric light
Ac

5. These pixels are in the red rectangle in Figure 3.9(a). Note that these
pixels may not be the brightest in the whole image.

Theoretically, we can use the estimated A to fix the grayish-A assump-
tion and improve its accuracy. But in experiments we find the first estimation

4We choose the top 1% highest intensity to avoid noise.
5This operation is on each channel independently.
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is good enough even if A is colored (e.g., blueish or reddish). So this im-
provement is not necessary.

This method works well even when the image does not contain pixels at
infinite distance. It is usually sufficient if only the image contains a densely
hazy region, where the sunlight term can be ignored. In Fig. 3.10(b), our
method detects the most hazy region which is not infinitely distant. The
estimated A is already a good approximation in our haze removal algorithm.
The haze removal result is shown in Fig. 3.10(c).

This simple method based on the dark channel prior is more robust than
the brightest-pixel method. We use it to automatically estimate the atmo-
spheric lights for all images in this thesis.

3.2.4 Scene Radiance Recovery

With the atmospheric light A and the transmission t, we can recover the
scene radiance J by inverting haze imaging equation:

Jc(x) =
Ic(x)− Ac

t(x)
+ Ac. (3.28)

However, the direct attenuation term J(x)t(x) in the haze imaging equa-
tion (2.1) is very close to zero when t(x) is very small. The recovered scene
radiance J from (3.28) is prone to noise. Therefore, we restrict the transmis-
sion t(x) by a lower bound t0, i.e., we preserve a small amount of haze in
very dense haze regions. The final scene radiance J(x) is recovered by:

Jc(x) =
Ic(x)− Ac

max(t(x), t0)
+ Ac. (3.29)

A typical value of t0 is 0.1.
Since the scene radiance is usually not as bright as the atmospheric light,

removing the haze from an image may reduce the whole intensity. The image
after haze removal will look dim. So we increase the intensity of J for display.
The image J is multiply by a ratio C so that the average intensity of J
equals to the average intensity of I. Some final recovered images are shown
in Fig. 3.7.
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Figure 3.11: Aerial perspective: the atmospheric effects are important clues
for depth. Left: a photograph from Wiki by J. A. Gaspar. Right: the
painting Haystack at Giverny by Claude Monet (1840-1926).

Aerial Perspective

Haze is not always unwanted. They provide clues for human beings to per-
ceive the distance. This is known as aerial perspective or atmospheric per-
spective [11]. See Fig. 3.11 (left) for an example. The texture and details of
the mountains are hard to see. But the farther objects appear more whitish,
so we can still tell their relative distance. The aerial perspective has been no-
ticed by artists and used to represent depth in their works (e.g., see Monet’s
painting in Fig. 3.11 (right)).

In Fig. 3.11 we also notice that haze does not always reduce contrast:
they may increase contrast near the depth edges. In fact, we can compute
the gradient on both size of the haze image equation (2.1):

∇I(x) = t(x)∇J(x) + (J(x)−A)∇t(x). (3.30)

The gradient of I can be mostly contributed by ∇t(x) near the sharp depth
edges.
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(b)(a) (c) (d)

Figure 3.12: Haze removal with aerial perspective. (a) Input hazy image. (b)
Recovered transmission. (c) Haze removal result without aerial perspective
(κ = 1). (d) Haze removal result with aerial perspective (κ = 0.95). The
depth is more perceivable because the remained haze.

If we remove the haze thoroughly, the feeling of depth may be greatly
weakened and the image may appear unnatural. See Fig. 3.12(c) for an
example: the mountains are hard to discern. To handle this problem, we
can optionally keep a very small amount of haze for the distant objects
by introducing a constant parameter κ (0 < κ < 1). After obtaining the
transmission t, we modify its value by:

t(x) := 1− κ(1− t(x)). (3.31)

Here we use “:=” to denote assignment. The nice property of this modifica-
tion is that we adaptively keep more haze for the distant objects. In haze-free
regions, t is 1 on the right hand side so it is not changed by κ; in complete-
ly hazy regions, t is 0 on the right hand side so it will become 1 − κ > 0,
and thus a small amount of haze would remain in the recovered image. The
value of κ is application-based. We set it to 0.95 in this thesis. We use this
modified t in (3.29) to recover the scene radiance. In Fig. 3.12(d) shows an
example. The depth is more perceivable because of the remained haze.

3.2.5 Implementation

Our single image haze removal algorithm is summarized in Algorithm 1.
In Step 1 and 2 the dark channel computation involves the minimum
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filter “minx′∈Ω(x)”. A brute-force algorithm takes O(r2N) time where r is
the patch Ω’s radius. Instead, we adopt van Herk’s fast algorithm [83] which
is O(N) time. The computational time is independent of the patch size and
very fast (< 10ms per megapixel).

In Step 3, the linear system is solved by Conjugate Gradient (CG) or Pre-
conditioned Conjugate Gradient (PCG) [63]. This is the sole time-consuming

step in the whole algorithm. The time complexity is O(N
3
2 ) in the number

of pixels N . For a 600×400, it takes over 10s to solve the linear system. We
shall propose fast algorithms in the Chapter 4.

Algorithm 1 A single image haze removal algorithm based on dark channel
prior

1: Estimate the atmospheric light A as in Sec. 3.2.3.
2: Estimate the transmission by (3.14):

t̃(x) = 1− min
x′∈Ω(x)

min
c

Ic(x
′)

Ac
. (3.14)

3: Refine the tranmssion by soft matting, i.e., solve the linear system (3.21)
for t:

(L + λU)t = λt̃. (3.21)

4: Recover the scene radiance J by:

t(x) := 1− κ(1− t(x)). (3.32)

Jc(x) =
Ic(x)− Ac

max(t(x), t0)
+ Ac. (3.29)

3.2.6 Relation to Previous Methods

The dark channel prior is partially inspired by the dark object subtraction
[9]. Both methods concern dark intensity. However, the dark object sub-
traction is only valid for constant transmission. This method finds one dark
object in the whole image. On the contrary, our method is valid for spatially
variant transmission, and it is based on the observation that the dark pixels
may appear everywhere. Besides, the dark object subtraction requires dark
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objects in each color channel, whereas our method only requires a pixel to
be dark in only one channel.

Both our method and Tan’s visibility maximization method [79] assume
locally uniform transmission and search for this value. In Tan’s method the
visibility is maximized only when a portion of pixels have intensity < 0 or
> A, which are then truncated. This operator is not physically based. This
method often overestimates the thickness of the haze, and many pixels are
actually brought below 0. On the contrary, our dark channel prior ensures
that the pixel intensity is not below zero. Indeed, our method set the dark
channel (the minimum intensity) to zero, so it will not violate the physical
constraints.

Fattal’s ICA method [18] assume a statistical independency of the scene
luminance and the haze transmission. Our dark channel prior, at a broader
view, indicates that the dark channel of the scene radiance is independent of
the haze, because it is mostly a zero constant.

Multiplicative vs. Additive

In the haze image equation (2.1), the direct transmission J(x)t(x) is a mul-
tiplicative degradation of the scene radiance J. It accounts for visibili-
ty/contrast reduction. The airlight A(1 − t(x)) is an additive degradation
with respect to the scene radiance. It leads chrominance shift, making the
scene whitish or grayish. The existing two single image methods (Tan’s [79]
and Fattal’s [18]) solve the ambiguity from the multiplicative term. They are
driven by the observations that the multiplicative term changes the image
visibility [79] or the color variance [18].

On the contrary, our method is based on the additive term. It based
on the fact that the dark channel is brightened by the additive airlight. In
the derivation of the transmission estimation (3.14), the dark channel prior
eliminates the multiplicative term (see Equations (3.11) to (3.14)) and leaves
the additive term. We can see this fact more clearly if we generalize the haze
image equation (2.1) by:

I(x) = J(x)t1(x) +A(1− t2(x)), (3.33)

where t1 does not necessarily equal to t2. Using the dark channel prior to
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eliminate the multiplicative term we can obtain:

t̃2(x) = 1− min
x′∈Ω(x)

min
c

Ic(x
′)

Ac
. (3.34)

Thus, we can separate the additive term A(1− t2(x)) with the multiplicative
term J(x)t1(x). If t1 �= t2, we need other priors to compute t1, depending
on the problem formulation. In the literature of human vision research [26],
the additive term is called a veiling luminance, and (3.33) can model semi-
transparent veils, glare from strong light sources, or specular reflection high-
lights. Our method has potential in solving this problem.

3.3 Experimental Results

In this section, we demonstrate the results of our method and compare with
various previous works.

3.3.1 Patch Size

A key parameter in our algorithm is the patch size in the transmission es-
timation (3.14). On one hand, the dark channel prior becomes better for a
larger patch size, because the probability that a patch contains a dark pixel
is increased. We can see this in Fig. 3.13: the larger the patch size is, the
darker a dark channel is. Consequently, (3.14) is more accurate for a larger
patch. A patch that is too small will lead to over-saturated colors in the haze
removal results (Fig. 3.14(b)). On the other hand, the assumption that the
transmission is uniform in a patch becomes less appropriate if the patch size
is getting larger. Halos near depth edges may become stronger (Fig. 3.14(c)).

Fig. 3.15 shows the haze removal results using different patch sizes. The
image sizes are 600× 400. In Fig. 3.15(b), the patch size is 3× 3. The colors
of some grayish surfaces look over-saturated (see the buildings in the first
row, and the rectangles in the second and the third rows). In Fig. 3.15(c)
and (d), the patch sizes are 15 × 15 and 30 × 30 respectively. The results
appear more natural than those in (b). This shows that our method works
well for sufficiently large patch sizes: the soft matting is able to reduce the
artifacts introduced by large patches. In the remaining part of this thesis,
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Figure 3.13: A haze-free image (600× 400) and its dark channels using 3× 3
and 15× 15 patches respectively.

(a) (c)(b)

Figure 3.14: A 600 × 400 hazy image (a) and the recovered scene radiance
using 3× 3 (b) and 15× 15 (c) patches respectively (without soft matting).
The recovered scene radiance is over-saturated for a small patch size, while
contains apparent halos for a large patch size.

we use a patch size of 15× 15 for 600× 400 images, and scale the patch size
according to the image size.

3.3.2 Results of Our Method

We have shown some results in Fig. 3.7 and Fig. 3.15. We show more c-
ityscape examples in Fig. 3.16 and Fig. 3.17, landscape examples in Fig. 3.18,
and miscellaneous cases in Fig. 3.19. The atmospheric light estimated by our
algorithm is indicated by the red rectangles in these figures. As we can see,
our method can recover the details and vivid colors even in heavily hazy
weather, and is robust in various cases. Our approach also works for gray-
scale images if there are enough shadows. Cityscape images usually satisfy
this condition. Fig. 3.20 shows an example.

We also show the resulting depth maps in Fig. 3.16 to 3.20. The depth
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(a) (b) (c) (d)

Figure 3.15: Recovering images using different patch sizes (after soft mat-
ting). (a): Input hazy images. (b): Using 3× 3 patches. (c): Using 15× 15
patches. (d): Using 30× 30 patches.

maps are computed according to (2.4):

d(x) = − ln t(x)

β
. (2.4)

Here we show relative depth where the scale (− 1
β
) is unknown6. We can see

that our depth maps are visually reasonable: they have consistent edges with
the input and are smooth otherwise. Notice that estimating depth from a
single image is a very challenging problem in computer vision [64]. But it
becomes much easier with the “help” of the haze. We can use the depth map
to defocus the images (see Fig. 3.21 and Fig. 3.22). This technique can be
used to simulate miniature scenes (Fig. 3.22). These interesting results are
generated from “annoying” hazy images.

6The depth maps are shown by pseudo-color mapping.
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(b)(a) (c)

Figure 3.16: Haze removal from a single image. (a) Input hazy image. (b)
Our haze removal result. (c) Our recovered depth map.

3.3.3 Comparisons with Previous Methods

Next we compare with all the state-of-the-art methods in previous works.
We show that our method outperforms them in various situations.

In Fig. 3.23 we compare with the dichromatic methods [52, 48, 50] which
requires two images taken in different atmospheric conditions. Our results
is merely from the bottom left image. Though our method uses only one
image, the recovered scene appears more natural and visually pleasing. Our
depth map has no missing labels in the buildings.

In Fig. 3.24 we compare with the polarization-based method [65, 66] which
requires two polarized hazy images. Our result is from only one of the two
images. We can see that our method recovers comparable details and contrast
with the polarization-based method. Our result also appear less blueish.
Moreover, recent work [81] points out that the polarization-based method is
not beneficial, because the polarizer reduces the exposure value and increases
the noise level. The noise is further increased when the two images are
combined. So if we use only one unpolarized image as input, the signal-to-
noise ratio (SNR) would be much higher (see [81]).

In Fig. 3.25 we compare with Kopf et al.’s work [39] which based on given
3D models of the scene. Our result does not require any geometric informa-
tion. We notice that even with the given depth, their method cannot handle
inhomogeneous haze (like the cloud pointed by the red arrow in Fig. 3.25).
Because when β is not a constant, the transmission can not be obtained by
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Figure 3.17: Haze removal results (cityscapes).

Figure 3.18: Haze removal results (landscapes).
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Figure 3.19: Haze removal results (miscellaneous).
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Figure 3.20: Haze removal result (gray-scale).

Figure 3.21: Defocusing on three different positions. The input image and
depth map is in Fig. 3.19
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(b)(a)

(c) (d)

Figure 3.22: Defocusing. (a) Input hazy image. (b) Our haze removal result.
(c) Our recovered depth map. (d) A defocused image using the depth map.
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Figure 3.23: Comparison with the dichromatic methods [52, 48, 50]. Left:
two input haze images in different weather conditions. Middle: the recovered
scene radiance and depth by the dichromatic methods. Right: our results,
only using the bottom left image as the input.

