
1

2

Kari Pulli Nokia Research Center

Jani Vaarala Nokia

Ville Miettinen Hybrid Graphics

Tomi Aarnio Nokia Research Center

Mark Callow HI Corporation

Developing Mobile
3D Applications with
OpenGL ES and M3G

Developing Mobile
3D Applications with
OpenGL ES and M3G

3

Today’s programToday’s program

• Start at ?:??
• Intro & OpenGL ES

overview
25 min, Kari Pulli

• Using OpenGL ES
40 min, Jani Vaarala

• OpenGL ES
performance
25 min, Ville Miettinen

• Break ?:?? – ?:??
• M3G API overview

45 min, Tomi Aarnio

• Using M3G
40 min, Mark Callow

• Closing & Q&A
5 min, Kari Pulli

4

Challenges for mobile gfxChallenges for mobile gfx

• Small displays
– getting much better

• Computation
– speed

– power / batteries

– thermal barrier

• Memory

Fairly recently mobile phones used to be extremely resource limited, especially
when it comes to 3D graphics. But Moore’s law is a wonderful thing.

The displays used to be only 1-bit black-and-white displays, that update slowly,
with resolutions like 48 x 84 pixels. However, the display technology has
developed by leaps and bounds, first driven by the digital cameras, now by
mobile phones. Only 12-bit colors are beginning to be old-fashioned, 16 or 18 bit
color depths are becoming the norm, 24 bit can’t be too far ahead. The main
resolution for Nokia’s S60 used to be 176 x 208 (upper right), now it’s getting to
240 x 320 and 352 x 416, Nokia Communicator (middle) is 640 x 200, Nokia 770
is 800 x 400 (bottom).

CPUs used to be tiny 10+ MHz ARM 7’s, now 100-200 MHz ARM 9’s are norm,
pretty soon it’ll be 400-600 MHz ARM 11’s. It is still very rare to find hardware
floating point units even in higher end PDAs, but eventually that will also be
available. But the biggest problem is power. All those megahertzes and increased
pixel resolutions eat power, and the battery technology does not increase as fast
as other components. So the amount of power in batteries compact enough to be
pocketable is a limiting factor. But even if we suddenly had some superbatteries,
we couldn’t use all that power. More and more functionality on smaller physical
size means that designing hardware so it doesn’t generate hotspots that fry the
electronics becomes increasingly challenging.

And memory is always a problem. Current graphics cards have 128, 256, and
even more megabytes of memory, just for graphics, frame buffers, textures
caches, and the like. Mobile devices have to deal with MBs that you can count
with your fingers and toes, and that must be enough for the ROM / “hard drive”
(there are no hard drives) of operating system, applications, and user data, as

5

State-of-the-art in 2001:
GSM world
State-of-the-art in 2001:
GSM world

• The world’s most played
electronic game?
– According to The Guardian

(May 2001)

• Communicator demo 2001
– Remake of a 1994 Amiga demo

– <10 year from PC to mobile

Around 2001, at least in Europe and Americas, the state of the art for
mobile graphics was games such as Snake. Considering that in 2001
alone Nokia shipped over 100 million phones, most with Snake, with very
few other games available, Snake is at least one of the most played
electronic games ever.

In 2001 an old Amiga demo was ported to Nokia communicator, causing a
sensation at the Assembly event in Finland.

6

State-of-the-art in 2001:
Japan
State-of-the-art in 2001:
Japan

• High-level API with skinning, flat shading /
texturing, orthographic view

J-SH07
by SHARP

GENKI 3D Characters

(C) 2001 GENKI

ULALA

(c)SEGA/UGA.2001

J-SH51
by SHARP

Space Channel 5

©SEGA/UGA,2001 ©SEGA/UGA,2002

Snowboard Rider
©WOW ENTERTAINMENT INC.,
2000-2002all rights reserved.

7

State-of-the-art in 2002:
GSM world
State-of-the-art in 2002:
GSM world

• 3410 shipped in May 2002
– A SW engine: a subset of OpenGL

including full perspective (even textures)

– 3D screensavers (artist created content)

– FlyText screensaver (end-user content)

– a 3D game

8

State-of-the-art in 2002:
Japan
State-of-the-art in 2002:
Japan

• Gouraud shading,
semi-transparency,
environment maps

3d menu

C3003P
by Panasonic

KDDI Au 3D Launcher

©SAN-X+GREEN CAMEL

I-3D PolyGame
Boxing

@ Hi Vanguard REZO, BNW

Ulala Channel J

©SEGA/UGA,2001 ©SEGA/UGA,2002

9

Fathammer’s
Geopod

on XForge

State-of-the-art in 2003:
GSM world
State-of-the-art in 2003:
GSM world

• N-Gage ships

• Lots of proprietary 3D engines
on various Series 60 phones

10

State-of-the-art in 2003:
Japan
State-of-the-art in 2003:
Japan

• Perspective view,
low-level API

Aqua ModeAqua ModeAqua ModeRidge Racer

@ Namco

Mission Commander
Multi player Fps Game

© IT Telecom

11

Mobile 3D in 2004Mobile 3D in 2004

• 6630 shipped late 2004
– First device to have both

OpenGL ES 1.0 (for C++) and
M3G (a.k.a JSR-184, for Java) APIs

• Sharp V602SH in May 2004
– OpenGL ES 1.0 capable HW

but API not exposed

– Java / MascotCapsule API

12

2005 and beyond: HW2005 and beyond: HW

13

Mobile 3D APIsMobile 3D APIs

OpenGL ESOpenGL ES

Java ApplicationsJava Applications

Java UI APIJava UI APIM3G (JSR-184)M3G (JSR-184)

Operating System (Symbian, Linux, …)Operating System (Symbian, Linux, …)

Java Virtual MachineJava Virtual Machine

Native C/C++
Applications

Native C/C++
Applications

Graphics HardwareGraphics Hardware

The green parts show the content of today’s course. We will cover two mobile 3D
APIs, used by applications, either the so-called native C/C++ applications, or
Java midlets (the mobile versions of applets). The APIs use system resources
such as memory, display, and graphics hardware if available. OpenGL ES is a
low-level API, that can be used as a building block for higher level APIs such as
M3G, or Mobile 3D Graphics API for J2ME, also known as JSR-184 (JSR = Java
Standardization Request).

14

Overview: OpenGL ESOverview: OpenGL ES

• Background: OpenGL & OpenGL ES

• OpenGL ES 1.0

• OpenGL ES 1.1

• EGL: the glue between OS and OpenGL ES

• How can I get it and learn more?

