
M3G – Java Mobile 3D

Tomi Aarnio
Nokia Research Center

Agenda

• What is M3G
• What’s new in 2.0

M3G – Mobile 3D Graphics API for Java

• Enables real-time 3D on mass-market phones
• Came out in 2004, now almost universally adopted
• Installed base somewhere between 500M-1B

• Retained mode API
• OpenGL ES features wrapped into Java objects
• Animation and scene graph layered on top

Mobile 3D Graphics APIs

OpenGL ES

M3G

Java applications
Native C/C++
Applications

CPU / GPU

Mobile Java

Pros
+ More widely available than any other platform
+ The only platform on many/most phones
+ Easy to write code that works

Cons
– Different devices have different APIs (and bugs)
– Latest hardware features not always available
– Performance not as good as in C/C++

M3G Design Principles

#1 Minimize the amount of Java code

#2 Do not require graphics hardware

#3 Enable easy content creation

Programming Model

• M3G is not an “extensible” scene graph
• No interfaces, events, or render callbacks
• No threads; all methods are synchronous

• Scene update is decoupled from rendering
• render Draw the scene, no side-effects
• animate Update the scene to the given time
• align Re-orient target cameras, billboards

Main classes

Graphics3D
3D graphics context
Performs all rendering

World
Scene graph root node

Loader
Loads individual objects
and entire scene graphs

Mesh
Encapsulates triangles,
vertices and appearance

Example scene graph

SkinnedMesh

Group

Group

Group

Mesh

Group

Light

World

Group Camera

Group Mesh

Components can be shared

SkinnedMesh Mesh

World

Mesh Camera

Appearance Appearance

Texture2D

Mesh

• One VertexBuffer, containing VertexArrays
• 1..N submeshes (IndexBuffer + Appearance)

Mesh VertexBuffer coordinates

normals

colors

texcoords

IndexBuffer

Appearance

VertexArraysVertexArrays

Simple animation player

world = (World) Loader.load(“/scene.m3g”)[0];

void paint(Graphics g) {

world.animate(currentTime);

graphics3d.bindTarget(g);

graphics3d.render(world);

graphics3d.releaseTarget();

}

犬友 (Dear Dog) Demo

Creating art assets

Intermediate
Format (M3X,
COLLADA)

DCC Tool

Exporter

Optimize,
Compress,

Preview

Delivery
Formats

(m3g, jpg,
png)

M3G Loader

Runtime Scene Graph

Mascot Capsule M3G Exporter

Mascot Capsule M3G Viewer

Wizzer Works M3G Viewer

Selected open source projects

• www.wizzerworks.com
• M3G Toolkit & Viewer for manipulating .m3g files

• m3x.dev.java.net
• XML encoding of the .m3g file format + tools

• www.microemu.org
• Java ME stack implemented on Java SE / Android

• lwuit.dev.java.net
• Lightweight UI Toolkit, uses M3G for transition effects

http://www.wizzerworks.com/
http://m3x.dev.java.net/
http://www.microemu.org/
http://lwuit.dev.java.net/

Start developing!

• Choose IDE
• www.eclipse.org
• www.netbeans.org

• Choose SDK
• forum.nokia.com/java
• developer.sonyericsson.com/java
• mpowerplayer.com/sdk

• Choose Exporter
• www.m3gexport.com – Maya
• www.mascotcapsule.com/M3G – Max, Maya, Lightwave, XSI
• www.nelson-games.de/bl2m3g – Blender (open source)

http://www.eclipse.org/
http://www.netbeans.org/
http://www.forum.nokia.com/java
http://developer.sonyericsson.com/java
http://mpowerplayer.com/sdk
http://www.m3gexport.com/
http://www.mascotcapsule.com/M3G
http://www.nelson-games.de/bl2m3g

Example Games

Playman Beach Volley – RealNetworks

2D backdrop
3D background
2D spectators

3D field
2D players
2D overlays

~7 layers of
2D and 3D!

Playman Winter Games –
RealNetworks

Side view onlySide view only

2D

Perspective
and depth

Perspective
and depth

3D

http://www.mrgoodliving.com/images/wg/PWG.rm

Playman World Soccer – RealNetworks

• 2D/3D hybrid
• Cartoon-like

2D figures in a
3D scene

• 2D particle
effects etc.