Figure 3.24: Comparison with the polarization-based methods [65, 66]. Left:
one of the two input polarized images. Middle: the result in [65]. Right: our
result from the single input image.

t = e−βd from the given depth. On the contrary, our method does not rely
on the constant-β assumption. Our result appears clearer in the cloud-like
area.

Next we compare with single image methods. In Fig. 3.26 we compare
with the dark object subtraction method [9]. This method assumes a constant
transmission, so it can only remove the haze of the nearest objects. See
Fig. 3.26 (b): the haze effects in the town is not reduced at all because of the
nearer trees. The result of this method the becomes better if the image is
cropped (Fig. 3.26 (c)). But the distant haze still remains. On the contrary,
our method can remove the haze in each position (Fig. 3.26 (d)).

In Fig. 3.27, we compare our approach with Tan’s visibility maximization
method [79]. The results of this method have over-saturated colors. This
is because the visibility is maximized only when some pixels’ intensity is
brought below zero. On the contrary, our method recovers the scenes without
severely changing the colors (e.g., the swans and the buildings in Fig. 3.27).
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Figure 3.25: Comparison with the 3D-geometry-based method [39]. Left:
input. Middle: the result of [39]. Right: our result.

We also notice the apparent halo artifacts in Tan’s result. This is because
the smoothness term in his MRF is not edge-aware.

Fattal’s ICA method [18] is the most competitive one. In Fig. 3.28, we
show that our result is comparable with Fattal’s representative example in
his paper. In Fig. 3.29, we show that our method outperforms Fattal’s in
dense haze. His method is based on local statistics and requires sufficient
color information and variance. When the haze is dense, the color is faint
and the variance is not high enough for estimating the transmission. Fig. 3.29
(b) shows Fattal’s results using the reliable transmission values: the reliable
regions are sparse. The transmission is then extrapolated by MRF. But
the results after extrapolation (Fig. 3.29 (c)) are still not satisfactory: some
regions are too dark (see the mountains) and some haze is not removed (see
the cityscape). On the contrary, our approach is more successful in both
cases (Fig. 3.29(d)). This is because our dark channel prior provides reliable
estimation in much more regions than Fattal’s method.

3.3.4 Limitations

The limitations of our method are mainly due to two reasons: the failure of
the dark channel prior, and the invalidty of the haze imaging equation (2.1).

The dark channel prior is statistically based, so there is a chance that
some patches or whole images does not obey this prior. The prior may fail
when the scene objects are inherently gray or white, with no shadow cast
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(a) (b)

(c)

(d)

Figure 3.26: Comparison with dark object subtraction [9]. (a) Input. (b)
Result of dark object subtraction. (c) Result of Dark Object Subtraction on
a cropped image. (d) Our result.

Figure 3.27: Comparison with Tan’s Visibility Maximization method [79].
Left: input images. Middle: Tan’s results. Right: our results.
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Figure 3.28: Comparison with Fattal’s ICA method [18]. Left: input image.
Middle: Fattal’s result. Right: our result.

Figure 3.29: More comparisons with Fattal’s method [18]. (a) Input images.
(b) Fattal’s results before extrapolation. The transmission is not estimated
in the black regions. (c) Fattal’s results after extrapolation. (d) Our results.
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Figure 3.30: Failure of the dark channel prior. Left: input image. Middle:
our result. Right: our transmission map. The transmission of the marble is
underestimated.

on them, and with no colorful objects around them. The white marble in
Fig. 3.30 is an example. In this case, our method may overestimate the
thickness of the haze (underestimate the transmission). The recovered colors
become more saturated than they should be.

Another limitation is that the haze imaging equation (2.1) may be invalid.
It involves two situations: (i): channel-dependent transmission t, and (ii)
nonconstant atmospheric light A.

(i): Channel-dependent transmission. In the haze imaging equation
(2.1), it is assumed that the scattering coefficient β is independent of the
wavelength λ. But this is not true when the particles in atmosphere is too
small. An example is the Rayleigh Scattering [23]: the particles are air
molecules instead of dust or water droplet. In this case, the transmission t
should be modified as channel-dependent (see [49, 65]):

tc(x) = e−βcd(x), (3.35)

where the scattering coefficients usually satisfy: βr < βg < βb. And we can
modify the haze imaging equation (2.1) by:

Ic(x) = Jc(x)tc(x) + Ac(1− tc(x)). (3.36)
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(c)(a) (b)

Figure 3.31: Channel-dependent transmission. Left: input image. Middle:
our result using the original haze imaging model (2.1). Right: our result
where each channel is processed independently.

In Rayleigh Scattering, the blue channel transmission tb is often the smallest.
So the distant objects often appears blush (see Fig. 3.31 (a)). Rayleigh
Scattering is also the reason for the blue sky. If we follow the original haze
imaging equation (2.1) to remove haze, the distant objects become bluish
(see Fig. 3.31 (b)). Notice that the nearer objects is less influenced7. One
way to fix this problem is to process each channel independently. The result
is in Fig. 3.31 (c). We can see that the bluish artifacts is removed. But this
modification requires that each channel has its own dark pixels, which is less
valid than the dark channel prior in some cases.

(ii): nonconstant atmospheric light. The haze imaging equation
(2.1) may also be invalid when the atmospheric light A is nonconstant. We
should modify it by:

I(x) = J(x)t(x) +A(x)(1− t(x)), (3.37)

where A(x) depends on the position. This is often due to point light sources
like the sun and the street lights at night. The atmospheric light is stronger
near the center of a point light source (see Fig. 3.32). In this case our method
may fail because our fixed atmospheric light is not correct in most positions
of the image (see Fig. 3.33).

7This is because of the exponential dependency in (3.35).
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Figure 3.32: Point light sources lead to nonconstant atmospheric light.

(a) (b) (d)(c)

Figure 3.33: Nonconstant atmospheric light. (a): Input image. (b): Our
result. (c): Dark Channel. Red pixels indicate where the atmospheric light
is estimated. (d): Estimated transmission map.

Both the channel-dependent transmission model (3.36) and the noncon-
stant atmospheric light model (3.37) increase the number of unknowns from
about 4N to about 6N . So we require more prior knowledge or assumptions
to handle these situations. We will study these problems in the future.

3.4 Conclusion

In this chapter, we propose the dark channel prior and a haze removal al-
gorithm based on it. This novel prior is very simple but effective. We show
experiments to support its validity. We also show that our algorithm out-
performs previous works in various experiments.

We do not focus on the running time in this chapter. The only time
consuming step is to solve the linear system in soft matting (3.21). In the
next chapter, we propose two fast algorithms to address the speed issue.

We find that the dark channel prior may also be adopted by the human
visual system. This is another strong support for our prior as a computer
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vision algorithm. We investigate this problem in Chapter 5.
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Chapter 4

Efficient Solutions to

Refinement

In practical applications, the efficiency of a haze removal algorithm is impor-
tant. For example, in outdoor surveillance system it is required to process
the video in real-time; in an image editing system, instant feedback is essen-
tial for user experience. In this chapter, we study the speed-up of our haze
removal algorithm.

All the operations of our algorithm except soft matting can be computed
in real-time for mega-pixel images. The purpose of soft matting is to combine
pixel-wise constraints with spatial continuities. This was achieved by solving
a linear system. In the first section of this chapter, we propose a large-kernel-
based algorithm1 to increase the speed of the linear solver. In the second
section, we propose a non-iterative filter called guided filter 2 to replace the
soft matting step. This technique allows us to process mega-pixel images in
real-time with almost no quality degradation.

The guided filter is an edge-aware filter. Edge-aware filtering is an impor-
tant and widely applied technique in computer vision/graphics. The guided
filter is also applicable in various applications besides haze removal. We show
that this filter is a state-of-the-art technique for edge-aware filtering, in terms
of both quality and efficiency.

1This method is published in our paper [31] as an alpha matting method.
2The guided filter is published in our paper [32] as a general edge-aware filter.
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4.1. A LARGE-KERNEL-BASED LINEAR SOLVER

4.1 A Large-Kernel-Based Linear Solver

In the soft matting step, we need to solve a large linear system with a matting
Laplacian matrix L:

(L + λU)t = λt̃. (3.21)

A popular and generally superior technique is the Conjugate Gradient solver
(CG) [63], which takes O(N

3
2 ) time in terms of the number of pixels N . It

is quite slow when N gets larger.
In this section, we focus on the kernel size of the linear system. Consid-

ering the kernel radius r, we shall show that a conventional CG algorithm
takes O(rN

3
2 ) time: it is slower when r gets larger. This is one reason why

previous methods [41, 28, 42, 84, 36] often use the smallest kernel, no matter

in what form the linear system is. However, we shall propose an O(1
r
N

3
2 )

time algorithm particularly designed for the matting Laplacian matrix. It
allows us to reduce the running time by choosing a larger kernel. This is an
interesting discovery, because in conventional theories solving a less sparse
(e.g., larger kernel) linear system requires more time.

4.1.1 Related Works: Linear Solvers

Before introducing our algorithm, we briefly review the previous works on
linear solvers. They are in two categories: direct (non-iterative) methods
and iterative methods.

Direct methods find a solution in a finite number of operations. The
Gaussian Elimination is a well-known strategy, which is in essential a matrix
decomposition method. Other variations include LU, QR, and Cholesky
decomposition [12]. These methods are effective for small linear systems.
But they suffer from the “fill-in” problems [12, 63]: more and more entries in
the matrix becomes non-zero during decomposition. The number of non-zero
entries is O(N2) in the worst case. So these methods can easily run out of
memory when N is the image size. For example, the memory for solving
a 1000×1000 image can be in the order of 106 megabytes (1M MB or 1000
GB).

The Fourier transform can be used as a direct solver for some special linear
systems, like the Poisson Equation [74] and the Screened Poisson Equation
[6]. If the kernel of the matrix is spatially invariant, we can treat the linear
system as a convolution and solve it by Fourier transform. But this is not the
case in many problems, including any edge-aware matrices (e.g.the matting
Laplacian matrix) [78] and any non-uniform data weights [77].
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Due to the memory issue, practical linear solvers in computer vision/graphics
are the iterative methods [63]. The Jacobi method, Gauss-Seidel method,
Successive Over Relaxation (SOR), and Conjugate Gradient (CG) are some
widely used ones. In general, these methods iteratively multiply a matrix
and converge to the true solution. But their convergence speed is not fast.
For example, it often takes hundreds to thousands of iterations for a CG
solver to converge in many image problems [77, 78].

Preconditioning [63] is a technique to ensure fast convergence of the it-
erative solvers, often applied in Conjugate Gradient. The Preconditioned
Conjugate Gradient (PCG) method multiplies a specially designed matrix
(called preconditioner) in each iteration, which is expected to increase the
convergence speed. Several preconditioners for general linear systems are
given in [63], but their performance is less satisfactory in image problem-
s [77, 78]. The hierarchical basis preconditioning (HBP) [77] exploits the
multi-scale nature of image problems. It is particularly useful when the
solution is mostly smooth. The locally adaptive hierarchical basis precon-
ditioning (LAHBP) [78] improves this technique for various inhomogeneous
problems like edge-aware smoothing. But the LAHBP is not applicable for
the matting Laplacian matrix, because it requires the matrix to be first-order
smooth3.

The multigrid technique is another way to accelerate the iterative solvers
[7]. It also exploits the multi-scale nature of image problems. It solves the
problem at a coarser scale, and corrects the error at a finer scale. This process
is often run recursively and iteratively. The multigrid method is optimal for
homogenous problems like the Poisson Equation, but is less satisfactory in
irregular cases.

4.1.2 Matting Laplacian Matrix

Our algorithm proposed in this section is particularly designed for the mat-
ting Laplacian matrix. We first introduce the derivation of this matrix. The
derivation is mainly following Levin et al.’s alpha matting paper [42] in which
the matrix is proposed. But we discuss in the scenario of haze removal. We
shall also see why we choose this matrix in our MRF model (3.18): it is com-
patible with the haze image equation, and has nice edge-aware properties.

We still denote the estimated transmission in (3.14) by t̃, and the refined
transmission by t. For simplicity, we denote the image as a one-channel image
I (but the color image case is similar). Each image or map can be written

3This means that Lij is non-zero only when j is in the 4-neighborhood of i
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as an N×1 column vector. For example, the ith element of the vector t is:

ti ≡ t(x), with i = x+ y ∗ wid and x = (x, y),

where wid is the image width. The index i is in the range [0, N − 1].
We assume that in a small local window w there is a linear transformation

between the refined transmission t and the hazy image I:

ti = aIi + b, ∀i ∈ w, (4.1)

where a and b are the linear coefficients assumed to be constant in the window
w. In fact, this model is compatible with the haze model. From the haze
imaging equation Ii = Jiti + A(1− ti) we can write ti as:

ti =
1

Ji − A
Ii − A

Ji − A
. (4.2)

If Ji is approximately constant in w, we let a = 1
J−A

and b = − A
J−A

and
obtain (4.1). In [42] it is shown that the constant-J assumption can be
alleviated to a color line assumption. Later we shall further generalize it to
a color plane assumption. This ensures that the local linear model (4.1) is
valid in most situations.

The local linear model (4.1) has a good edge-aware property. In fact, if
we take the gradient of (4.1) we have:

∇ti = a∇Ii ∀i ∈ w. (4.3)

This indicates that t has an edge only if the image I has an edge, and t is
smooth if I is smooth. This is the main purpose of soft matting - imposing
continuities on t according to the edges of I.