15

• The most widely adopted graphics standard
– most OS’s, thousands of applications

• Map the graphics process into a pipeline
– matches HW well

• A foundation for higher level APIs
– Open Inventor; VRML / X3D; Java3D; game engines

What is OpenGL?What is OpenGL?

modeling

projecting

clipping

lighting & shading

texturing

hidden surface

blending

pixels to screen

16

What is OpenGL ES?What is OpenGL ES?

• OpenGL is just too big for Embedded
Systems with limited resources
– memory footprint, floating point HW

• Create a new, compact API
– mostly a subset of OpenGL

– that can still do almost all OpenGL can

17

OpenGL ES 1.0 design
targets
OpenGL ES 1.0 design
targets
• Preserve OpenGL structure
• Eliminate un-needed functionality

– redundant / expensive / unused
• Keep it compact and efficient

– <= 50KB footprint possible, without HW FPU
• Enable innovation

– allow extensions, harmonize them
• Align with other mobile 3D APIs (M3G / JSR-184)

18

AdoptionAdoption

• Symbian OS, S60

• Brew

• PS3 / Cell architecture

Sony’s arguments: Why ES over OpenGL
• OpenGL drivers contain many features not needed

by game developers
• ES designed primarily for interactive 3D app devs
• Smaller memory footprint

19

OutlineOutline

• Background: OpenGL & OpenGL ES

• OpenGL ES 1.0

• OpenGL ES 1.1

• EGL: the glue between OS and OpenGL ES

• How can I get it and learn more?

20

Functionality: in / out? (1/7)Functionality: in / out? (1/7)

• Convenience functionality is OUT
– GLU

(utility library)

– evaluators
(for splines)

– feedback mode
(tell what would draw without drawing)

– selection mode
(for picking, easily emulated)

– display lists
(collecting and preprocessing commands)

gluOrtho2D(0,1,0,1)
vs.
glOrtho(0,1,0,1,-1,1)

glNewList(1, GL_COMPILE)
myFuncThatCallsOpenGL()
glEndList()
…
glCallList(1)

21

Functionality: in / out? (2/7)Functionality: in / out? (2/7)

• Remove old complex functionality
– glBegin – glEnd (OUT); vertex arrays (IN)

– new: coordinates can be given as bytes

glBegin(GL_POLYGON);
glColor3f (1, 0, 0);
glVertex3f(-.5, .5, .5);
glVertex3f(.5, .5, .5);
glColor3f (0, 1, 0);
glVertex3f(.5,-.5, .5);
glVertex3f(-.5,-.5, .5);
glEnd();

static const GLbyte verts[4 * 3] =
{ -1, 1, 1, 1, 1, 1,

1, -1, 1, -1, -1, 1 };
static const GLubyte colors[4 * 3] =
{ 255, 0, 0, 255, 0, 0,

0,255, 0, 0,255, 0 };
glVertexPointer(3,GL_BYTE,0, verts);
glColorPointerf(3,GL_UNSIGNED_BYTE,

0, colors);
glDrawArrays(GL_TRIANGLES, 0, 4);

22

Functionality: in / out? (3/7)Functionality: in / out? (3/7)

• Simplify rendering modes
– double buffering, RGBA, no front buffer access

• Emulating back-end missing functionality is
expensive or impossible
– full fragment processing is IN

alpha / depth / scissor / stencil tests,
multisampling,
dithering, blending, logic ops)

23

Functionality: in / out? (4/7)Functionality: in / out? (4/7)

• Raster processing
– ReadPixels IN, DrawPixels and Bitmap OUT

• Rasterization
– OUT: PolygonMode, PolygonSmooth, Stipple

24

Functionality: in / out? (5/7)Functionality: in / out? (5/7)

• 2D texture maps IN
– 1D, 3D, cube maps OUT

– borders, proxies, priorities, LOD clamps OUT

– multitexturing, texture compression IN (optional)

– texture filtering (incl. mipmaps) IN

– new: paletted textures IN

25

Functionality: in / out? (6/7)Functionality: in / out? (6/7)

• Almost full OpenGL light model IN
– back materials, local viewer,

separate specular OUT

• Primitives
– IN: points, lines, triangles

– OUT: polygons and quads

26

Functionality: in / out? (7/7)Functionality: in / out? (7/7)

• Vertex processing
– IN: transformations

– OUT: user clip planes, texcoord generation

• Support only static queries
– OUT: dynamic queries, attribute stacks

• application can usually keep track of its own state

27

The great “Floats vs. fixed-
point” debate
The great “Floats vs. fixed-
point” debate

• Accommodate both
– integers / fixed-point numbers for efficiency
– floats for ease-of-use and being future-proof

• Details
– 16.16 fixed-point: add a decimal point inside an int

– get rid of doubles

glRotatef(0.5f, 0.f , 1.f, 0.f);
vs.

glRotatex(1 << 15, 0 , 1 << 16, 0);

28

OutlineOutline

• Background: OpenGL & OpenGL ES

• OpenGL ES 1.0

• OpenGL ES 1.1

• EGL: the glue between OS and OpenGL ES

• How can I get it and learn more?

29

OpenGL ES 1.1: coreOpenGL ES 1.1: core

• Buffer Objects
allow caching vertex data

• Better Textures
>= 2 tex units, combine (+,-,interp), dot3 bumps, auto mipmap gen.

• User Clip Planes
portal culling (>= 1)

• Point Sprites
particles as points not quads, attenuate size with distance

• State Queries
enables state save / restore, good for middleware

30

OpenGL ES 1.1: optionalOpenGL ES 1.1: optional

• Draw Texture
fast drawing of pixel rectangles using texturing units
(data can be cached), constant Z, scaling

• Matrix Palette
vertex skinning (>= 3 matrices / vertex, palette >= 9)

31

OutlineOutline

• Background: OpenGL & OpenGL ES

• OpenGL ES 1.0

• OpenGL ES 1.1

• EGL: the glue between OS and OpenGL ES

• How can I get it and learn more?

