TUG Graz University of Technology Erzherzog-Johann-University

Real-time 3D Tracking with Camera Phones

Daniel Wagner

DANIEL WAGNER wagner@icg.tugraz.at

Augmented Reality on Mobile Phones

- Low cost, widely spread platform
 - Billions of phones deployed
 - People know how to use them
 - Strong demand from commercial side
 - Huge chance for AR!
- Target practical applications
 - Easy to use
 - 15-30 Hz overall frame rate
 - Robust tracking

DANIEL WAGNER wagner@icg.tugraz.at

Graz University of Technology Erzherzog-Johann-University

Mobile Phone Camera Tracking

Tracking for Augmented Reality always means **Pose Tracking** (6DOF)

- Optical Flow
 - Very simple, but does not give a pose
- Marker Tracking
 - Works well, but limited in its applications
 - Hardly a research topic anymore
- Natural Feature Tracking
 - Currently a hot topic!

DANIEL WAGNER wagner@icg.tugraz.at

Graz University of Technology Erzherzog-Johann-University

History of AR Tracking on Phones (1)

- **2003**
 - ARToolKit on PDA
 - Wagner et at.
- **2004**
 - 3D Marker on Phone
 - Möhring et al.

- **2005**
 - ARToolKit on Symbian
 - Henrysson et al.

DANIEL WAGNER wagner@icg.tugraz.at

Graz University of Technology Erzherzog-Johann-University

History of AR Tracking on Phones (2)

- **2005**
 - Visual Codes
 - Rohs et at.

- Studierstube Tracker
- Wagner et al.
- **2007**
 - WikEye
 - Schöning et al.

DANIEL WAGNER wagner@icg.tugraz.at

Graz University of Technology Erzherzog-Johann-University

History of AR Tracking on Phones (3)

2008

- Advanced Marker Tracking
- Wagner et al.

2008

- Natural Feature Tracking
- Wagner et al.

- **2009**
 - High speed Natural Feature Tracking

DANIEL WAGNER wagner@icg.tugraz.at

CPU/Memory Limitations of Mobile Phones

- Small memory
 - Even though phones today have 64-128MB RAM consider 2-5 Megabytes as maximum
- Weak processing power
 - 200-600 MHz, Single core
 - Typically no FPU (floating point ~40x slower than integer)
 - Slow memory access, small caches

 → Code optimized for phones runs 5-10x slower on a high-end phone than on an average PC (2GHz, single core)
→ Not going to change quickly due to battery power

DANIEL WAGNER wagner@icg.tugraz.at

Tracking by Detection

- This is what most "trackers" do…
- Targets are detected every frame
- Popular because tracking and detection are solved simultanously

DANIEL WAGNER wagner@icg.tugraz.at

Graz University of Technology Erzherzog-Johann-University

Natural Feature Tracking by Detection

SIFT

- State of the art for object recognition
- Known to be slow (best implementation for phones is ~10-100x too slow for real-time use)
- Typically used off-line

Ferns

- State of the art for fast pose tracking
- Known to be memory intensive (requires ~10x too much memory for phones)
- Long training phase

SIFT: [Lowe, 2004] Ferns: [Ozuysal, 2007]

DANIEL WAGNER wagner@icg.tugraz.at

Performance of SIFT and Ferns modified for mobile phone tracking

DANIEL WAGNER wagner@icg.tugraz.at

Graz University of Technology Erzherzog-Johann-University

NFT with SIFT on a Mobile Phone

DANIEL WAGNER wagner@icg.tugraz.at

Graz University of Technology Erzherzog-Johann-University

Doing it better: Dedicated Detection and Tracking

DANIEL WAGNER wagner@icg.tugraz.at

Graz University of Technology Erzherzog-Johann-University

Detection and Tracking

DANIEL WAGNER wagner@icg.tugraz.at

High Speed Tracking on the Mobile Phone

ROBUST HIGH SPEED NATURAL FEATURE TRACKING TRACKING OF MULTIPLE TARGETS MEMORY REQUIREMENTS: ~300KB/TARGET

DEVICE: ASUS P552W, 624MHz RENDERING: OPENGL ES 1.1 CAMERA: 320x240, 20Hz

DANIEL WAGNER wagner@icg.tugraz.at

Workflow of our Tracker

- During startup: find features in a reference image
- At runtime:
- Take previous pose and apply motion model
 - Get estimate for what we are looking for
- Create affine warped patches of reference features
 - Closely resemble how the feature should look in the camera image
- Project patches into camera image and use normalized cross correlation (NCC) to match

DANIEL WAGNER wagner@icg.tugraz.at

Graz University of Technology Erzherzog-Johann-University

PatchTracker in Action (1)

DANIEL WAGNER wagner@icg.tugraz.at

Graz University of Technology Erzherzog-Johann-University

PatchTracker in Action (2)

DANIEL WAGNER wagner@icg.tugraz.at

Graz University of Technology Erzherzog-Johann-University

How fast is it?

DANIEL WAGNER wagner@icg.tugraz.at

Graz University of Technology Erzherzog-Johann-University

Orthogonal Strengths and Weaknesses

	SIFT/Ferns	PatchTracker
Recognize many targets		×
Detect target		×
Initialize tracking		×
Speed	×	
Robust to blur	×	
Robust to tilt	X	
Robust to lighting changes		

DANIEL WAGNER wagner@icg.tugraz.at

Graz University of Technology Erzherzog-Johann-University

More Results...(1)

Mobile Phone Augmented Reality

at 30 Frames per Second using Natural Feature Tracking

(all processing and rendering done in software)

DANIEL WAGNER wagner@icg.tugraz.at

Graz University of Technology Erzherzog-Johann-University

More Results...(2)

DANIEL WAGNER wagner@icg.tugraz.at

Conclusions & Future Work

- NFT sometimes more robust than markers
 - Bad lighting (blur)
 - Occlusions
- Many open issues
 - Non-planar targets
 - Large targets (rooms, building, cities)
 - Automatic target acquisition (SLAM)
 - GPU implementations

DANIEL WAGNER wagnerଢlicg.tugraz.at

Graz University of Technology Erzherzog-Johann-University

Thank you for listening...