We encourage the refined transmission t to obey the local linear model
(4.1). So we minimize a cost function E(t, a,b):

E(t, a,b) =
∑
k∈I

(∑
i∈wk

(ti − akIi − bk)
2 + εa2k

)
. (4.4)
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In this equation, k is another pixel index and I denotes the set of all the
pixels in the image. wk is a window centered at pixel k. We assume that
each local window wk has its own linear coefficients ak and bk. So the set of
all ak (and bk) forms a map, denoted as a column vector a (and b). ε is a
regularization parameter.

If we further constrain that t should approximate the estimated t̃, we add
a data term to the cost function:

E(t, a,b) =
∑
k∈I

(∑
i∈wk

(ti − akIi − bk)
2 + εa2k

)
+
∑
k∈I

(tk − t̃k)
2. (4.5)

Notice that this is a quadratic function w.r.t. each ak and bk. The cost
function is minimized by setting each partial derivative ∂E(t, a,b)/∂ak and
∂E(t, a,b)/∂bk to zero:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂E(t, a,b)
∂ak

=
∑
i∈wk

2Ii(akIi + bk − ti) + 2εak = 0

∂E(t, a,b)
∂bk

=
∑
i∈wk

2(akIi + bk − ti) = 0

(4.6)

The solution is: ⎧⎪⎨
⎪⎩

ak =
covk(I, t)

σ2
k +

1
|wk|ε

bk = t̄k − akμk.

(4.7)

Here, |wk| is the number of pixels in wk, t̄k =
∑

i∈wk
ti and μk =

∑
i∈wk

Ii are
the mean of t and I in the window wk, covk(I, t) is the covariance of I and t
in wk, and σ2

k is the variance of I in the wk. Notice that this is the solution
to a simple linear regression problem [14].

We should point out that the solution (4.7) is written as an implicit matrix
form in Levin et al.’s derivation [42]. But it is the explicit form (4.7) that
inspires our large-kernel-based method [31] and the guided filter [32].

Putting (4.7) into (4.5) we can eliminate all the ak and bk, leaving us a
quadratic function on t:

E(t) = tTLt+ λ‖t− t̃‖22. (4.8)
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After a series of algebraic operations (see [42]), we can obtain the entries of
the matting Laplacian matrix L:

Lij =
∑

k|(i,j)∈wk

(δij − 1

|wk|(1 +
(Ii − μk)(Ij − μk)

σk +
ε

|wk|
)), (4.9)

where δij is the Kronecker delta. For an RGB image I, the formulation is in
(3.20).

Equation (4.8) is exactly the cost function in (3.18). Its solution can be
obtained by solving the linear system for t as in (3.21):

(L + λU)t = λt̃. (4.10)

where U is an identity matrix of the same size as L. The matrix L is an
N ×N matrix. Intuitively, the entry Lij describes the relationship between
any two pixels indexed by i and j. If an image has N = 1000× 1000 pixels,
the matrix L has 106 entries in each row and 106×106 entries in total - which
is a very huge number.

Fortunately, the matrix is sparse: only a small portion of its entries are
non-zero. Notice the summation

∑
k|(i,j)∈wk

in (4.9). Given a fixed pair of

(i, j), the summation is over all the windows wk that contain both pixels at i
and j. The summation is not empty (so Lij can be non-zero) only if i and j
can be covered by at least one window. See Fig. 4.1 for an illustration where
the pixels i and j are the furthest to ensure the summation is not empty. We
can see that if the radiuses of the windows w is r, Lij can be non-zero only
when the pixel j is in a (4r+ 1)× (4r+ 1) neighborhood around the pixel i.

We define kernel size as the number of non-zero entries in each row of
L. The ith row of L has at most (4r + 1) × (4r + 1) non-zero entries, so
the kernel size of L is (4r + 1) × (4r + 1). When the window w is getting
larger, the matrix has more non-zero entries and becomes less sparse. In the
previous methods [42, 36, 84] the radius r is always set to 1. One reason is
that solving a less sparse linear system is slower in conventional theories.

4.1.3 Algorithm

Our observation is that a larger kernel actually reduces the iteration number.
The cost is from the highly expensive in-iteration computation. But if we can
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Figure 4.1: Kernel size. The kernel is a rectangle including all the gray pixels
in this figure.

compute each iteration more efficiently, the total complexity can be reduced
thanks to the faster convergence.

Analysis of Conjugate Gradient

In conventional theories, solving a less sparse matrix is often slower. But
we point out it is not necessarily true. Here we analyze this issue in the
Conjugate Gradient method; other iterative methods are essentially similar.
We discuss a general linear system:

Ax = b, (4.11)

where A is an N×N matrix, and x and b are N×1 vectors. In soft matting,
we have A ≡ L + λU, x ≡ t, and b ≡ λt̃.

The Conjugate Gradient algorithm is given in Algorithm 2, where we use
“:=” to denote a variable assignment. In each iteration of CG, all the steps
except Step 4 are vector addition, subtraction, or inner product, whose time
complexity is O(N) regardless of the matrix A. The computational cost is
dominated by the matrix multiplication in Step 4:

qi =
∑
j

Aijpj. (4.12)
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Algorithm 2 Conjugate Gradient: solving Ax = b for x

Require: Arbitrary initial guess x0

1: Initial r := b− Ax0, p := r
2: repeat
3: γ := rTr
4: q := Ap
5: α := γ/pTq
6: x := x+ αp
7: r := r− αp
8: β := 1

γ
rTr

9: p := r+ βp
10: until convergence

The number of operations for computing qi is proportional to the number
of non-zero elements in the ith row of A, i.e., the kernel size. So the time
complexity of this step is O(r2N): it would be very high when the kernel is
large.

But the running time of the solver also depends on the number of it-
erations. A pixel influences more pixels in each iteration when the ker-
nel is larger. Intuitively, the “information” of a pixel is “propagated” at
a speed of O(r) per iteration. Suppose the image length is N

1
2 . A pixel

influences all the other pixels in O(N
1
2/r) iterations: this is also expected

to be the iteration number for convergence (we shall prove it theoretically).
Since each iteration is O(r2N) complex, the total complexity of the solver

is O(r2N)×O(N
1
2/r)=O(rN

3
2 ). This indicates the faster convergence can-

not counteract the slower matrix multiplication, and solving a larger kernel
matrix is slower.

However, we shall propose an O(N) time algorithm to compute (4.12)
particularly for the matting Laplacian matrix. O(N) time indicates the com-
plexity is independent of the kernel size r. Then the total speed of the solver
becomes O(N)×O(N

1
2/r)=O(N

3
2/r). We can solve the linear system faster

by using a larger r.

An O(1) time algorithm for matting Laplacian multiplication

The focus is on q := Ap (Step 4, Algorithm 2). Notice that the matrix A is
L + λU in our problem. So the computation of q := Ap is in two steps: (i)
q := Lp; and (ii) q := q+ λp. The key is step (i).

Given any N×1 vector p, we show that Lp can be calculated by Algorith-
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m 3. In the algorithm, a∗k and b∗k are intermediate variables in each window
wk.

Algorithm 3 O(N) time algorithm for computing q := Lp

1.

a∗k :=
covk(I, p)

σ2
k +

ε
|w|

(4.13)

2.
b∗k := p̄k − a∗kμk (4.14)

3.

qi := |w|pi −
(
(
∑
k∈wi

a∗k)Ii + (
∑
k∈wi

b∗k)

)
(4.15)

Theorem 4.1.1. The q computed by Algorithm 3 equals to Lp, where L is

the matting Laplacian matrix defined in (4.9).

Proof. Equation (4.13) indicates a∗k is a weighted combination of pi in the

window wk: a
∗
k =

∑
i∈wk

Wa
kipi, where the weights W

a
ki depend on I. Written

in a matrix form, this is a linear transform: a∗ = Wap, where Wa is a

coefficient matrix. If we put (4.13) into (4.14) and eliminate a∗k, we can

obtain another linear transform: b∗ = Wbp. Similarly, q is also p’s linear

transform: q = Wqp. Consequently, to prove q equals to Lp, we only need

to prove ∂qi/∂pj = L(i, j).

The calculation of ∂qi/∂pj from (4.13)-(4.15) is straightforward but tech-

nical. Please see Appendix B.1 for the details.
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We can show the time complexity of Algorithm 3 is O(N). In fact, all the
operations in (4.13) and (4.14) are mean, variance, or covariance of sliding
windows. They can be written as a series of box filters. A box filter can be
very efficiently computed in O(N) time by integral images [22] or cumulative
sums, regardless of the filter radius r (see Appendix B.2 for details). So the
operation q := Lp can be computed in O(N) time instead of O(r2N).

We notice that (4.13) and (4.14) are analogous to (4.7) if we analogize p
to t. This is not surprising. The vector p in the CG algorithm is a modified
residual (called conjugate vector) of the solution x in the current iteration,
and x is t for which we solve in soft matting. Consequently, given the solution
t of the current iteration, if we compute ak and bk as in (4.7), then a∗k and
b∗k actually forms the conjugate vectors of ak and bk.

Convergence Speed

In this section, we theoretically analyze the convergence speed with respect
to the kernel size. In the CG algorithm, the number of iterations needed for
convergence is [77]:

niter ≈ 1

2

√
κ ln(2/ε), (4.16)

where the error ε is a preset convergence criterion, and κ is the condition
number of the matrix A. The condition number is defined as the ratio of the
largest eigenvalue to the smallest eigenvalue:

κ =
ξAmax

ξAmin

, (4.17)

where ξA represents the eigenvalue of the matrix A. Because in our problem
A = L + λU, we have the relation:

ξA = ξL + λ. (4.18)

So we have to find the eigenvalues ξL of the matting Laplacian matrix L.
The matrix L is dependent on the image I (see (4.9)), so it is difficult to

obtain a general form of ξL for arbitrary images. Instead, we only consider
the approximately constant regions of I. Usually many regions satisfies this
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condition. According to (4.9), for constant I the elements of L are given by:

Lij =
∑

k|(i,j)∈wk

(δij − 1

|w|). (4.19)

In this equation Lij does not depend on I’s values. The eigenvalues of this
matrix are approximately given by (see Appendix B.3 for the details):

ξLmax = |w|, (4.20)

and

ξLmin ≈
π2

6

1

N
|w|2. (4.21)

Then the conditioned number κ is:

κ =
ξAmax

ξAmin

≈ ξLmax

ξLmin

= O(
N

|w|) = O(
N

r2
). (4.22)

Here ξAmax

ξAmin
≈ ξLmax

ξLmin
is because λ is set as a small value in soft matting.

Having obtained κ, the number of iterations (4.16) is:

niter = O(
1

r
N

1
2 ). (4.23)

This is consistent with our intuitive explanation.
Because the complexity of each iteration is O(N), so the total complexity

of the linear solver is O(1
r
N

3
2 ). Thus we have proven that using a larger

kernel is actually faster. We can also see that without the fast Algorithm 3
the total complexity is O(rN

3
2 ). This is the complexity of the conventional

CG method.

Color Plane Model

Our linear solver for the matting Laplacian matrix is non-approximate for
the cost function with a fixed kernel radius r. But it is worth mentioning
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that if we change r, we also change the cost function that is to be optimized.
In general, the solution obtained by r1 is not identical to the one obtained
by r2 if r1 �= r2. Next we investigate whether the haze removal quality is
influenced by a large kernel.

The basic motivation of the matting Laplacian matrix is the local linear
model (4.1):

ti = aIi + b, ∀i ∈ w. (4.1)

The quality of the soft matting algorithm depends on the validity of this
model. Previously (see (4.2)), we assume that J is nearly constant in the
window w to obtain this model. Next we show that this assumption can
be alleviated to a color plane assumption for color images. This is a more
general assumption.

In the case of a color image I, the model is extended as:

ti = a · Ii + b, ∀i ∈ w. (4.24)

where a is a 3×1 constant vector, and Ii is a 3×1 vector of the color at
pixel i. In Levin et al.’s work [42], it is show that this local linear model is
valid under the color line assumption: the foreground/background colors in
a local window are in a line in the RGB color space. This assumption has
been empirically verified in [42, 53].

But we show that we can further generalize the color line assumption to
a color plane assumption: the colors of J in a local window are in a plane in
the RGB color space (see Fig. 4.2). Denote the plane normal by a vector n.
The color plane model is:

n · Ji = C, ∀i ∈ w. (4.25)

where C is a constant in the window w. Recall the haze imaging equation
(2.1):

Ii = Jiti +A(1− ti). (4.26)

We project this equation on n and obtain: n · Ii = Cti + n · A(1 − ti), or
equivalently:

ti =
n

C − n ·A · I+ n ·A
C − n ·A , ∀i ∈ w. (4.27)

This leads us to the local linear model (4.24).
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Figure 4.2: Color plane model.

The color plane model is more general than the color line model. Colors in
a color line are certainly in a color plane, but not vice versa. The color plane
assumption is easier to be satisfied, so we can use larger windows without
breaking the assumption. In Fig. 4.2 we show an example. In the RGB space,
we plot the colors in a 64×64 window. We also plot the principle components
of these points. These colors can roughly be modeled by a plane.

If the color plane assumption is satisfied in large windows, the local linear
model (4.24) is valid. In this case the quality of the soft matting step should
be acceptable. Fig. 4.3 shows examples of haze removal results using differ-
ent kernel sizes. We can see the recovered transmission maps t are slightly
different: t contains more details and textures when the kernel is larger4. But
the recovered scene radiance images J are almost visually identical. This is
because the color plane model is valid for appropriately larger windows. In
experiments, we find that r = 8 ∼ 16 (for 600×400 images) introduces very
little visible artifacts in most cases. This indicates that we can achieve about
×10 speed-up (compared with r = 1) without sacrificing quality.