32

EGL glues OpenGL ES to OSEGL glues OpenGL ES to OS

• EGL is the interface between OpenGL ES
and the native platform window system
– similar to GLX on X-windows, WGL on Windows

– facilitates portability across OS’s (Symbian, Linux, …)

• Division of labor
– EGL gets the resources (windows, etc.) and

displays the images created by OpenGL ES

– OpenGL ES uses resources for 3D graphics

33

EGL surfacesEGL surfaces

• Various drawing surfaces, rendering targets
– windows – on-screen rendering

(“graphics” memory)

– pbuffers – off-screen rendering
(user memory)

– pixmaps – off-screen rendering
(OS native images)

34

EGL contextEGL context

• A rendering context is an abstract OpenGL
ES state machine
– stores the state of the graphics engine

– can be (re)bound to any matching surface

– different contexts can share data
• texture objects

• vertex buffer objects

• lately even across APIs (OpenGL ES, OpenVG)

35

Main EGL 1.0 functionsMain EGL 1.0 functions

• Getting started
– eglInitialize() / eglTerminate(), eglGetDisplay(),

eglGetConfigs() / eglChooseConfig(),
eglCreateXSurface() (X = Window | Pbuffer | Pixmap),
eglCreateContext()

• eglMakeCurrent(display, drawsurf, readsurf,
context)

– binds context to current thread, surfaces, display

36

Main EGL 1.0 functionsMain EGL 1.0 functions

• eglSwapBuffer(display, surface)
– posts the color buffer to a window

• eglWaitGL(), eglWaitNative(engine)
– provides synchronization between OpenGL ES

and native (2D) graphics libraries

• eglCopyBuffer(display, surface, target)
– copy color buffer to a native color pixmap

37

EGL 1.1 enhancementsEGL 1.1 enhancements

• Swap interval control
– specify # of video frames between buffer swaps

– default 1; 0 = unlocked swaps, >1 save power

• Power management events
– PM event => all Context lost

– Disp & Surf remain, Surf contents unspecified

• Render-to-texture [optional]
– flexible use of texture memory

38

OutlineOutline

• Background: OpenGL & OpenGL ES

• OpenGL ES 1.0 functionality

• OpenGL ES beyond 1.0

• EGL: the glue between OS and OpenGL ES

• How can I get it and learn more?

39

SW ImplementationsSW Implementations

• Gerbera from Hybrid
– Free for non-commercial use

– http://www.hybrid.fi

• Vincent
– Open-source OpenGL ES library

– http://sourceforge.net/projects/ogl-es

• Reference implementation
– Wraps on top of OpenGL

– http://www.khronos.org/opengles/documentation/gles-1.0c.tgz

http://www.hybrid.fi
http://sourceforge.net/projects/ogl-es
http://www.khronos.org/opengles/documentation/gles-1.0c.tgz

40

On-Device ImplementationsOn-Device Implementations

• NokiaGL (SW)

• N93 (HW)

• Imagination MBX

• NVidia GoForce 3D

• ATI Imageon

• Toshiba T4G

• …

The models shown
Nokia 6630
Dell Axim 50v
Gizmondo
LG 3600
Sharp V602SH

41

SDKsSDKs

• Nokia S60 SDK (Symbian OS)
– http://www.forum.nokia.com

• Imagination SDK
– http://www.pvrdev.com/Pub/MBX

• NVIDIA handheld SDK
– http://www.nvidia.com/object/hhsdk_home.html

• Brew SDK & documentation
– http://brew.qualcomm.com

http://www.forum.nokia.com
http://www.pvrdev.com/Pub/MBX
http://www.nvidia.com/object/hhsdk_home.html
http://brew.qualcomm.com

42

OpenGL ES 1.1 DemosOpenGL ES 1.1 Demos

43

Questions?Questions?

44

45

Using OpenGL ESUsing OpenGL ES

Jani Vaarala

Nokia

46

Using OpenGL ESUsing OpenGL ES

- Simple OpenGL ES example

- Fixed point programming

- Converting existing code

-We will use Symbian S60 as an example, as there are already openly
programmable devices out there that come with preinstalled OpenGL ES
support
-Example code works with S60 3rd Edition SDK and devices (like N93)

47

“Hello OpenGL ES”“Hello OpenGL ES”

-This is what we are aiming for: single smooth shaded triangle on the
emulator (and on the device).

48

Symbian App ClassesSymbian App Classes

EXAMPLE.EXE or EXAMPLE.APP (.DLL)

Application Document

AppUI Container

Handle Commands (Events, Keys)Handle Commands (Events, Keys)
Handle Application viewsHandle Application views

DATADATA

VIEWVIEW

OpenGL ES

-Symbian UI framework follows Model-View-Controller model.

49

“Hello OpenGL ES”“Hello OpenGL ES”

/* ===
* "Hello OpenGL ES" OpenGL ES code.
*
* Eurographics 2006 course on mobile graphics.
*
* Copyright: Jani Vaarala
* ===
*/

#include <e32base.h>
#include "SigTriangleGL.h"

static const GLbyte vertices[3 * 3] =
{

-1, 1, 0,
1, -1, 0,
1, 1, 0

}; OpenGL ES

-First we define 3 vertices of a triangle.
-We use static const for two reasons: it’s a good habit to mark it as const
for compiler and under Symbian global data is not allowed.

50

“Hello OpenGL ES”“Hello OpenGL ES”

static const GLubyte colors[3 * 4] =
{

255, 0, 0, 255,
0, 255, 0, 255,
0, 0, 255, 255

};

OpenGL ES

-Each vertex has different color (full R, full G, full B).

51

“Hello OpenGL ES”“Hello OpenGL ES”

static void initGLES()
{

glClearColor (0.f,0.f,0.1f,1.f);
glDisable (GL_DEPTH_TEST);
glMatrixMode (GL_PROJECTION);
glFrustumf (-1.f,1.f,-1.f,1.f,3.f,1000.f);
glMatrixMode (GL_MODELVIEW);
glShadeModel (GL_SMOOTH);
glVertexPointer (3,GL_BYTE,0,vertices);
glColorPointer (4,GL_UNSIGNED_BYTE,0,colors);
glEnableClientState (GL_VERTEX_ARRAY);
glEnableClientState (GL_COLOR_ARRAY);

}

OpenGL ES

-OpenGL ES setup code, sets up a vertex array and a color array.

52

“Hello OpenGL ES”“Hello OpenGL ES”

TInt CSigTriangleGL::DrawCallback(TAny* aInstance)
{

CSigTriangleGL* instance = (CSigTriangleGL*) aInstance;

glClear (GL_COLOR_BUFFER_BIT);
glLoadIdentity ();
glTranslatef (0,0,-5.f);
glDrawArrays (GL_TRIANGLES,0,3);

eglSwapBuffers (instance->iEglDisplay,instance->iEglSurface);

/* To keep the background light on */
if (!(instance->iFrame%100)) User::ResetInactivityTime();

instance->iFrame++;
return 0;

}
OpenGL ES

- This is the render callback. We just clear the color buffer, translate
camera a bit and draw a triangle.

- Code keeps a running frame counter. Every once in a while call is
made to User::ResetInactivityTime() to reset the inactivity counters (to
avoid dimming of display backlight).