Tower Bloxx – Digital Chocolate

• Puzzle/arcade
mixture

• 3D with 2D overlays
and backgrounds

Mini Golf Castles – Digital Chocolate

• 3D with 2D
background
and overlays

• Skinned
characters

Rollercoaster Rush – Digital Chocolate

• 2D backgrounds
• 3D main scene
• 2D overlays

M3G 2.0

M3G 2.0

• Supercedes M3G 1.1
• Adds programmable shaders in the high end
• Improved features & perf also in the low end
• Fully backwards compatible

• Work in progress
• Get the Proposed Final Draft at www.jcp.org JSR 297
• Developer feedback can still make a difference!

http://www.jcp.org/

Design Goals

Target all devices
1. Programmable HW
2. No graphics HW
3. Fixed-function HW

Enable reuse of
1. Assets & tools (.m3g)
2. Source code (.java)
3. Binary code (.class)

M3G 2.0 is a superset of 1.1

M3G 1.1
M3G 2.0

Advanced
Block

M3G 1.1M3G 1.1
Feature set

OpenGL ES 1.0 +
scene graph

M3G 2.0 is a superset of 1.1

M3G 2.0 CoreM3G 2.0 CoreM3G 2.0 Core

M3G 1.1
Feature set

OpenGL ES 1.1 +
scene graph

M3G 2.0 is a superset of 1.1

M3G 2.0 Core
M3G 2.0

AdvancedM3G 1.1
Feature set

OpenGL ES 2.0 +
OpenGL ES 1.1 +

scene graph

Why Not Shaders Only?

Fixed Function
Hardware

No Graphics Hardware

Shader
Hardware

Dev
ice

 sa
les

 in
 20

11
?

New Core features due to popular demand

• Optimized mesh deformation & animation
• Morphing and skinning on the same mesh
• Morph targets applied on a subset of the base mesh
• Multichannel keyframe sequences
• Animation event tracks

• Scene graph
• Bounding volume hierarchies (boxes and spheres)
• Neatly encapsulated multipass render-to-texture effects
• Transparent objects can be sorted back-to-front
• Lots of convenience methods

New Core features due to popular demand

• Improved texturing
• Compressed textures, JPEG
• Non-power-of-two sizes
• Video textures
• Bump mapping

• New primitive types
• Point sprites, lines
• Float/half vertices

Level of Detail (LOD)

• A Group node can select one of its children
• Based on their size in screen pixels
• Similar to mipmap level selection

• Formally
1. Compute s = pixels per model-space unit
2. Select the node whose ideal scale si satisfies

}|max{ sss ii ≤

Collision Detection

• Each Node can have a collision volume
• k-DOP = Discrete Oriented Polytope
• AABB with corners & edges chopped off

• world.collide(…) to find all collisions

6-DOP 26-DOP

Simple vertex shader

#pragma M3Gpositionattrib(myVertex)

#pragma M3Gvertexstage(clipspace)

void main() {

m3g_ffunction();

gl_Position = myVertex;

}

Built-in function for
morphing, skinning,

model-view-projection

Result passed to the
fragment shader

Declare attribute
semantics via #pragmas

Summary

Summary

• M3G enables real-time 3D on mass-market phones
• Easy to use, high performance scene graph API
• Installed base somewhere between 500M-1B
• Grab the tools and start developing!

• M3G 2.0 is under development
• Adds programmable shaders in the high end
• Improved features & perf also in the low end
• Fully backwards compatible

M3G – Java Mobile 3D

Tomi Aarnio
Nokia Research Center

	M3G – Java Mobile 3D
	Agenda
	M3G – Mobile 3D Graphics API for Java
	Mobile 3D Graphics APIs
	Mobile Java
	M3G Design Principles
	Programming Model
	Main classes
	Example scene graph
	Components can be shared
	Mesh
	Simple animation player
	犬友 (Dear Dog) Demo
	Creating art assets
	Mascot Capsule M3G Exporter
	Mascot Capsule M3G Viewer
	Wizzer Works M3G Viewer
	Selected open source projects
	Start developing!
	Example Games
	Playman Beach Volley – RealNetworks
	Playman Winter Games –RealNetworks
	Playman World Soccer – RealNetworks
	Tower Bloxx – Digital Chocolate
	Mini Golf Castles – Digital Chocolate
	Rollercoaster Rush – Digital Chocolate
	M3G 2.0
	M3G 2.0
	Design Goals
	M3G 2.0 is a superset of 1.1
	M3G 2.0 is a superset of 1.1
	M3G 2.0 is a superset of 1.1
	Why Not Shaders Only?
	New Core features due to popular demand
	New Core features due to popular demand
	Level of Detail (LOD)
	Collision Detection
	Simple vertex shader
	Summary
	Summary
	M3G – Java Mobile 3D