4.1.4 Experiments

We verify the speed of our algorithm by experiments. We test many images
and find similar conclusions, and here we take the image in Fig. 4.3 as an

4These details and textures can be safely smoothed by the bilateral filter [80].
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example. In Fig. 4.4 we show the convergence speed of the CG algorithm
with respect to kernel radius5. We can see that the algorithm converges
much faster when the kernel gets larger. The number of iterations required
to achieve err = 10−10 are shown in Fig. 4.5. As we expect, the number
of iterations is about O(1

r
). As the running time of an iteration is constant

regardless of r, the total running time is also shown in Fig. 4.5. The running
time for this 600×400 image is about 10s for r = 1, 2s for r = 8, and 0.5s for
r = 32.

The experimental results in Fig. 4.4 are difficult to obtain if we use con-
ventional methods: the CG algorithm without our fast Lp algorithm would
take over 300s to solve this linear system when r = 8, and 4000s when r = 32.
This is one reason why previous methods [42, 84, 36] can only use r = 1.

4.1.5 Conclusion and Discussion

We have proposed a fast algorithm to solve the matting Laplacian matrix.
Our algorithm is faster when the kernel is larger and the matrix is less sparse.
which is against conventional theories.

Our algorithm is non-approximate with a given kernel size r. It provides
us a chance to observe the results of larger kernels, which are almost unavail-
able in previous methods. The result of a large kernel (e.g., r > 1) is different
with the one of a small kernel (e.g., r = 1), but is not necessarily degraded.
In our alpha matting paper [31], we have found that an appropriately large
kernel actually improves the quality.

Although our algorithm is particularly designed for the matting Laplacian
matrix, a similar idea is expected to work in some other matrices used in
computer vision/graphics problems. The focus is to reduce the running time
in the matrix multiplication step (Lp) and to achieve speed-up by faster
convergence.

The matrix-vector multiplication (Lp) is 2D image filtering. So our O(N)
time computation of Lp is actually a fast filtering algorithm. Inspired by this
concept, we propose a novel filter called guided filter [32]. It is not only fast
but also has very good quality, as we shall discuss below.

5We set λ = 0.0001|w|2 in the linear system. A factor |w| is to counteract the increased
number of smoothness terms in the cost function (4.4). The other factor |w| ensures the
average intensity of the solution is almost unchanged, just as in many multigrid methods
[7].
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r=1 r=8 r=32

Figure 4.3: Haze removal results vs. kernel size. Top: input image and
recovered scene radiance. Bottom: recovered transmission after soft matting.

4.2 Guided Image Filtering

We go back to the motivation of the soft matting: we expect to combine the
pixel-wise constraints with spatial continuity concerns. Inspecting Fig. 3.7,
we find that the refined transmission t has intensity like t̃, but has consistent
edges with I. It appears that the map t̃ undergoes a filtering process and
becomes t, and the process appears to be “aware” of the edges in the image
I.

The solution to the soft matting (4.10) can be written as:

t = λ(L + λU)−1t̃. (4.28)
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Figure 4.4: Convergence speed vs. kernel size. The errors are shown relative
to the initial errors.
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Figure 4.5: Iteration numbers and running time vs. kernel size. The iteration
numbers correspond to the error 1e−10 in Fig. 4.4.

This is actually a translation-variant filtering process:

ti =
∑
j

Wij t̃j , (4.29)

where the filtering kernel W is the matrix λ(L + λU)−1 that is not explicitly
computed. This equation indicates that the output ti is a weighted average
of t̃j, where the weight Wij is solely determined by the image I. The image I
“guides” the filtering process by adjusting the weights (kernel), ensuring the
edges of t are consistent with I.

In this section, we introduce a novel edge-aware filter, called guided filter,
to replace the soft matting step. The weights of the filter are explicitly
given, so we do not need to solve a linear system. We further propose a fast
O(N) time algorithm which is independent of the kernel size r. This enables
real-time performance of the filter. Edge-aware filtering is an important and
widely studied topic in computer vision/graphics. We show that the guided
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filter has many advantages over existing edge-aware filtering techniques, in
terms of both speed and quality. We also demonstrate various applications
of the guided filter including haze removal.

4.2.1 Related Works: Edge-aware Filtering

Filtering is one of the most important operations in computer vision/graphics.
Simple linear translation-invariant (LTI) filters like Gaussian filter, Laplacian
filter, and Sobel filter are widely used in image blurring/sharpening, edge
detection, feature extraction and etc. [27]. The kernel of these filters are
explicitly defined. LTI filters can also be designed implicitly: e.g., solving a
linear system Ax = b is equivalent to filtering the map b by A−1: x = A−1b,
where the filtering kernel A−1 is not explicitly computed. An example of
implicit LTI filters is the Poisson Equation used in high dynamic range (H-
DR) compression [20], image stitching [56], image matting [75], and image
smoothing [6].

The kernels of LTI filters are spatially invariant and independent of any
image content. But usually we hope the filtering process to “stop” so as to
preserve edges. The bilateral filter, originated from [4, 71], named in [80],
and generalized in [57], is perhaps the most widely used edge-aware filter.
Its output at each pixel is a weighted average of the nearby input pixels,
where the weights depend on the intensity/color similarities. It can smooth
the image while preserving edges. Due to this nice property, it has been
widely used in noise reduction [43], HDR compression [15], multi-scale detail
decomposition [19], image abstraction [86], and etc. It is generalized to the
joint bilateral filter in [57]: the weights are computed from another image
rather than the filtering input. The joint bilateral filter is advantageous
when the filtering input is not reliable to provide edge information, e.g.,
when it is very noisy or is an intermediate map. The joint bilateral filter has
been applied in flash/no-flash imaging [57], image unsampling [38], image
deconvolution [90], and etc.

However, the bilateral filter6 has some limitations. It has been noticed
[15, 5, 17] that this filter may have the gradient reversal artifacts. The reason
is that when a pixel (often on an edge) has very few similar pixels around it,
the weighted average is unstable. Another problem of the bilateral filter is
the speed. The brute-force implementation is in O(Nr2) time, which is very
high when the kernel radius r is large. Paris et al.[55] propose an approximate

6We simply refer to bilateral/joint bilateral cases as the “bilateral filter” unless speci-
fied.

80



4.2. GUIDED IMAGE FILTERING

solution in a discretized space-color grid. This concept inspires O(N) time
algorithms [58, 88] based on histograms. Adams et al. [1] propose a tree-
based algorithm for color images. All of these methods require quantization
(approximation) to achieve satisfactory speed, but at the expense of quality
degradation.

Edge-aware filtering can also be implicit, e.g., through solving a linear
system. The weighted least squares (WLS) filter in [17] adjusts the matrix
affinities according to the image gradients. This method is able to produce
a halo-free decomposition of the input image. But solving a linear system is
relatively slow (compared with explicit filtering), as we discussed in the last
section. The matting Laplcian matrix [42] and the Gaussian-weighted ma-
trix [28] also exhibit edge-aware properties, although previously they were not
developed for this purpose. In [8], a non-linear filtering process is proposed
through L1-norm optimization. This filter is edge-aware, but the optimiza-
tion is also time-consuming.

In sum, a fast and high quality explicit filter is still demanded in many
edge-aware applications.

4.2.2 Algorithm

We propose the concept of “guided image filtering” before introducing our
filter. Guided image filtering is a process that combines the information of
two images, namely, a filtering input image (denoted as p) and a guide image
(denoted as I), and generates one filtering output image (denoted as q). The
filtering input p determines the colors, brightness, and tones of the filtering
output q, whereas the guide image I determines the edges of q.

Guided image filtering involves the concept of edge-aware filtering. For
example, in the case of flash/no-flash denoising (previously through the joint
bilateral filter [57]), the output (q) is expected to have the tones of the
no-flash noisy image (p), and be as sharp and clean as the flash image (I)
(Fig. 4.6, 3rd row). In the case of single image texture smoothing (Fig. 4.6,
2nd row) or denoising, we can treat it as a special case of guided image
filtering where the filtering input (p) and the guide (I) are identical, because
the colors and the edge information are from the same image (but combined
unequally). The guided image filtering also involves many other problems
that are not viewed as edge-aware filtering before, like haze removal, image
matting, and stereo vision [60]. For example, in our transmission refinement
(previously through soft matting), the refined transmission map t has values
close to the estimated t̃, and has edges consistent with the hazy image I. In
this case the filtering input p is t̃, and the filtering output q is t (Fig. 4.6, 1st
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filtering input
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Figure 4.6: Guide image filtering.

82



4.2. GUIDED IMAGE FILTERING

row).
The concept of guided image filtering allows us to treat edge-aware filter-

ing and other problems in a broader framework. In the following, we propose
a novel filter called guided filter which was originally designed in our haze
removal study but is later applied in many problems.

We are interested in a general linear translation-variant filtering process,
which involves a guide image I, an input image p, and an output image
q. Both I and p are given according to the application, and they can be
identical. The filtering output at a pixel i is expressed as a weighted average:

qi =
∑
j

Wij(I)pj, (4.30)

where i and j are pixel indexes. The filter kernel Wij is a function of the
guide image I, which is independent of p. This filter is linear with respect to
p for a fixed I.

In the case of the bilateral filter [80] and the joint bilateral filter [57], the
kernel W bf is given by:

W bf
ij (I) =

1

Ki
exp(−|xi − xj |2

σ2
s

) exp(−|Ii − Ij |2
σ2
r

). (4.31)

where x is the pixel coordinate, and Ki is a normalizing parameter to ensure
that

∑
j W

bf
ij = 1. The parameters σs and σr adjust the spatial similarity

and the range (intensity/color) similarity respectively. The images I and p
are identical in the bilateral case [80], and are different in the joint bilateral
case [57].

Definition: Guided Filter

Now we are ready to define the guided filter and its kernel. The key assump-
tion of the guided filter is a local linear model between the guide I and the
filtering output q. We assume that q is a linear transform of I in a window
wk centered at the pixel k:

qi = akIi + bk, ∀i ∈ wk, (4.32)
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where (ak, bk) are linear coefficients assumed to be constant in wk. We use
a square window of a radius r. This model is analogous to (4.1). We have
seen this model can be generated for the haze imaging equation, but here we
consider it as a generic case.

This local linear model ensures that q has an edge only if I has an edge,
because ∇q = a∇I. But we also hope the output q has similar colors or tones
with the input p, so we seek a solution to (4.32) that minimizes the difference
between q and p. Formally, we minimize the following cost function in the
window wk:

E(ak, bk) =
∑
i∈wk

(
(pi − qi)

2 + εa2k
)

(4.33)

=
∑
i∈wk

(
(pi − akIi − bk)

2 + εa2k
)
. (4.34)

Here ε is for regularization, but we shall show that it is an important param-
eter controlling the smooth degree.

Though this cost function is similar with the one in (4.4), they are dif-
ferent in two aspects: (i) Eqn. (4.34) only concerns one window wk, while
Eqn. (4.4) concerns all windows simultaneously; and (ii) in (4.34) inside the
quadratic term is the filtering input image p , while in Eqn. (4.4) inside
this term is the output image (the transmission t to be solved). These two
differences leads to two benefits: (i) the optimization here is locally based in-
stead of globally, enabling a very fast algorithm; and (ii) the output (q) is not
contained in the optimization process (note ak and bk are the optimization
targets), avoiding a huge linear system.

The solution to (4.34) can be given by linear regression [14]:

ak =
covk(I, p)

σ2
k + ε

(4.35)

bk = p̄k − akμk. (4.36)

Here, μk and σ2
k are the mean and variance of I in wk, p̄k is the mean of p in

wk, and covk(I, p) is the covariance of I and p inside the window k. These
two equations appear similar with (4.13) and (4.14).

Next we apply the linear model to all local windows in the entire image.
Ideally, the filtering output is given by qi = akIi + bk (4.32) when (ak, bk)
has been computed. But a pixel i is covered by many local windows wk, so
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the value of qi given by (4.32) may change when it is computed in different
windows. A simple strategy is to average all the possible values of qi. So
after computing (ak, bk) for all the windows wk in the image, we compute the
filter output by:

qi =
1

|w|
∑

k:i∈wk

(akIi + bk) (4.37)

= āiIi + b̄i (4.38)

where āi =
1
|w|
∑

k∈wi
ak and b̄i =

1
|w|
∑

k∈wi
bk. This equation is analogous to

(4.15) (but without subtraction).
With this modification, the relation ∇q = a∇I no longer holds, because

the linear coefficients (āi, b̄i) vary spatially. But since (āi, b̄i) are the output
of an average filter, their gradients should be much smaller than that of I
near strong edges. In this sense we can still have ∇q ≈ ā∇I, meaning that
strong edges in I can still be maintained in q.

Algorithm 4 O(N) time algorithm for guided filter

1.

ak :=
covk(I, p)

σ2
k + ε

(4.35)

2.
bk := p̄k − akμk (4.36)

3.

qi :=
1

|w|

(
(
∑
k∈wi

ak)Ii + (
∑
k∈wi

bk)

)
(4.37)

The whole algorithm of the guided filter is in Algorithm 4. We point out
that the relationship among I, p, and q given by (4.35) to (4.37) are indeed
in the form of “a filter” (4.30). In fact, ak in (4.35) can be rewritten as a
weighted sum of p: ak =

∑
j W

a
kj(I)pj. For the same reason, we also have

bk =
∑

j W
b
kj(I)pj from (4.36) and qi =

∑
j W

q
ij(I)pj from (4.37). It can be

proven (similar to the proof in Appendix B.1) that the kernel weights can be
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explicitly expressed by:

Wij(I) =
1

|w|2
∑

k:(i,j)∈wk

(1 +
(Ii − μk)(Ij − μk)

σ2
k + ε

). (4.39)

Some further computations show that
∑

j Wij(I) = 1. No extra effort is
needed to normalize the weights.