53

“Hello OpenGL ES”“Hello OpenGL ES”

void CSigTriangleContainer::ConstructL(const TRect& /* aRect */)
{

iGLInitialized = EFalse;

CreateWindowL();
SetExtentToWholeScreen();
ActivateL();

CSigTriangleGL* gl = new (ELeave) CSigTriangleGL();
gl->Construct(Window());

iGLInitialized = ETrue;
}

CSigTriangleContainer::~CSigTriangleContainer()
{
}

Container

-ConstructL() will be called by the app framework to initialize the View.
iGLInitialized is used to block GL calls before actual initialization is done
(window operations may cause calls to SizeChanged function).
-We set the extent to fill the whole screen and call the constructor for the
GL part of the application. We give in to that constructor a Symbian
window class (RWindow) that we get from the Window() function.
-After the constructor returns, GL is in initialized state.

54

“Hello OpenGL ES”“Hello OpenGL ES”

void CSigTriangleContainer::SizeChanged()
{

if(iGLInitialized)
{

glViewport(0,0,Size().iWidth,Size().iHeight);
}

}

void HandleResourceChange(TInt aType)
{

if(aType == KEikDynamicLayoutSwitch)
{

// Screen resolution changed, make window fullscreen in a new resolution
SetExtentToWholeScreen();

}
}

TInt CSigTriangleContainer::CountComponentControls() const
{

return 0;
}

CCoeControl* CSigTriangleContainer::ComponentControl(TInt /* aIndex */) const
{

return NULL;
}

Container

-SizeChanged() will get called when the application window changes size.
If GL is not initialized we don’t change the viewport here (if context is not
valid, calling GL functions may crash the application)
-HandleResourceChange needs to be implemented to support Layout
switching in the scalable UI architecture. Resolution of the device may
change on the fly for example when the display is rotated.

55

‘‘Hello OpenGL ES”‘‘Hello OpenGL ES”

/**
* Initialize OpenGL ES context and initial OpenGL ES state *
**/
void CSigTriangleGL::Construct(RWindow aWin)
{

iWin = aWin;

iEglDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
if(iEglDisplay == NULL) User::Exit(-1);

if(eglInitialize(iEglDisplay,NULL,NULL) == EGL_FALSE)
User::Exit(-1);

EGLConfig config,colorDepth;
EGLint numOfConfigs = 0;

OpenGL ES

-This is our GL initialization code, called from the View.
-eglGetDisplay(EGL_DEFAULT_DISPLAY) – get the default
display to render to
-eglInitialize()

- initialize EGL on that display

56

‘‘Hello OpenGL ES”‘‘Hello OpenGL ES”

switch(iWin.DisplayMode())
{

case (EColor4K): { colorDepth = 12; break; }
case (EColor64K): { colorDepth = 16; break; }
case (EColor16M): { colorDepth = 24; break; }
default:

colorDepth = 32;
}

EGLint attrib_list[] = { EGL_BUFFER_SIZE, colorDepth,
EGL_DEPTH_SIZE, 15,
EGL_NONE };

if(eglChooseConfig(iEglDisplay,attrib_list,&config,1,
&numOfConfigs) == EGL_FALSE) User::Exit(-1);

OpenGL ES

-iWin.DisplayMode() - find out the
display mode of the window (match config with that)
-eglChooseConfig() - choose the best
matching config (see EGL spec for selection criteria)

57

“Hello OpenGL ES”“Hello OpenGL ES”

iEglSurface = eglCreateWindowSurface(iEglDisplay, config, &iWin, NULL);
if(iEglSurface == NULL) User::Exit(-1);

iEglContext = eglCreateContext(iEglDisplay,config, EGL_NO_CONTEXT, NULL);
if(iEglContext == NULL) User::Exit(-1);

if(eglMakeCurrent(iEglDisplay, iEglSurface, iEglSurface,
iEglContext) == EGL_FALSE) User::Exit(-1);

OpenGL ES

-eglCreateWindowSurface() - create a window
surface for rendering
-eglCreateContext() - create a rendering
context (multiple contexts may be used, but not at the same time)
-eglMakeCurrent() - make surface
current and context current to the display and the thread

58

“Hello OpenGL ES”“Hello OpenGL ES”

/* Create a periodic timer for display refresh */
iPeriodic = CPeriodic::NewL(CActive::EPriorityIdle);

iPeriodic->Start(100, 100, TCallBack(
SigTriangleGL::DrawCallback, this));

initGLES();

OpenGL ES

-Cperiodic::NewL() - create a Symbian Active Object
(form of co-operative multi-tasking) for providing a timer callback
-initGLES() - call the GL initialization part
shown before

59

Carbide C++ ExpressCarbide C++ Express

• Free IDE for S60 development from
– http://www.forum.nokia.com

• Supports 2nd edition and 3rd edition SDKs

• Here we focus on 3rd edition
– Future devices will be 3rd edition (e.g., N93)

http://www.forum.nokia.com

60

Importing projectImporting project

61

Importing projectImporting project

62

Importing projectImporting project

Select emulator configuration
and phone configuration (GCCE)
under S60_3rd.

63

Importing .PKG file (for .SIS)Importing .PKG file (for .SIS)

• Select from menu: File -> Import

• Select “File System”

• Navigate to folder “sis” and import .PKG file
– “EGTriangle_gcce.pkg”

• Build will automatically generate install file

64

Importing .PKG fileImporting .PKG file

65

Compiling & DebuggingCompiling & Debugging

• Select from menu: Project -> Build ALL

• Select from menu: Run -> Debug

66

Creating debug configCreating debug config

Click “New” to create new
debug config.

- Select NEW to create new debug configuration

67

Creating debug configCreating debug config

- Right values should be filled automatically by IDE

68

Selecting applicationSelecting application

• When emulator starts, navigate to “Installat.”
folder

• Select application to launch (EGTriangle)

69

ApplicationApplication

Click this button to cycle
through resolutions and
check that your application
works in all resolutions.

70

Getting it to HWGetting it to HW

• Go to menu: Window -> Open Perspective ->
Other

• Select “Symbian (default)”

• Go to menu: Window -> Show view -> Build
Configurations

71

Selecting build configurationSelecting build configuration

Click this button to open a
list of possible build
configurations. Select
“S60 3.0 Phone (GCCE)
Release”

72

Installation fileInstallation file

• Build the project (CTRL-B)

• Installation file is generated during build

• Select it from C/C++ Projects view
– EGTriangle_GCCE.sis

• From context menu select “copy”

• Paste it to desktop and send using bluetooth

73

Fixed point programmingFixed point programming

- Why to use it?
- Most mobile handsets don’t have a FPU

- Where does it make sense to use it?
- Where it makes the most difference

- For per-vertex processing: morphing, skinning, etc.

