Rectangling Panoramic Images via Warping

Kaiming He

Huiwen Chang

Jian Sun

Microsoft Research Asia

Tsinghua University

Microsoft Research Asia

Panoramas are irregular

- Panoramas are irregular
- Rectangles are favored

- Panoramas are irregular
- Rectangles are favored
- "Rectangling" the panoramas

- Panoramas are irregular
- Rectangles are favored
- "Rectangling" the panoramas
 - Cropping

- Panoramas are irregular
- Rectangles are favored
- "Rectangling" the panoramas
 - Cropping
 - Inpainting

content-aware fill

- Panoramas are irregular
- Rectangles are favored
- "Rectangling" the panoramas
 - Cropping
 - Inpainting

content-aware fill

- Panoramas are irregular
- Rectangles are favored
- "Rectangling" the panoramas
 - Cropping
 - Inpainting
 - Warping **new**

our warping

Panoramas are often distorted

distortion

- Panoramas are often distorted
- Warping can be unnoticeable

our warping

- Panoramas are often distorted
- Warping can be unnoticeable
- Warping is robust
 - shape manipulation
 - image retargeting
 - image projection
 - video stabilization

[Igarashi et al, SIGGRAPH 05] ...

[Wang et al, SIGGRAPH Asia 08] ...

[Carroll et al, SIGGRAPH 09] ...

[Liu et al, SIGGRAPH 09] ...

- Panoramas are often distorted
- Warping can be unnoticeable
- Warping is robust
- Rectangling via warping

Challenges

- Meshing
 - irregular input
 - boundary conditions

Challenges

- Meshing
 - irregular input
 - boundary conditions
- Content-preserving
 - boundary constraints
 - shapes
 - straight lines

Solution: Local + Global

local warping

mesh

global warping

Mesh-free

- Mesh-free
- Seam Carving [Avidan & Shamir 07]

longest missing

- Mesh-free
- Seam Carving [Avidan & Shamir 07]
 - insert a seam
 - shift pixels

- Mesh-free
- Seam Carving [Avidan & Shamir 07]
 - insert a seam
 - shift pixels
- Seam Carving = Warping

- Mesh-free
- Seam Carving [Avidan & Shamir 07]
 - insert a seam
 - shift pixels
- Seam Carving = Warping

seam carving

(A video was removed when converting this ppt to pdf.)

- Mesh-free
- Seam Carving [Avidan & Shamir 07]
 - insert a seam
 - shift pixels
- Seam Carving = Warping

grid mesh

- Mesh-free
- Seam Carving [Avidan & Shamir 07]
 - insert a seam
 - shift pixels
- Seam Carving = Warping

warped back

Mesh optimization

 $\min E(V)$

V: all vertexes

- Mesh optimization
 - Boundary constraints

 $E_B(V)$: hard data term

- Mesh optimization
 - Boundary constraints
 - Shape preservation

 $E_S(V) = V^T L V$

L: Laplacian

smoothness term in warping

as-similar-aspossible [Igarashi et al, SIGGRAPH 05]

[Igarashi et al, SIGGRAPH 05] [Liu et al, SIGGRAPH 09] [Wang et al, SIGGRAPH 10] ...

boundary + shape

boundary + shape + line

detected lines [PAMI 10]

Line Preservation

 Lines in the same direction are rotated by the same θ
[Chang & Chuang, CVPR 12]

detected lines

Line Preservation

direction *i*

 Lines in the same direction are rotated by the same θ
[Chang & Chuang, CVPR 12]

quantized directions (50 bins)

Line Preservation

 Lines in the same direction are rotated by the same θ [Chang & Chuang, CVPR 12]

 θ_i

- Mesh optimization
 - Boundary constraints
 - Shape preservation
 - Line preservation
 - Total energy

$E(V,\theta) = E_B + E_S + E_L$

• Target rectangle

<image>

normalized scaling $x : y \approx 1:1$

input

input

warp

crop

content-aware fill

input

warp

zoom-in output

input

Failure

warp

Conclusion

- New concept rectangling via warping
- Unnoticeable, robust, and fast