As the guided filter is an explicit filter, we may first compute the kernel by
(4.39) and then compute the output by the filtering process (4.30), without
solving any linear system. This leads to an O(Nr2) algorithm where r is
the window radius. However, the guided filter can be directly computed
from the Algorithm 4. All the operations here can be computed in O(N)
time regardless of the kernel size, just as in Algorithm 3. This fast filtering
algorithm is non-approximate.

We can generalize the guided filter to color/multichannel images. The
generalization to a multichannel input image p is straightforward: we can
simply treat each channel separately. So we focus on the case when the guide
I is a multichannel image. The local linear model (4.32) becomes:

qi = ak · Ii + bk, ∀i ∈ wk, (4.40)

where ak is a 3×1 vector. The computation of the resulting guided filter
is shown in Algorithm 5. Here Σk is a 3×3 covariance matrix of I in the
window k, and covk(I, p) is a 3×1 covariance vector. This algorithm is still
O(N) time. The state-of-the-art method for multichannel bilateral filtering
is O(N logN) time [1]. So the guided filter is expected to be faster than the
bilateral filter in multichannel cases. We shall show this in the experiment.

Using a multichannel image as a guide I is necessary in some applications,
including haze removal and alpha matting. For example, the hazy image I is
a color image and the estimated transmission t̃ is a gray-scale image, so we
have to filter a single-channel image under the guidance of a three-channel
image. We cannot treat each channel separately.
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Algorithm 5 O(N) time algorithm for guided filter (color image I)

1.
ak := (Σk + εU)−1covk(I, p) (4.35)

2.
bk := p̄k − ak · μk (4.36)

3.

qi :=
1

|w|

(
(
∑
k∈wi

ak) · Ii + (
∑
k∈wi

bk)

)
(4.37)

4.2.3 Properties

Edge-aware Filtering

The guided filter is originated from a local linear model. We explain why it
is edge-aware.

Fig. 4.7 (top) shows an example of the guided filter with various sets of
parameters. We can see its edge-aware filtering behavior. The reasons are
as following. Consider the case that I = p. It is clear that if ε = 0, then the
solution to (4.34) is ak = 1 and bk = 0. If ε > 0, we can consider two cases:

Case 1: “Flat patch”. If the image I is almost constant in wk, then (4.34)
is solved by ak = 0 and bk = p̄k;

Case 2: “Edge / high variance”. If the image I changes greatly within
wk and we have:

covk(I, p) = vark(I, I) = σ2
k � ε, (4.41)

then ak is about 1 and bk is about 0.
When (ak, bk) are averaged to get (āi, b̄i) and then combined in (4.37) to

get the output, we see that if a pixel is in the middle of a “flat patch” area,
its value becomes the average of the pixels nearby (a ≈ 0, b ≈ p̄, q ≈ p̄); if it
is in the middle of an “edge/high variance” area, then its value is unchanged
(a ≈ 1, b ≈ 0, q ≈ I = p).

More specifically, the criterion of a “flat patch” or an “edge / high vari-
ance” one is given by the parameter ε. The patches with variance (σ2) much
smaller than ε are smoothed, whereas those with variance much larger than
ε are preserved. The effect of ε in the guided filter is similar with the range
variance σ2

r in the bilateral filter (4.31). Both parameters determine “what is
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Figure 4.7: Filtered images of a gray-scale input. In this example the guid-
ance I is identical to the input p. The input image has intensity in [0, 1].
The input image is from [80].

an edge or what is a high variance patch that should be preserved”. Fig. 4.7
(bottom) shows the bilateral filter results as a comparison. We see that the
edge-aware filtering results are visually similar with corresponding parame-
ters.

The edge-aware smoothing property can also be understood by investi-
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gating the filter kernel (4.39):

Wij(I) =
1

|w|2
∑

k:(i,j)∈wk

(1 +
(Ii − μk)(Ij − μk)

σ2
k + ε

). (4.39)

We find the weight is large when the pixels are on the same side of an edge,
and is small otherwise. The property is similar with the bilateral filter (4.31).
Take an ideal step edge of a 1-D signal as an example (Fig. 4.8). The terms
Ii − μk and Ij − μk have the same sign (+/-) when Ii and Ij are on the
same side of an edge, and have opposite signs when the two pixels are on
different sides. Suppose σ2

k � ε (“edge / high variance”). In (4.39) the term

1 +
(Ii−μk)(Ij−μk)

σ2
k+ε

is about zero when the two pixels (i and j) are on different

sides; this term increases to about 2 when the two pixels are on the same
sides7. This means that the pixels across an edge are almost not averaged
together.

We can also understand the smoothness controlling of the parameter ε
from the kernel (4.39). When σ2

k � ε (“flat patch”), the kernel becomes
Wij(I) =

1
|w|2
∑

k:(i,j)∈wk
1: this is a low-pass filter that biases neither side of

an edge. So the edge-aware filtering ability is weakened when ε increases.
Fig. 4.9 shows two examples of the kernel shapes in real images. In the

top row are the kernels near a step edge. Like the bilateral kernel, the guided
filter’s kernel assigns negligible weights to the pixels on the opposite side of
the edge. In the bottom row are the kernels in a patch with small scale
textures. Both filters average almost all the nearby pixels together, and
behave like low-pass filters.

Gradient-preserving Property

Though the guided filter is an edge-aware filter like the bilateral filter, it
avoids the “gradient reversal” artifacts [15, 5, 17]. These artifacts of the
bilateral filter may appear when the filtering process is for detail enhance-
ment/extraction.

Fig. 4.10 shows a 1-D illustration for detail enhancement. Given the input
signal (black), its edge-aware smoothed version is used as a base layer (red).
The difference between the input signal and the base layer is treated as the
detail layer (blue). It is magnified to boost the details. The enhanced signal

7This is because (Ii − μk)(Ij − μk) ≈ −σ2
k when the two pixels are on different sides,

and ≈ σ2
k when the two pixels are on the same side. See Fig. 4.8
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μ
σ

σ

Ii

Ij

Ij

Figure 4.8: 1-D example of an ideal step edge. For a window that exactly
center on the edge, the variables μ and σ are as indicated.

Guidance I Guided Filter’s Kernel Bilateral Filter’s Kernel 

Figure 4.9: Filter kernels. Top: a step edge (guided filter: r = 7, ε = 0.12,
bilateral filter: σs = 7, σr = 0.1). Bottom: a textured patch (guided filter:
r = 8, ε = 0.22, bilateral filter: σs = 8, σr = 0.2). The kernels are centered at
the pixels denote by the red dots.
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gradients

Figure 4.10: 1-D illustration for detail enhancement.

(green) is the combination of the boosted detail layer and the base layer. An
comprehensive description can be found in [15].

For the bilateral filter (Fig. 4.10 left), the base layer is not consistent
with input signal at the edge pixels (see the zoom-in). This is because when
a pixel has very few similar pixels nearby, and the Gaussian weights (4.31)
are all very small and thus unstable. As a result, the detail layer has great
fluctuations, and the recombined signal has reversed gradients as shown in
Fig. 4.10.

On the other hand, the guided filter (Fig. 4.10 right) better preserves the
gradient. The gradient of the base layer is ∇q ≈ ā∇I near the edge, and
the gradient of the detail layer is about (1 − ā)∇I. Only the magnitude of
the edge is scaled; the profile of the edge is almost unchanged. In the case
of detail enhancement (I = p), the guided filter never reverses the gradient,
because a and 1− a are always non-negative (see (4.35)) when I = p.

Relation to the Matting Laplacian Matrix

Both the guided filter and the matting Laplacian matrix are motivated by
a local linear model, although their optimization processes are very differen-
t. Next we show the mathematical relation between them. This discovery
inspires new applications of the guided filter.

Comparing the guided filter’s kernel (4.39) with the matting Laplacian
matrix (4.9), we find following relation between them:

Lij = |w|(δij −Wij), (4.42)
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Ignoring the scaling |w|, we find that the matting Laplacian matrix L is
actually a “high-pass” version of the “low-pass” guided filter. Indeed, for
any image p we have:

Lp ∝ (p−Wp), (4.43)

in which the right hand side is the detail layer of p.
Elad [16] has noticed a similar relation between the bilateral filter and a

Gaussian-weighted Laplacian matrix [85, 41, 28], and shown that filter is a
one-iteration approximate solution to the linear system. Following this way,
we find this conclusion is also valid for the guided filter and the matting
Laplacian matrix.

The matrix form of (4.42) is:

L = |w|(U−W), (4.44)

where U is a unit matrix of the same size as L. In our soft matting, the
transmission t is obtained by solving the linear system in (4.10):

(L + λU)t = λt̃. (4.10)

We rewrite this equation as

(L + Λ)t = Λt̃, (4.45)

where Λ is a diagonal matrix. This equation suggests we can assign a variant
λi to each pixel.

Now we approximate the solution by one iteration of the Jacobi linear
solver [63]. We decompose W into a diagonal part Wd and an off-diagonal
part Wo: W = Wd +Wo. According to (4.44) and (4.45), we have:

(|w|U− |w|Wd − |w|Wo + Λ)t = Λt̃ (4.46)

Notice that only Wo is off-diagonal in this equation. Using t̃ as the initial
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guess of t, we compute one Jacobi iteration (see [63]):

t ≈ (|w|U− |w|Wd + Λ)−1(|w|Wo + Λ)t̃ (4.47)

= (U−Wd +
Λ

|w|)
−1(W −Wd +

Λ

|w|)t̃ (4.48)

= (U− V)−1(W −V)t̃ (4.49)

where V = Wd− Λ
|w| is a diagonal matrix. In (4.49), all the matrices except W

are diagonal. Since a diagonal matrix is actually a point-wise operation, the
only matrix multiplication we need to compute is Wt̃. The multiplication
Wt̃ is indeed a guided filter operation:

(Wt̃)i =
∑
j

Wij t̃j (4.50)

To further simplify (4.49), we can let the matrix V = Wd − Λ
|w| = 0, or

equivalently:

Λii = |w|Wii =
1

|w|
∑
k∈wi

(1 +
(Ii − μk)

2

σ2
k + ε

). (4.51)

The expectation value of Λii in (4.51) is about 2. This implies that the data
term is loosely constrained. Using this equation, (4.49) is simplified as:

t ≈ Wt̃. (4.52)

Only the guided filter is remained.
Eqn.(4.52) means the guided filter is a one-iteration approximate solution

to the linear system. To obtain an accurate result, we expect the initial
guess t̃ to be reasonably good. We find that this condition is satisfied in our
haze removal problem and a modified alpha matting problem, which we shall
discuss in the experiment section.
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(c) (d)(b) (c)(a)

zoom-in of (b)

zoom-in of (c)

Figure 4.11: Comparison between O(N) guided filter and O(N) bilateral
filter. (a) Input HDR image (32-bit floating number, displayed by linear
scaling). (b) HDR-Compressed image using the O(N) bilateral filter in [58]
(64 bins). (c) HDR-Compressed image using the guided filter. Please view
this figure in the electronic version.

4.2.4 Experiments and Applications

In the following, we first study the running time of the guided filter by
experiments. Then we show various applications of this filter, including the
haze removal problem.

Running Time

We experiment the running time in a laptop with a 2.0Hz Intel Core 2 Duo
CPU. The time complexity of the filter is O(N) in the number of the pixels
N , so we only report the running time per megapixel (Mp) image. For the
gray-scale guided filter (Algorithm 4), the running time is 80 milliseconds
(ms) per megapixel. As a comparison, Porikli’s [58] O(N) time approximate
bilateral filter takes 40ms/Mp (using 32-bin histograms), and 80ms/Mp (64-
bin). A 64-bin histogram means that the images are only quantized into
64 different values. On the contrary, the guided filter is non-approximate
and is suitable for continuous values (float/double). In Fig. 4.11, we show
an example of HDR compression (we shall explain the application later).
Porikli’s O(N) bilateral filter exhibits apparent quantization artifacts, while
the guided filter does not. Yang et al.[88] improve Porikli’s algorithm and
reduce the quantization artifacts without greatly increasing the number of
bins, but at the price of more running time. This algorithm takes 1.2s/Mp
(8-bin, code from the website of [88]).

For multichannel cases (Algorithm 5), the guided filter takes 0.3s to pro-
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cess per megapixel RGB image. For comparison, the state-of-the-art method
for multichannel bilateral filter [1] takes about 100s to process a 10Mp image
as reported, i.e., 10s/Mp on average.

The algorithms for the guided filter are mostly point-wise operations, so
it can be readily adapted in GPU implementation. Though we have not yet
made this attempt, a recent paper [60] reports that their GPU implementa-
tion for our guided filter achieves 5ms/Mp (multichannel cases).

Both the CPU and GPU implementations of the guided filter are very
fast, enabling real-time performance in many cases. Next we see the quality
and the application of this filter in various problems.