- Per vertex data shouldn’t be floating point

- OpenGL ES API supports 32-bit FP numbers

74

Fixed point programmingFixed point programming

- There are many variants of fixed point:
- Signed / Unsigned

- 2’s complement vs. Separate sign

- OpenGL ES uses 2’s complement

- Numbers in the range of [-32768, 32768 [

- 16 bits for decimal bits (precision of 1/65536)

- All the examples here use .16 fixed point

•Fixed point scale is 2^16 (65536, 0x10000).

75

Fixed point programmingFixed point programming

- Examples:
0x0001 0000 = “1.0f”

0x0002 0000 = “2.0f”

0x0010 0000 = “16.0f”

0x0000 0001 = 1/0x10000(0x10000 = 216)

0xffff ffff = -1/0x10000(-0x0000 0001)

76

64-bit

Fixed point programmingFixed point programming

>> 16 = RESULT

Intermediate overflow
• Higher accuracy (64-bit)
• Downscale input
• Redo range analysis

Result overflow
• Redo range analysis
• Detect overflow, clamp

*VALUE 1 VALUE 2
32-bit 32-bit

-Multiplying two 32-bit numbers with standard C “int” multiply gives you
lower 32 bits from that multiplication.
-Intermediate value may need 64 bits (high 32-bits cannot be ignored in
this case).
-This can occur for example if you multiply two fixed point numbers
together (also two fixed point scales multiplied together at the same time).
-Solution 1: use 64-bit math for the intermediate, use 64-bit shifter to get
the result down.
-Solution 2: downscale on the input (just for this operation), for example
divide input operands by 2^4, take that into account in result.
-Solution 3: redo the range analysis.
-Also the result may overflow (even if internal precision of 64-bit would be
used for intermediate calculation).
-Solution 1: redo the ranges.
-Solution 2: clamp the results (it’s better to clamp than just overflow.
Clamping limits the resulting error, with ignored overflow the errors easily
become very large).

77

Fixed point programmingFixed point programming

- Convert from floating point to fixed point
#define float_to_fixed(a) (int)((a)*(1<<16))

- Convert from fixed point to floating point

#define fixed_to_float(a) (((float)a)/(1<<16))

- Addition
#define add_fixed_fixed(a,b) ((a)+(b))

- Multiply fixed point number with integer
#define mul_fixed_int(a,b) ((a)*(b))

Notes about overflows:

-conversion from float is not possible if input number is not in the right
range [-32768, 32768[.
-conversion from fixed reduces accuracy (float has 25 bits for mantissa
and sign, whereas fixed point uses 32 bits) E.g., (32767.0 + 1/65536 =
32767.0000152). If accuracy is crucial, convert to double to preserve the
result.
-add can overflow by one bit (e.g. by adding 32767.0 + 32767.0), result
overflows. If you use add for averaging, you may also divide both input
numbers by two and then just add them together. This doesn’t overflow in
the intermediate calculations, but it loses some accuracy (lowest bit from
both inputs).
-multiplying fixed point number with integer can overflow if result does not
fit into 32-bit, examples: 32767.0 * 2 or 2.0 * 16384.

78

Fixed point programmingFixed point programming

- MUL two FP numbers together
#define mul_fixed_fixed(a,b) (((a)*(b)) >> 16)

- If another multiplier is in] -1.0, 1.0 [, no overflow

- Division of integer by integer to a fixed point result
#define div_int_int(a,b) (((a)*(1<<16))/(b))

- Division of fixed point by integer to a fixed point result
#define div_fixed_int(a,b) ((a)/(b))

- Division of fixed point by fixed point
#define div_fixed_fixed(a,b) (((a)*(1<<16))/(b))

Notes about overflows:
-MUL two FP numbers together can overflow in the intermediate
calculation (a*b), an example: 2.0 * 2.0 (intermediate is: 2*2*1^16*1^16,
requires 35 bits intermediate incl. sign bit).
-If the operation can be done with 32x32 -> 64-bit multiply, followed by 16-
bit shift, overflow only occurs if the result after the shift does not fit into 32-
bit (in that case either the range has to be changed or the destination
should be carried over in 64-bit number).
-Division of integer by integer can overflow if a is not in the range [-
32768,32767] (because multiplication of a by (1<<16) does not fit in to 32
bits).
-Division of fixed by integer cannot overflow, but results may become zero.
-Division of fixed by fixed may overflow if a is not in range]-1.0, 1.0[,
intermediate overflow.

79

Fixed point programmingFixed point programming

- Power of two MUL & DIV can be done with shifts

- Fixed point calculations overflow easily

- Careful analysis of the range requirements is required

- Always try to use as low bit ranges as possible
- 32x8 MUL is faster than 32x32 MUL (some ARM)

- Using unnecessary “extra bits” slows execution

- Always add debugging code to your fixed point math

80

Fixed point programmingFixed point programming

#if defined(DEBUG)
int add_fix_fix_chk(int a, int b)
{

int64 bigresult = ((int64)a) + ((int64)b);
int smallresult = a + b;
assert(smallresult == bigresult);
return smallresult;

}
#endif

#if defined(DEBUG)
define add_fix_fix(a,b) add_fix_fix_chk(a,b)
#else
define add_fix_fix(a,b) ((a)+(b))
#endif

-Do all of the fixed point operations with macros and not by direct calculus.
-Create DEBUG variants for every operation you do in fixed point (even
simplest ADD, MUL, …). When you are compiling debug builds, all
operations should assert that no overflows occur. If overflow assert is
triggered, something needs to be done (ignore if not big enough visual
impact, change ranges, etc.).

81

Fixed point programmingFixed point programming

- Complex math functions
- Pre-calculate for the range of interest

- An example: Sin & Cos
- Sin table between [0, 90°]

- Fixed point angle

- Generate other angles and Cos from the table

- Store as fixed point ((short) (sin(angle) * 32767))

- Performance vs. space tradeoff: calculate for all angles

82

Fixed point programmingFixed point programming

- Sin
- 90 = 2048 (our angle scale)

- Sin table needs to include 0 and 90

INLINE fp_sin(int angle)
{

int phase = angle & (2048 + 4096);
int subang = angle & 2047;

if(phase == 0) return sin_table (subang);
else if(phase == 2048) return sin_table (2048 - subang);
else if(phase == 4096) return –sin_table (subang);
else return –sin_table (2048 – subang);

}

- This function can be easily converted to be just single table lookup by
precalculating SIN from 0 to 360+90 (both SIN and COS can then be
referenced from the same table) if the angles are guaranteed to be
between [0,360].