Haze Removal

We use the guided filter to replace the soft matting step in haze removal.
To obtain a good result through filtering, we need the initial estimation t̃ to
be accurate enough. Recall that t̃ is computed by (3.14) based on the dark
channel prior:

t̃(x) = 1− min
x′∈Ω(x)

min
c

Ic(x
′)

Ac
. (3.14)

We notice that the minimum filter (minx′∈Ω(x)) dilates the nearer objects
(see Fig.4.12 (b)). This effect is known as morphological filtering in image
processing [27]. To counteract this effect, we may erose the map by an extra
maximum filter. Formally, we compute t̃ by:

ϕ(x) = min
x′∈Ω(x)

min
c

Ic(x
′)

Ac

t̃(x) = 1− max
x′∈Ω(x)

ϕ(x′). (4.53)

An example is in Fig.4.12 (c). The estimated transmission has a more con-
sistent profile with the input image.

Now we are ready to applied the guided filter. Written in a matrix form,
the refined transmission t is simple given by (4.52):

t ≈ Wt̃. (4.52)

The computation is given in Algorithm 5, because the hazy image I is mul-
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(d)(a) (c)(b)

Figure 4.12: Dilation and erosion. (a) Input hazy image. The red curve
approximately outlines the profile of the trees. (b) Estimated transmission
by (3.14). The trees appear “dilated”. (c) Estimated transmission after
erosion (4.53). The profile is more consistent. (d) Guided-filtered result of
(c).

guided filter (r=8)soft matting (r=8)soft matting (r=1)

Figure 4.13: Comparisons of soft matting (small/large kernel) and guided
filter in haze removal.
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tichannel. In all the following haze removal experiments, the radius r of
the window w in the guided filter is set as min(wid, hei)/50, where wid and
hei are the width and height of the image. For example, we set r = 8 for
600×400 images. The parameter ε is 0.0001.

Fig.4.12 (d) shows the resulting transmission t obtained by the guided
filter. In Fig.4.13 we compare the soft matting (small/large kernel) and the
guided filter. As we can see, the recovered scene radiance images (Fig.4.13
top) are almost visually identical. On the refined transmission maps, the soft
matting (large kernel) and the guided filter generate visually similar results.
This is as we expect, because the guided filter is an approximate solution to
the linear system. More examples of haze removal using the guided filter are
in Fig.4.14.

For this 600×400 image, the soft matting takes 10s using a small ker-
nel (r = 1), and 2s using a large kernel (r = 8). The guided filter takes
only 0.080s, which is much faster with no obvious quality degradation. In
general, our algorithm takes about 0.350s/Mp in haze removal, with 0.3s
for the guided filter, and 0.05s for the min/max filters and other point-wise
operations.

The efficiency of our algorithm greatly facilitates haze removal in videos.
We process each frame individually (except that we smooth the atmospheric
light in the temporal domain to avoid sudden color changes). Fig. 4.15 shows
some frames in two video sequences. The entire videos are available in my
website 8.

Detail Enhancement and HDR Compression

We have discussed the usage of an edge-aware filter for detail enhancement.
Fig. 4.16 shows an example for real images. We compare between the guided
filter and the bilateral filter. Though both filters can enhance the details,
the bilateral filter exhibit the gradient reversal artifacts (see the zoom-in
patches).

The method for high dynamic range (HDR) compression [15] is similar
to detail enhancement. But we need to scale both the base layer and the
detail layer and then recombine them. Fig. 4.17 shows an example for HDR
Compression. Again, we see gradient reversal artifacts in the result of the
bilateral filter.

8http://personal.ie.cuhk.edu.hk/~hkm007/cvpr09/video.rar
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Figure 4.14: More examples of haze removal using the guided filter.

Figure 4.15: Video examples of haze removal using the guided filter.
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Bilateral FilterGuided FilterOriginal 

Figure 4.16: Detail enhancement. The parameters are r = 16, ε = 0.12 for
the guided filter, and σs = 16, σr = 0.1 for the bilateral filter. The detail
layer is boosted ×5.

Original HDR Guided Filter Bilateral Filter

Figure 4.17: HDR compression. The parameters are r = 15, ε = 0.122 for
the guided filter, and σs = 15, σr = 0.12 for the bilateral filter.

Flash/no-flash denoising

In [57] it is proposed to denoise a no-flash image (p) under the guidance of
its flash version (I). Fig. 4.18 shows a comparison between using the joint
bilateral filter [57] and our guided filter. Both filters can suppress the noise,
but the gradient reversal artifacts are noticeable in the joint bilateral case.

Alpha Matting/Guided Feathering

We apply the guided filter in a modified alpha matting problem, which
we name guided feathering : given a binary mask of the foreground object,
we refine the hairy/blurry boundaries and make it appear an alpha mat-
te (Fig. 4.19). The binary mask, obtained by any segmentation method
(e.g.[62]), is used as the filtering input p. The guide I is the image of the
object.

A similar function called “Refine Edge” can be found in the commercial
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Guidance I Guided Filter

Filter Input p Joint Bilateral Filter

Figure 4.18: Flash/no-flash denoising. The parameters are r = 8, ε = 0.22

for the guided filter, and σs = 8, σr = 0.2 for the joint bilateral filter.

software Adobe Photoshop CS4. We can also compute an accurate matte
by solving the matting Laplacian matrix as in the “closed-form matting”
method [42]. In Fig. 4.19 we compare our result with the Photoshop Refine
Edge function and the closed-form method. Our result is visually comparable
with the closed-form method and better than the Photoshop’s. Both our
method and Photoshop provide fast feedback (<1s) for this 6-mega-pixel
image, while the closed-form solution takes about two minutes to solve the
linear system.

Joint Upsampling

The application called joint upsampling [38] is to upsample an image under
the guidance of another image. Taking the application of colorization [41] as
an example. A gray-scale image is colorized through an optimization process.
To reduce the running time, the chrominance channels are computed at a
coarse resolution and upsampled under the guidance of the full resolution
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Guidance I Binary Mask p Guided Filter Output q

Closed-formGuided Filter Photoshop Closed-formGuided Filter Photoshop

Figure 4.19: Alpha Matting/Guided Feathering. A binary mask p is filtered
under the guidance of I. In the zoom-in patches, we compare with the Pho-
toshop Refine Edge function and the closed-form matting. For closed-form
matting, we erode and dilate the mask to obtain a trimap. The parameters
for the guided filter are r = 60, ε = 10−6 .

gray-scale image. This upsampling process is through the joint bilateral filter
in [38], but we also test the guided filter. The results are visually comparable
(Fig. 4.20), but our guided filter is faster than the non-approximate joint
bilateral filter.

4.2.5 Conclusion

In this section we propose a novel guided filter. Originated from a local linear
model, this filter can be used to replace the soft matting step and lead to
real-time performance. We also show the edge-aware and gradient-preserving
properties of this filter. The guided filter is a faster and better technique than
the traditional bilateral filter in various applications.

Edge-aware techniques have more applications in computer vision/graphics
than what we have introduced in this section. In many applications, we as-
sign each pixel an estimated value, which can be a cost, confidence, a vote,
or any other data. Then we need to account for spatial continuity, which
is achieved by edge-aware techniques. A great many works achieve spatial
continuity based on Markov Random Fields. But more and more works (like
[15, 16]) attempt to use a simple filter instead. After our publication [32],
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Colorized image (upsampled using GF)

NN JBF GFNN GFJBF

Gray scale image with color strokes

Figure 4.20: Joint Upsampling. The upsampling methods includes: nearest-
neighbor (NN), joint bilateral filter (JBF) [38], and guided filter (GF).

the guided filter has further been applied in stereo vision [60] and importance
filtering [13]. We believe this filter is a potential technique in the future.
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Chapter 5

Dark Channel Prior and

Human Vision

Studies on computer vision and those on the human visual system (HVS) in
psychology/physiology are mutually beneficial. The discoveries about the
HVS and the human brain may inspire effective algorithms in computer
vision; successful computer vision techniques suggest similar rules may be
adopted in the HVS. In this chapter, we discuss the relation between the
dark channel prior and the HVS. We find that the HVS possibly adopts a
mechanism similar to the dark channel prior when perceiving haze. This
discovery casts new insights into the area of human vision research. It also
supports the validity of the dark channel prior as a computer vision algorith-
m, because a good way for artificial intelligence is to mimic human brains.

5.1 Introduction

Most visual problems, no matter for computers or for the HVS, are inherently
ambiguous. For example, the 2D projection of the 3D world can be math-
ematically explained by an infinite number of 3D possibilities. A shadowed
white card can reflect the same amount of light to a shadowless gray card.
A hazy scene can be mathematically explained as being inherently faint and
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of low contrast but not covered by haze. The human beings are able to han-
dle these ambiguities with no difficulty in most cases. Since many problems
still remain challenging in computer vision, researchers always raise such a
question: how can the human brains solve the problems so successfully?

The human visual system (HVS) could solve the ambiguities only through
certain knowledge or assumptions known beforehand, i.e., priors. This fact
has long been realized by scientists as early as the 19th century [25]. But
it remain arguable how the HVS obtains the priors. Some researchers (e.g.,
Hering [35], see also [82]) suggest the priors are built in the genes and “present
at birth”. This was proved experimentally in the case of stereo disparity
[59]; but in most other cases it is still unclear. Some other researchers (e.g.,
Helmholtz [34], see also [82]) attribute the acquisition of priors to learning.
The built-in-genes priors are shared by common people, while the learned
priors can be more or less different among individuals.

It is also unclear where the visual mechanisms take effect in the HVS.
The light reaching the retina in the eyes is converted into neuronal signals.
The conversion is determined by the pattern of the photoreceptor cells, their
sensitivity (e.g., the R, G, and B receptors), and any other properties of
the system. The signals are passed into the brain (e.g., the visual cortex
[37]) and undergo further processing. The visual mechanisms (that introduce
priors) can be built in the signal delivery system or in the human brain as a
physiological or intellectual process. The former mechanism (signal delivery)
is unconscious because it is a mechanical process (just like a circuit board),
while the latter mechanism (in the brain) can be unconscious or conscious.

Despite much debate on the mechanisms of the HVS, many studies (e.g.,
[67, 24, 89, 44, 47]) share the hypothesis that the underlying priors are about
the statistical properties of the natural world. The neurons, the physiolog-
ical structures, or the intellectual behavior of the HVS are adapted to the
natural world in the evolutionary processes (built-in-genes) or developmen-
tal processes (learned). In the terminology of computer vision, the HVS is
“trained” by a huge data set which is “sampled” from the natural world in
a long period. According to such statistics, the HVS is able to preclude the
improbable solutions to the visual problems and solve the ambiguity. This
scenario is somewhat similar to how we develop the haze removal algorithm.
We collect a data set of outdoor haze-free images, and the dark channel prior
is a statistical property of this set. Using this prior, we compute a most
probable transmission value for each pixel and thus solve the ambiguity. In
this sense, it is reasonable for us to ask: is it possible that the HVS uses a
similar prior when perceiving haze?

But it is nontrivial to investigate the underlying mechanisms of the HVS.
The system behaves like a black box: only the input image and the per-
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Figure 5.1: Checkershadow Illusion presented by [2]. The squares marked A
and B have exactly the same intensity in the image (r=g=b=120), but they
appear very different.

ception are available. The attempt to “disassemble” the black box through
physiological experiments is one way to investigate it [37]. Another impor-
tant and practical way is through illusions, which is often used in psychology
[25].

An illusion is the distortion of the perceived image. The HVS is supposed
[25] to use some mechanisms to process the visual signal, so the perceived
signal (after processing) can be different with the physical input signal that
just reaches the eyes. An illusions is presented when the perceived signal
is severely distorted. In general the perceived illusion is systematic rather
than random, and is shared by common people [73]. So illusions reflect the
mechanisms of the HVS: they provide us opportunities to understand what
is going on in the black box.

In this chapter we shall demonstrate several illusions, which are carefully
designed based on the dark channel prior. We find that the dark channel of
the image impacts the HVS’s perception of haze. We also find that the HVS
may partially rely on the dark channel to reduce (but not remove) the haze.
The illusion experiments suggest that the HVS may adopt a mechanism like
the dark channel prior. We hope that our experiments cast new insights into
the area of HVS research.

5.2 Related Works

We briefly review some related works on human vision research.
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As early as in the 19th century, people have found that lightness, con-
trast, colors, object shapes, depth, and many other attributes are not always
perceived just as their physical properties [34, 35]. A great many illusion
experiments are proposed by scientists and artists (e.g., [2, 3, 72, 73, 25]).
Fig 5.1 is one of the most famous lightness illusions: the squares marked A
and B have exactly the same intensity in the image (r=g=b=120), but they
appear very different. This and many other experiments unequivocally show
that the physical signal must be processed by the HVS before perceived. Var-
ious theories and models are proposed to explain when the illusions appear
and how the HVS processes the signal (e.g., [25]).

The works partially related to haze are the ones about transparency
(transmission) perception. A series of studies [46, 68, 61, 3, 69] find that
the HVS has the ability to perceive the transparency of the covering media,
like veils, glass filters, and haze. In [46] the author assumes the HVS is fol-
lowing the physical imaging model of the semi-transparent media (like the
haze imaging equation) and deduces the perceived transparency accordingly.
But in [68, 61] it is shown by experiments that the perceived transparency
has significant and systematic differences with the physical value. In [69] new
experiments show that the perceived transparency are asymmetric between
brightening and darkening cases. In [3] some striking illusions show that the
intensity of the objects covered by haze can appear very different with differ-
ent context, even though it is actually unchanged. This experiment suggests
the lightness perception is with an image segmentation procedure.

These works also attempt to explain the experimental results by modeling
the HVS’s mechanisms. In [68] it is supposed that the perceived transparency
is determined by the relative contrast (Michelson contrast) of the luminance.
But in [61] the authors find neither the Michelson contrast nor other simple
contrast metrics can explain the experiments. In [69] the model is modified:
Michelson contrast is only applied in darkening transparency, but not in
brightening cases. Our following experiments show that the dark channel
can be another possible determinant of transparency perception.

Many studies suppose that the human vision mechanisms (and the priors
used) are adapted to the statistics of the natural world. In [89] it is found
that the perceived depth can be explained by the statistics of distances in the
natural world. In [47] the authors find that the perception of surface quality
is determined by image statistical properties. In [44] it is shown that color
contrast, constancy, and assimilation can be predicted by the natural spec-
tral statistics. In [69], the authors assume that the perceived transparency
in darkening cases are due to the adaptation to shadows (mathematically
equivalent to black veils), and in brightening cases are due to the adaptation
to spotlights. Our following experiments suggest the brightening cases can
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(c)(b)(a)

target

Figure 5.2: Image preparation. (a) A real image in a clear day. (b) The
target region is manually segmented. (c) The target region is filled with a
uniform color ((r, g, b) = (152, 140, 130)).

also be due to the adaptation to haze.

5.3 Illusion Experiments

Preparation

The image used in our experiments is prepared as following. In Fig. 5.2
(a) is a real image in a clear day. We manually segment the roof of the
front building, as shown in Fig. 5.2 (b). We shall call this region the “target
region”. Then we fill this region with a uniform color ((r, g, b) = (152, 140,
130), we use 256-level in this chapter), as shown in Fig. 5.2 (c). We shall
call Fig. 5.2 (c) the “source image” in the experiments. This operation is
to completely remove the textures/noise in the target region, precluding the
possibility that the following illusions can be due to these factors.

We also observe the following illusions in other images. But since illusions
are systematic rather than random, we believe this example is representative
and convincing.

107



5.3. ILLUSION EXPERIMENTS

(a) (b)

(c) (d)

Figure 5.3: Illusion Experiment I-III.
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(d)

(a) (b)

(c)

Figure 5.4: Dark channels of Fig. 5.3, computed using a window radius 50
(image size 800×1200).
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Experiment I

Experiment I is shown in Fig. 5.3 (a) and (b). Fig. 5.3 (a) is the source
image. Fig. 5.3 (b) is obtained from the source image through the following
way: each color channel of each pixel is increased to 128 if they are smaller
than 128. Denote the source image by I and the manipulated image by Ǐ.
This operation means for any pixel x we have:

Ǐc(x) = max(Ic(x), 128), (5.1)

where c ∈ {r, g, b} is the channel index.
Notice that the color of the target region is (152, 140, 130), so it is un-

changed by this operation. Thus, the target regions in the two images in
Fig. 5.3 (a) and (b) are actually identical. However, they appear very differ-
ent: the target region in (b) looks much darker. This experiment indicates
that the perceived color of a region depends on its context (surroundings).
This fact has been verified in many other illusions (e.g., [3, 25]). But it re-
mains arguable that what properties of the context influence the perception.

In fact, the intensity of the dark channel is increased to at least 128:

Ǐdark(x) = min
x′∈Ω

min
c

Ǐc(x
′) ≥ 128, (5.2)

because all Ǐc are not smaller than 128. So the operation in (5.1) changes the
dark channel of the images (see Fig. 5.4 (a) and (b)). We may reasonably
assume it is the dark channel that influences the perceived color. But in this
experiment, other factors like contrast and colors are also changed by the
operation. So we need other experiments to test whether the dark channel
is the most possible factor.

Experiment II

In Experiment II, we study the image in Fig. 5.3 (c). This image is synthe-
sized in this way:

Ǐc(x) =

{
max(Ic(x), 128) if Ic(x) > 36

Ic(x) if Ic(x) ≤ 36
(5.3)

110



5.3. ILLUSION EXPERIMENTS

This means that we keep the darkest pixels (Ic(x) ≤ 36) while increasing the
other ones as in Fig. 5.3 (b).

Interestingly, we find that the illusion is greatly weakened: the target re-
gion in Fig. 5.3 (c) appears less dark as in Fig. 5.3 (b), although a substantial
portion of the pixels are identical in both images. We note they have very
different dark channels (see Fig. 5.4 (b) and (c)). This experiment is con-
sistent with our conjecture that the dark channel influences the perception.
This experiment also shows that the illusion can be determined merely by a
few pixels.

Experiment III

In Experiment III, we further generate an image as Fig. 5.3 (d). We still
keep the color of the target region unchanged ((r, g, b) = (152, 140, 130)).
The remaining regions are synthesized from the source image (Fig. 5.3 (a))
in this way:

Ǐc(x) = 0.5 ∗ Ic(x) + 128. (5.4)

This operation also increases the intensity to at least 128. But it changes
all the pixels’ intensity (except the target region), whereas the operation in
(5.1) only changes those below 128.

The illusion appears in this case again. The color of the target region
in Fig. 5.3 (d) appears very similar with Fig. 5.3 (b), but much darker than
Fig. 5.3 (a). However, the contexts in Fig. 5.3 (b) and (d) are very different
in colors and variance. Besides, Fig. 5.3 (d) has a physical meaning: the
image (except the target region) is covered by a haze layer with t = 0.5
and Ac = 256 as in equation (5.4). On the contrary, Fig. 5.3 (b) has no
physical explanation in real world. One common property of Fig. 5.3 (b) and
(d) is that they have similar dark channels (see Fig. 5.4 (b) and (d)). This
experiment further supports our conjecture that the dark channel influences
the perception.

Notice that all the four target regions in Fig. 5.3 are completely identical,
but their perceptions are not. And the perceptions are consistent with the
corresponding dark channels (Fig. 5.4).

Experiment IV

If the HVS really uses a prior like the dark channel prior, it is reasonable
for us to assume that this prior is from the statistics of the haze phenomena
in the natural world. The above illusions undoubtedly show that the HVS
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inverting

scaling

(a) (b)

Figure 5.5: Illusion Experiment IV.
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processes the visual signal. If the HVS is adapted to the haze, it is very
possible that HVS attempts to “reduces” the haze in this process 1

In Experiment IV, we focus on the images in Fig. 5.3 (a) and (b). We
assume the HVS processes the visual signal in Fig. 5.3 (b) more than Fig. 5.3
(a). So we want to add extra operation on Fig. 5.3 (a) to counteract the
discrepancy: we adjust color of the target region in Fig. 5.3 (a) to make it
appear like Fig. 5.3 (b).

We try to adjust in two ways. If we invert the haze imaging equation, we
have:

Jc(x) =
Ic(x)− Ac

t(x)
+ Ac. (5.5)

The haze effect can be reduced given any t < 1. So in the first way, we adjust
the color of the target region in Fig. 5.3 (a) by:

Ǐc =
Ic − 255

t
+ 255. (5.6)

We slide a bar to adjust t (we assume a global t). We stay in the value that
makes the target regions in (a) and (b) are most similar. The result is in
Fig. 5.5 (top).

Another way is to scale the intensity of the target region, making it
shadowed:

Ǐc = k ∗ Ic. (5.7)

Similarly, we slide a bar to adjust k. However, an apparat visual difference
exists no matter how we adjust k. We find that if we darken the target region
in (a) by scaling, the chrominance still appears different. Fig. 5.5 (bottom)
shows the case.

This experiment indicates that the illusion in Fig. 5.3 (a) and (b) is prob-
ably because the HVS is using a haze reducing model instead of a shadowing
model, although both models can darken the region. It is worth mentioning
that the image (b) is actually not a hazy image: it is a synthetic image that
does not exist in the real world. But the HVS treats it as a hazy image and
uses a model of haze. So the dark channel is perhaps the main factor on
which the HVS bases to trigger the haze reducing process, regardless of the
image content.

1The HVS may “reduce” instead of completely “remove” the haze, because a hazy
image is still perceived as hazy, although it may be perceived less hazy than it is.
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Figure 5.6: Illusion Experiment V.

Experiment V

In Experiment V, we process the source image in this way:

Ǐc(x) = max(Ic(x), θ). (5.8)

Unlike the previous operation, the threshold θ is non-uniform: it is 80 on
the left and gradually increases to 128 on the right. See Fig.5.6 (left) for the
image after manipulation. Notice that target region ((r, g, b) = (152, 140,
130)) is unchanged and remains uniform. However, it appears non-uniform
and darker on the right.

This can also be explained by the assumption that the HVS relies on the
dark channel (Fig.5.6 right) to perceive haze. The HVS reduces more haze
effect when the dark channel is brighter. This experiment also indicates that
the operation of the HVS on the visual signal is locally based, just as our
haze removal algorithm.
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5.4 Proposed Model

We propose the following model to explain the HVS’s mechanism for perceiv-
ing haze: given the photometric visual image (the physical signal reaching
the eyes), the HVS computes the dark channel of the image. Based on the
values in the dark channel, the HVS adopts the inverse haze imaging model
(5.5) to reduce the haze effect.

Remarks:

• This procedure in the HVS is mostly unconscious and passive - the
signal has been processed before any active thinking behavior happens
in the brain. Actually, it is very difficult for one to avoid these illusions
by his/her active thinking, even when he/she is told that the target
regions in Fig.5.3 (a) and (b) are identical.

• The dark channel can undergo another process before the inverse haze
imaging model. This process plays a role like soft matting or guided
filtering: for spatial continuities. Moreover, the image can be segment-
ed into sub-regions before or after the dark channel is computed. But
these assumptions have not yet been supported by experiments.

• The transmission value t used in the inverse haze imaging model (5.5)
is determined by the dark channel. But the concrete mathematical
form is still unclear, because we hold that quantitatively measuring a
perceived signal in our images is subject to many unstable factors and
thus not reliable. But we are sure that the HVS does not completely
remove the haze by setting t = 1 − Îdark (3.15): if the HVS does so,
some pixels in the perceived image would be purely dark. Therefore,
the HVS only reduces the haze but not removes it.

• The HVS does not judge whether the image is really formed by a phys-
ical haze model (Fig.5.3 (d)) or physically invalid synthesis (Fig.5.3 (b)
and (c)). Even though the synthesis images are unnatural and perhaps
never exist in the real world, the HVS still adopts the mechanism to
the signal.

It is worth mentioning that we can only claim that our model is consis-
tent with all the above experimental phenomena, but we cannot prove that
the model is really adopted by the HVS, just as in most human vision stud-
ies. However, the illusions shown in this chapter are undoubted. Any new
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model or theory in future studies is supposed to be valid only when they are
compatible with the illusions here.

5.5 Discussion and Conclusion

In this chapter, we demonstrate several illusion experiments which indicate
the HVS may adopt a mechanism like the dark channel prior to perceive
haze.

Though the experiments strongly support our conjecture that the dark
channel prior is related with the HVS, we hold that the HVS must also
combine other priors or knowledge in the process. For example, the HVS
may segment the image into semantic regions before adopting the prior. It
may also use content-adaptive window sizes instead of a fixed one when
computing a dark channel. The HVS reduces the haze effect in the perceived
image rather than remove it. But to what extent is the reduction? Besides,
there has been no evidence that the HVS is using a guided filter or similar
mechanisms. The entire “algorithm” running in the HVS remains unknown.

The haze is a kind of semi-transparent phenomena. Some studies [46,
68, 61, 69] find that the HVS has the ability to perceive the transparency
of a layer, but the perceived transparency can be different from the true
value. Because these studies show that the underlying mechanism is similar
among common people, it is reasonable for us to suppose that this ability is
obtained in an evolutionary process and coded by genes. In the evolutionary
period, there are mainly two natural semi-transparent phenomena2: haze and
shadow. While haze usually veils the scene by a white or gray color, a shadow
is equivalent to covering an object by a purely black semi-transparent layer
(i.e., A = 0 if we analogize the haze imaging equation):

I(x) = J(x)t(x). (5.9)

While a shadows preserves the luminance ratio3 (I(x1)/I(x2) = J(x1)/J(x2)
if t is uniform), the haze does not (I(x1)/I(x2) �= J(x1)/J(x2) even when
t is uniform). If the visual mechanisms are evolved from these two kind-
s of semi-transparent phenomena, it is entirely possible that the HVS uses

2We assume the evolutionary period is much longer than the modern era, so artificial
semi-transparent objects are almost unavailable.

3Luminance ratio is a kind of definitions on “contrast” [25].
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5.5. DISCUSSION AND CONCLUSION

different ways to perceive different kinds of semi-transparent media. It has
been found that the perceived transparency follows different rules in the cas-
es of brightening/darkening semi-transparent layers [69]. This can also be
explained by the dark channel prior: the ability of the HVS to perceive a
bright semi-transparent layer is from the statistics of the haze phenomenon,
whereas the ability to perceive a dark layer is from the statistics of shadows.
Although the dark channel prior is effective in the case of haze, it is not
useful in the case of shadow. The HVS adopts a different prior in the dark-
ening case, so the perceptions of brightening/darkening transparency follow
different rules.

In sum, much evidence suggests that the dark channel prior is related
to human vision. We expect our study stemmed from a computer vision
algorithm will cast new insights into the human vision area.
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Chapter 6

Conclusion

In this thesis, we have studied the haze removal problems and related issues.
We summarize the main contributions of this thesis in the following.

In Chapter 3 we propose the dark channel prior and a single image haze re-
moval algorithm. The dark channel prior comes from an intuitive observation
on outdoor haze-free images. Unlike the heuristic assumptions in previous
methods, this prior is based on the image statistics, which is the result of
inherent physical properties (illumination, colors, and geometry). This prior
provides a robust estimation for each pixel, and thus solves the ambiguity of
the problem. Despite of its simplicity, our haze removal algorithm based on
this prior is very effective in various situations. Experiments show that our
method outperforms most of the previous works.