83

Example: MorphingExample: Morphing

• Simple fixed point morphing loop (16-bit data, 16-bit coeff)

#define DOMORPH_16(a,b,t) (TInt16)(((((b)-(a))*(t))>>16)+(a))

void MorphGeometry(TInt16 *aOut, const TInt16 *aInA, const TInt16
*aInB, TInt aCount, TInt aScale)

{
int i;

for(i=0; i<aCount; i++)
{

aOut[i*3+0] = DOMORPH_16(aInB[i*3+0], aInA[i*3+0], aScale);
aOut[i*3+1] = DOMORPH_16(aInB[i*3+1], aInA[i*3+1], aScale);
aOut[i*3+2] = DOMORPH_16(aInB[i*3+2], aInA[i*3+2], aScale);

}
}

-Morphing is done for 16-bit vertex data (16-bit vertices, 16-bit normals).
-This is done to make the fixed point math to fit inside of 32-bit integers.
-Standard 32-bit mul and addition is enough here.

84

Converting existing codeConverting existing code

- OS/device conversions
- Programming model, C/C++, compiler, CPU

- Windowing API conversion
- EGL API is mostly cross platform

- EGL Native types are platform specific

- OpenGL -> OpenGL ES conversion

85

Example: Symbian portingExample: Symbian porting

Programming model
- C++ with some changes (e.g., exceptions)

- Event based programming (MVC), no main / main loop

- Three level multitasking: Process, Thread, Active Objects

- ARM CPU
- Unaligned memory accesses will cause exception

86

Example: EGL portingExample: EGL porting

- Native types are OS specific
- EGLNativeWindowType (RWindow)

- EGLNativePixmapType (CFbsBitmap)

- Pbuffers are portable

- Config selection
- Select the color depth to be same as in the display

- Windowing system issues
- What if render window is clipped by a system dialog?

- Only full screen windows may be supported

- Even though Pbuffers are “portable” in the sense that they are OS
independent in the EGL API, there may be implementations that do not
support Pbuffers at all.

87

OpenGL portingOpenGL porting

• glBegin/glEnd wrappers
• _glBegin stores the primitive type
• _glColor changes the current per-vertex data
• _glVertex stores the current data behind arrays and increments
• _glEnd calls glDrawArrays with primitive type and length

_glBegin(GL_TRIANGLES);
_glColor4f(1.0,0.0,0.0,1.0);
_glVertex3f(1.0,0.0,0.0);
_glVertex3f(0.0,1.0,0.0);
_glColor4f(0.0,1.0,0.0,1.0);
_glVertex3f(0.0,0.0,1.0);

_glEnd();

-In the code above color is only specified twice, but in the vertex arrays it
needs to be specified for each vertex.
-_glVertex3f call copies the current color, normal, texcoord to the vertex
arrays even if those are not changed in the emulated code.

88

OpenGL portingOpenGL porting

• Display list wrapper
– Add the display list functions as wrappers

– Add all relevant GL functions as wrappers

– When drawing a list, go through the collected list

89

OpenGL portingOpenGL porting

void _glEnable(par1, par2)
{
if(GLOBAL()->iSubmittingDisplayList)
{

*(GLOBAL()->dlist)++ = DLIST_CMD_GLENABLE;
*(GLOBAL()->dlist)++ = (GLuint)par1;
*(GLOBAL()->dlist)++ = (GLuint)par2;

}
else
{

glEnable(par1,par2);
}

}

-This is a example of a wrapped glEnable() call. Internally it checks if the
display list is being built. If it is, we just collect the data from this function
call to the list for later execution.
-Note: Display Lists allow for all sorts of optimizations in _theory_ (like
precalculating things for occlusion culling, analyzing vertex ranges, …),
but it is hard to do in practice. For example, here we should perhaps
analyze also if the enable actually has any effect, or if it creates a “state
block” that could be tracked and the rendering optimized inside the display
list code.
-Doing optimal display lists on these devices with small amount of memory
is tricky. If you really need performance for the emulated application,
convert the application to use vertex arrays instead.

90

OpenGL portingOpenGL porting

• Vertex arrays
– OpenGL ES supports only vertex arrays

– SW implementations get penalty from float data

– Use as small types as possible (byte, short)

– For HW it shouldn’t make a difference, mem BW

– With OpenGL ES 1.1 use VBOs

-Memory usage is crucial. If your geometry fits into 8-bit without
degradation in quality, do it. It uses less memory and can save some CPU
cycles from transforms on the side (for example, ARM multiplication of
32x8 can be 2 cycles, whereas 32x32 can be 5 cycles).

91

OpenGL portingOpenGL porting

• No quads
– Convert a quad into 2 triangles

• No real two-sided lighting
– If you really need it, submit front and back triangles

• OpenGL ES and querying state
– OpenGL ES 1.0 only supports static getters

– OpenGL ES 1.1 supports dynamic getters

– For OpenGL ES 1.0, create own state tracking if needed

92

Questions?Questions?

?? ?

93

94

Building scalable 3D applications
Ville Miettinen

Hybrid Graphics

95

What is this
”mobile platform”?
What is this
”mobile platform”?

• CPU speed and available memory varies
– Current range ~30Mhz - 600MHz, no FPUs

• Portability issues
– Different CPUs, OSes, Java VMs, C compilers, ...

• Different resolutions
– QCIF (176x144) to VGA (640x480), antialiasing on higher-

end devices

– Color depths 4-8 bits per channel (12-32 bpp)

96

Graphics capabilitiesGraphics capabilities

• General-purpose multimedia hardware
– Pure software renderers (all done using CPU & integer ALU)
– Software + DSP / WMMX / FPU / VFPU
– Multimedia accelerators

• Dedicated 3D hardware
– Software T&L + HW tri setup / rasterization
– Full HW

• Performance: 50K – 2M tris, 1M – 100M pixels

97

Dealing with diversityDealing with diversity

• Problem: running the same game on 100+ different
devices
– Same gameplay but can scale video and audio

• Scalability must be built into game design

• Profile-based approach

98

3D content is easy to scale3D content is easy to scale

• Separate low and high poly 3D models

• Different texture resolutions & compressed formats

• Scaling down special effects not critical to game
play (particle systems, shadows)
– Important to realize what is a ”special effect”

• Rendering quality controls
– Texture filtering, perspective correction, blend functions,

multi-texturing, antialiasing

99

Building scalable 3D appsBuilding scalable 3D apps

• OpenGL ES created to standardize the API and
behavior
– ES does not attempt to standardize performance
– Two out of three ain’t bad

• Differences between SW/HW configurations
– Trade-off between flexibility and performance

– Synchronization issues

100

Building scalable 3D appsBuilding scalable 3D apps

• Scale upwards, not downwards
– Bad experiences of retro-fitting HW titles to SW
– Test during development on lowest-end platform

• Both programmers and artists need education
– Artists can deal with almost anything as long as they know

the rules...
– And when they don’t, just force them (automatic checking in

art pipeline)

101

Reducing state changesReducing state changes

• Don’t mix 2D and 3D calls !!!!
– Situation may become better in the future, though...

• Unnecessary state changes root of all evil
– Avoid changes affecting the vertex pipeline

– Avoid changes to the pixel pipeline

– Avoid changing textures

102

”Shaders””Shaders”

• Combine state changes into blocks (”shaders”)
– Minimize number of shaders per frame

– Typical application needs only 3-10 ”pixel shaders”

• Different 3-10 shaders in every application

• Enforce this in artists’ tool chain

• Sort objects by shaders every frame
– Split objects based on shaders

103

Complexity of shadersComplexity of shaders

• Software rendering: Important to keep shaders as
simple as possible
– Do even if introduces additional state changes

– Example: turn off fog & depth buffering when rendering
overlays

• Hardware rendering: Usually more important to
keep number of changes small

104

Of models and strippingOf models and stripping

• Use buffer objects of ES 1.1
– Only models changed manually every frame

need vertex pointers

– Many LOD schemes can be done just by
changing index buffers

• Keep data formats short and simple
– Better cache coherence, less memory used

105

Triangle dataTriangle data

• Minimize number of rendering calls
– Trade-off between no. of render calls & culling efficiency
– Combine strips using degenerate triangles
– Understanding vertex caching

• Automatically optimize vertex access order

• Triangle lists better than their reputation

• Optimize data in your art pipeline (exporters)
– Welding vertices with same attributes (with tolerance)

• Vertices/triangle ratio in good data 0.7-1.0

– Give artists as much automatic feedback as possible

106

Transformations and
matrices
Transformations and
matrices

• Minimize matrix changes
– Changing a matrix may involve many hidden costs

– Combine simple objects with same transformation

– Flatten and cache transformation hierarchies

• ES 1.1: Skinning using matrix palettes
– CPU doesn’t have to touch vertex data

– Characters, natural motion: grass, trees, waves

• ES 1.1: Point sprites

107

Lighting and materialsLighting and materials

• Fixed-function lighting pipelines are so 1990s
– Drivers implemented badly even in desktop space

– In practice only single directional light fast

– OpenGL’s attenuation model difficult to use

– Spot cutoff and specular model cause aliasing

– No secondary specular color

108

Lighting: the fast wayLighting: the fast way

• While we’re waiting for OpenGL ES 2.0...
– Pre-computed vertex illumination good if slow T&L

– Illumination using texturing

• Light mapping

• ES 1.1: dot3 bump mapping + texture combine

• Less tessellation required

• Color material tracking for changing materials

• Flat shading is for flat models!

109

Illumination using
multitexturing
Illumination using
multitexturing

110

111

112

TexturesTextures

• Mipmaps always a Good Thing™
– Improved cache coherence and visual quality

– ES 1.1 supports auto mipmap generation

• Different strategies for texture filtering

• SW: Perspective correction not always needed

• Avoid modifying texture data

• Keep textures ”right size”, use compressed textures

113

TexturesTextures

• Multitexturing
– Needed for texture-based lighting

– Always faster than doing multiple rendering passes

– ES 1.1: support at least two texturing units

– ES 1.1: TexEnvCombine neat toy

• Combine multiple textures into single larger one
– Reduce texture state changes (for fonts, animations, light

maps)

114

Textures and shots from Kesmai’s Air Warrior 4 (never published)

115

Object orderingObject ordering

• Sort objects into optimal rendering order
– Minimize shader changes

– Keep objects in front-to-back order

• Improves Z-buffering efficiency

– Satisfying both goals: bucketize objects by shader, sort
buckets by Z

116

Thank you!Thank you!

• Any questions?

117

118

M3G OverviewM3G Overview

Tomi Aarnio

Nokia Research Center

I’ll give you an overview of the Mobile 3D Graphics API, with some
performance tips.
Mark will then show you actual code examples.

119

ObjectivesObjectives

• Get an idea of the API structure and feature set

• Learn practical tricks not found in the spec

After this session you should have a good idea of what features you can
find in the API, and have some tricks up your sleeve on how to use those
features effectively on real devices.

120

PrerequisitesPrerequisites

• Fundamentals of 3D graphics

• Some knowledge of OpenGL ES

• Some knowledge of scene graphs

What you should know to get the most out of this session?
Well, I’m sure you have adequate background since you’re still sitting here
after the first presentations.

121

Mobile 3D Graphics APIsMobile 3D Graphics APIs

OpenGL ESOpenGL ESOpenGL ES

Java ApplicationsJava ApplicationsJava Applications

M3G (JSR-184)M3G (JSRM3G (JSR--184)184)

Native C/C++
Applications

Native C/C++Native C/C++
ApplicationsApplications

Graphics HardwareGraphics HardwareGraphics Hardware

This diagram you just saw a minute ago, but I’m replicating it here to
emphasize that M3G really builds on the feature set of OpenGL ES.

122

Why Should You Use Java?Why Should You Use Java?

• It has the largest and fastest-growing installed base
– 1.2B Java phones had been sold by June 2006 (source: Ovum)

– Nokia alone had sold 350M Java phones by the end of 2005

– Less than 50M of those also supported native S60 applications

• It increases productivity compared to C/C++
– Memory protection, type safety fewer bugs

– Fewer bugs, object orientation better productivity

So why should you use Java in the first place? Two reasons.
First, for most devices out there, it’s the only way to get your code in.
Phones with an open OS are few and far between. Let the figures here
speak for themselves.
Second, it’s easier and faster to write code in Java compared to C/C++,
not to mention assembly.

123

0.07 0.04

0.22 0.26

0.4

0.25

0.0

0.5

1.0

Vertex transformation Image downsampling

R
el

at
iv

e
sp

ee
d

Assembly
KVM
Jazelle™
HotSpot

Java Will Remain SlowerJava Will Remain Slower

Benchmarked on an ARM926EJ-S processor with hand-optimized Java and assembly code

But of course there are problems too. Java has a reputation of being slow,
and that’s certainly true for mobile phones.
To give you an idea, this graph here compares three different Java virtual
machines against assembly code.
The tall orange bars represent native code.
First we have the KVM, which is used in 90% of phones today. You can
see that it’s quite slow.
Then we have Jazelle, which is a hardware accelerator from ARM. Big
improvement, but still not close.
Finally we have a HotSpot VM from Sun. Well, it matches Jazelle in these
benchmarks, but in real life, it’s a disaster. The compiler and the compiled
code together take up so much RAM that you can only keep the most
frequently and most recently used pieces of code in cache. So, when you
encounter a new monster in an action game, the compiler kicks in and the
game freezes for half a second. Not good.