In Chapter 4 we study fast algorithms for haze removal. The challenge is
that we need to combine the pixel-wise constraints with spatial continuities,
which is usually time-consuming. In the first part of this chapter, we develop
an algorithm which reduces the time complex of a linear solver from O(rN

3
2 )

to O(1
r
N

3
2 ) with a kernel radius r. This discovery is contrary to conventional

theories, but we prove it true both theoretically and experimentally. This
algorithms allows us to increase the speed by choosing a larger kernel. In the
second part of this chapter, we treat the problem as a general edge-aware
filtering process and propose a novel guided filter accordingly. This filter
voids solving the linear system, and can be computed in O(N) time regardless
of the kernel size. It enables a real-time performance of our haze removal
algorithm. This filter also exhibits many nice properties. Experiments show
that it is advantageous in various applications including haze removal, in

118



terms of both quality and efficiency.
In Chapter 5 we study the relation between the dark channel prior and

the human visual system (HVS). We demonstrate several striking illusion
experiments to show that the HVS probably adopts a similar mechanism like
the dark channel prior to perceive haze. This study casts new insights into
the area of human vision research in psychology/phisiology. It also further
supports the validity of the dark channel prior as a computer vision algorithm,
because we are possibly simulating a human visual mechanism.

In the future, we plan to study the problem under more general haze imag-
ing situations, e.g., spatially variant atmospheric light or channel-dependent
transmission. The problem becomes more ill-posed and new priors are need-
ed. We are also interested in applying the fast guided filter in more computer
vision problems. On the human vision study, we expect to build a model to
quantitatively explain the haze perception.

� End of chapter.
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Appendix A

Physical Model

The haze imaging model is:

I(x) = J(x)t(x) +A(1− t(x)). (2.1)

In this appendix, we provide the physical derivation of this equation. The
derivation is mainly following the method in [49].

A.1 Scattering

We begin with the micro picture of the phenomenon. The particles in the
atmosphere scatter light. “Scattering” means that a particle absorbs a por-
tion of the incident light and radiates the absorbed light as a light source
(Fig. A.1).

Consider a small volume in atmosphere (see Fig. A.2). According to
[45, 49], the total light flux Φ scattered by a small volume is proportional to
the incident flux E:

Φ(λ) = β(λ)E(λ)ΔV. (A.1)

Here, E is the intensity of the incident light, Φ is the total scattered light
flux, ΔV is the volume, β is the total scattering coefficient [49], and λ is the
wavelength of the light, indicating the variables are wavelength-dependent.
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A.2. DIRECT ATTENUATION

incident light
E

unscattered portion

scattered light

particle

Figure A.1: A particle scattering light.

camera

incident light E

scattered flux Φ

unscattered light  

small volume  

Figure A.2: Scattering model in a small volume of atmosphere.

The total scattering coefficient β(λ) is determined by the particle material,
size, shape, and concentration.

Scattering is the basic reason for both direct attenuation and airlight.

A.2 Direct Attenuation

The first effect of scattering is that it attenuates the incident light. Consider
a beam have a unit cross-sectional area (e.g., one pixel) as in Fig. A.3. Denote
as z the direction of the observer to a scene point. According to (A.1), the
incident flux passing through an infinitesimally small sheet of thickness dz is
changed by dE:

dE(z, λ) = −β(z, λ)E(z, λ)dz. (A.2)

where the volume ΔV becomes 1 ·dz, and “-” indicates the light is weakened.
Integrating this equation between z = 0 and z = d we obtain:

E(d, λ) = E(0, λ)e−
∫ d
0
β(z,λ)dz . (A.3)
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A.3. AIRLIGHT

z=0

E(0, λ) E(z, λ) E(z+dz, λ)

dz

reflected
light

z=d

E(d, λ)

camera

Figure A.3: Light traveling in the atmosphere is attenuated.

where E(0, λ) is the light reflected by the scene point. E(d, λ) is actually the
direction attenuation. We shall represent this portion of light in colors.

A.3 Airlight

The second effect of scattering is that it blends the reflected light with addi-
tive airlight.

A particle radiates the light it absorbs, behaving as a light source sus-
pending in the air. All these particles generate the atmospheric light : the
light scattered a great many times by a huge number of particles. Statis-
tically, the atmospheric light is spatially homogenous1 and isotropic. If we
place a small disk of a unit area in the atmosphere, the flux passing through
this disk is constant regardless of its position and direction. We denote the
intensity of this flux per unit area by ε(λ).

Consider an infinitesimally thin cylinder volume with a unit cross-sectional
area in the atmosphere (Fig. A.4). This volume is lit by the atmospheric light
from all directions. The total incident flux contributed by the atmospheric
light to this volume is:

Ê(λ) = 2ε(λ), (A.4)

where the number 2 is because the volume has two sides. According to (A.1),
the total scattered flux is dΦ̂(λ) = β(λ)2ε(λ)dz. But because the cylinder
has two sides, the flux dR radiated from the side facing the observer is:

dR(z, λ) = β(z, λ)ε(λ)dz. (A.5)

This radiated light also has to pass through the haze between the volume

1in the sense of a large scale like a scene
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A.3. AIRLIGHT

camera
dz

scattered flux Φ̂

atmospheric light ε

Figure A.4: A unit volume scatters atmospheric light coming from all direc-
tions.

z=0

dR(z, λ)

dz z=d

dL(z, λ)

camera

Figure A.5: The radiated light by a volume has to pass through the haze
before reaching the observer.

and the observer, and is attenuated (see Fig. A.5). Following the attenuation
equation (A.3), the light dL after attenuation that reaches the observer is:

dL(z, λ) = e−
∫ z
0 β(z′,λ)dz′ · dR(z, λ). (A.6)

Integrating all the infinitesimal light sources between z=0 and z=d, we obtain
the total light L:

L(d, λ) = ε(λ)(1− e−
∫ d
0 β(z,λ)dz). (A.7)

This is the light that reaches the observer due to the atmospheric light.
L(d, λ) is actually the airlight.
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A.4. COLORIMETRY

A.4 Colorimetry

We have obtained the direction attenuation in (A.3) and the airlight in (A.7).
So the total light reaching the observer is:

E(d, λ) + L(d, λ) = E(0, λ)e−
∫ d
0
β(z,λ)dz + ε(λ)(1− e−

∫ d
0
β(z,λ)dz). (A.8)

Next we represent the two terms in colors. In colorimetry, the color seen
by human eyes or captured by a camera is a weighted integral over the light
spectrum [10]. Denote the weighting function as sc(λ) where c represents an
RGB channel. The color of the direct attenuation in (A.3) is:

∫
sc(λ)E(d, λ)dλ =

∫
(sc(λ)E(0, λ)e−

∫ d
0
β(z,λ)dz)dλ, (A.9)

and the color of the airlight in (A.7) is

∫
sc(λ)L(d, λ)dλ =

∫
sc(λ)ε(λ)(1− e−

∫ d
0
β(z,λ)dz)dλ. (A.10)

To further simplify these equations, we have to make the following as-
sumption: the scattering coefficient β is independent of the wavelength.

This assumption is true when the particles in the atmosphere have a
proper size2. Fortunately, this is satisfied in haze, fog and mist [45]. Under
this assumption, we can write the right hand sides of (A.9) and (A.10) as:

(∫
sc(λ)E(0, λ)dλ

)
· e−

∫ d
0
β(z)dz , (A.11)

and (∫
sc(λ)ε(λ)dλ

)
· (1− e−

∫ d
0 β(z)dz). (A.12)

2radius in the order between 10−2μm and 101μm [45]
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By the definition of J and A in the haze image equation (2.1) we have:

Jc =

∫
sc(λ)E(0, λ)dλ (A.13)

Ac =

∫
sc(λ)ε(λ)dλ, (A.14)

where we use Jc to denote the value of J in channel c (likewise Ac). We
further define the transmission t as:

t = e−
∫ d
0
β(z)dz . (A.15)

Therefore, (A.11) is the direct attenuation term Jt, and (A.12) is the airlight
term A(1 − t). The color of the total light (A.8) is Jt + A(1 − t). This
explains the haze imaging equation (2.1).
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Appendix B

Mathematical Derivations

B.1 Theorem 4.1.1: proof

Proof. To prove q equals to Lp, we need to prove ∂qi/∂pj = L(i, j).

Putting (4.14) into (4.15) and eliminating b∗, we obtain:

∂qi
∂pj

= |w|δij −
∑
k∈wi

(
∂p̄k
∂pj

+
∂a∗k
∂pj

(Ii − μk)) (B.1)

Here, we have:

∂p̄k
∂pj

=
1

|w|
∑
n∈wk

∂pn
∂pj

=
1

|w|δj∈wk
=

1

|w|δk∈wj
(B.2)

where δj∈wk
is 1 if j ∈ wk, and is 0 otherwise. According to (4.13) we also
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B.2. DERIVATION 2

have:

∂a∗k
∂pj

=
1

σ2
k +

ε
|w|

(
1

|w|
∑
i∈wk

∂pi
∂pj

Ii − ∂p̄k
∂pj

μk)

=
1

σ2
k +

ε
|w|

(
1

|w|Ij −
1

|w|μk)δk∈wj
(B.3)

Putting (B.2) and (B.3) into (B.1), we obtain:

∂qi
∂pj

= |w|δij − 1

|w|
∑

k∈wi,k∈wj

(1 +
1

σ2
k +

ε
|w|

(Ij − μk)(Ii − μk)) (B.4)

This equals to L(i, j) in (4.9).

B.2 O(N) algorithms for mean, variance, and

covariance in sliding windows

Suppose the window w is square and has the size (2r + 1)×(2r + 1). A box
filter performed on any image I is defined as the sum on each window (sliding
windows):

BI(x, y) =
∑

(x′,y′)∈w(x,y)

I(x′, y′) (B.5)

=

x+r∑
x′=x−r

y+r∑
y′=y−r

I(x′, y′), (B.6)

where w(x, y) is the window centered at (x, y). A brute-force algorithm takes
O(Nr2) time to compute the sums in all windows. But we can reduce it to
O(N) time by Integral Image technique [22] or by cumulative sums.
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Here we adopt cumulative sums. Notice that the box filter is separable,
meaning that we can compute a 1-D box filter along x-axis and then along
y-axis. A 1-D box filter along x-axis is defined as:

BI(x) =

x+r∑
x′=x−r

I(x′). (B.7)

The 1-D cumulative sum is defined as

CI(x) =
x∑

x′=0

I(x′). (B.8)

Obviously, the cumulative sums at all pixels x ∈ [0, Nx] of a 1-D signal can
be computed in O(Nx) time through a single scan. So the 1-D box filter can
be computed by:

BI(x) = CI(x+ r)− CI(x− r − 1) (B.9)

in as few as one operation, regardless of the kernel radius r. The 1-D box
filter along y-axis can be computed similarly. So the 2-D box filter can be
computed in O(N) time for any r.

The mean, variance, and covariance in sliding windows can be expressed
as a series of box filters. For simplicity, we denote BI(x, y) by BI

k where k is
the index of the pixel (x, y). The mean in sliding windows is:

Īk =
1

|wk|
∑
i∈wk

Ii =
BI

k

BU
k

, (B.10)

where U is an image whose pixels are all 1. The variance in sliding windows
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is:

σ2
k =

1

|wk|
∑
i∈wk

(Ii − Īk)
2 =

1

|wk|
∑
i∈wk

I2i − Ī2k (B.11)

=
1

|wk|B
I2

k − Ī2k , (B.12)

and the covariance in sliding windows is:

covk(I, p) =
1

|wk|
∑
i∈wk

(Ii − Īk)(pi − p̄k) =
1

|wk|
∑
i∈wk

Iipi − Īkp̄k(B.13)

=
1

|wk|B
Ip
k − Īkp̄k. (B.14)

Thus, the mean, variance, and covariance in sliding windows can all be com-
puted in O(N) time, regardless of the kernel radius r.

B.3 Approximate eigenvalues of L

We only consider the approximately constant regions of I. According to
(4.9), the elements of L in these region are given by:

Lij =
∑

k|(i,j)∈wk

(δij − 1

|w|). (B.15)

To compute the eigenvalues of L, we are interested in the product Lp
where p is an eigenvector. We can show that (B.15) leads to:

Lp = |w|p− 1

|w|BBp (B.16)

= |w|p− 1

|w|ByBxByBxp. (B.17)
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Here B denotes the matrix form of a 2D box filter. A 2-D box filter can
be separated into two 1-D box filters Bx and By along the x-axis and the
y-axis respectively. To find the eigenvalues of L, we only need to find the
eigenvalues of Bx and By.

We apply the discrete-time Fourier Transform (DTFT) [54] to approxi-
mately compute the eigenvalues of Bx. The solution is:

ξkx =
sin((2r + 1) kxπ

2Nx
)

sin( kxπ
2Nx

)
, for kx = 1, 2, ...Nx (B.18)

with the eigenfunctions sin(kxπ
Nx

x). Here Nx is the width of the image. The
eigenvalues ξky of By is similar. From (B.16) the eigenvalues of L are given
by:

ξL = |w| − 1

|w|ξ
2
kxξ

2
ky . (B.19)

Its maximum is:
ξLmax = |w|, (B.20)

and its minimum (using Taylor expansion) is:

ξLmin ≈ 1

3
((

π

2Nx
)2 + (

π

2Ny
)2)|w|2 (B.21)

≈ π2

6

1

N
|w|2, (B.22)

where we assume Nx ≈ Ny ≈ N
1
2 .
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