124

Why?Why?

• Array bounds checking

• Dynamic type checking

• No stack allocation (heap only)

• Garbage collection

• Slow Java-native interface

• No access to special CPU features

• Stack-based (non-RISC) bytecode

• Unpredictable JIT compilers

No Java compiler or
accelerator can fully
resolve these issues

So why is it that not even hardware acceleration can make Java run as
fast as native code? Some reasons are listed on this slide.
First we have things related to run-time error checking – array bounds
checking, dynamic type checking, managed memory allocation.
Then we have the slow Java-native interface. Function calls are slow, and
data traffic is slower still.
One important thing is that you get no access to SIMD instructions and
other special CPU features. When you’re working in native code, you can
get a big performance boost by writing some of your critical routines in
assembly and using the ARM equivalents of Intel’s MMX and SSE.
Then finally, there’s the problem that Java bytecode has a stack-based
execution model, whereas the ARM and probably most other embedded
CPUs are RISC processors. It’s hard for the VM to compile stack-based
code into fast register-based code, and that’s probably one of the reasons
why the HotSpot VM performs so badly. But there are other reasons, too.
So the bottom line is that Java will remain slower and consume more
memory than native code, and we just have to live with that fact. The
performance gap will become smaller, but it will not go away.

125

M3G OverviewM3G Overview

Design principles
Getting started

Basic features

Performance tips

Deforming meshes

Keyframe animation

Summary & demos

Here we have the agenda.
I’ll start by explaining some fundamental design issues, then proceed
through the API in bottom-up order.

126

M3G Design PrinciplesM3G Design Principles

#1#1#1 No Java code along critical pathsNo Java code along critical pathsNo Java code along critical paths

• Move all graphics processing to native code
– Not only rasterization and transformations

– Also morphing, skinning, and keyframe animation

– Keep all data on the native side to avoid Java-native traffic

So with that background in mind, let’s see what our main design principles
were.
Well, the most important thing of course is to free the apps from doing
rasterization and transformations in Java. That’s simply too slow.
But when we have those in native code, then other things become the
bottlenecks. So, we decided to go for a retained mode, scene graph API
and keep all scene data on the native side. We also decided to include all
functionality that can be generalized well enough. As a result, we have
things like morphing, skinning and keyframe interpolation in the API.

127

M3G Design PrinciplesM3G Design Principles

• Do not add features that are too heavy for software engines

– Such as per-pixel mipmapping or floating-point vertices

• Do not add features that break the OpenGL 1.x pipeline

– Such as hardcoded transparency shaders

#2#2#2 Cater for both software and hardwareCater for both software and hardwareCater for both software and hardware

Secondly, we wanted the API to work well on today’s software-based
handsets as well as the hardware-accelerated ones in the future.

We had a rule that features that cannot be done efficiently in software will
not be included. Per-pixel mipmapping and floating-point vertex arrays fell
into that category.

On the other hand, we had a rule that no feature would be included that
cannot be easily implemented on fixed-function hardware, even if it would
be a useful feature and easy to do in software. Various hardcoded effects
for e.g. transparency and reflection were proposed, but rejected on that
basis.

128

M3G Design PrinciplesM3G Design Principles

• Address content creation and tool chain issues
– Export art assets into a compressed file (.m3g)

– Load and manipulate the content at run time

– Need scene graph and animation support for that

• Minimize the amount of “boilerplate code”

#3#3#3 Maximize developer productivityMaximize developer productivityMaximize developer productivity

Third, we didn’t want to leave content creation and tool chain issues
hanging in the air. We wanted to have a well-defined way of getting stuff
out from 3dsmax and other tools, and manipulating that content at run
time. That’s of course another reason to have scene management and
animation features in the API. We also defined a file format that matches
the features one-to-one.
Furthermore, we wanted the API to be at a high enough level that not
much boilerplate code needs to be written to get something done.

129

M3G Design PrinciplesM3G Design Principles

#4#4#4 Minimize engine complexityMinimize engine complexityMinimize engine complexity

#5#5#5 Minimize fragmentationMinimize fragmentationMinimize fragmentation

#6#6#6 Plan for future expansionPlan for future expansionPlan for future expansion

Here are some more design issues that we had to keep in mind.
Number four, minimize engine complexity. This meant that a commercial
implementation should be doable in 150k, including the rasterizer.
Number five, minimize fragmentation. This means that we wanted to have
a tight spec, so that you don’t have to query the availability of each and
every feature. There are no optional parts or extensions in the API,
although some quality hints were left optional. For instance, perspective
correction.
And finally, we wanted to have a compact API that can be deployed right
away, but so that adding more features in the future won’t cause ugly
legacy.

130

Why a New Standard?Why a New Standard?

• OpenGL ES is too low-level
– Lots of Java code, function calls needed for simple things

– No support for animation and scene management

– Fails on Design Principles 1 (performance) and 3 (productivity)

– …but may become practical with faster Java virtual machines

• Java 3D is too bloated
– A hundred times larger (!) than M3G

– Still lacks a file format, skinning, etc.

– Fails on Design Principles 1, 3, and 4 (code size)

Okay, so why did we have to define yet another API, why not just pick an
existing one?
OpenGL ES would be the obvious choice, but it didn’t fit the Java space
very well, because you’d need a lot of that slow Java code to get anything
on the screen. Also, you’d have to do animation yourself, and keep all
your scene data on the Java side. Basically you’d spend more time writing
your code, and yet the code would run slower in the end. That might
change in the future, when Java VMs become faster, but don’t hold your
breath.

The other choice that we had was Java 3D. At first it seemed to match our
requirements, and we gave it a serious try. But then it turned out that the
structure of Java 3D was simply too bloated, and we just couldn’t simplify
it enough to fit our target devices. Besides, even though the Java 3D is
something like a hundred times larger than M3G, it still lacks crucial things
like a file format and skinning. It’s also too damn difficult to use.

Okay, so we decided to re-invent the wheel. Let’s see how it works.

131

M3G OverviewM3G Overview

Design principles

Getting started
Basic features

Performance tips

Deforming meshes

Keyframe animation

Summary & demos

Okay, let’s first take a look at the M3G programming model, then continue
with the features.

132

The Programming ModelThe Programming Model

• Not an “extensible scene graph”
– Rather a black box – much like OpenGL

– No interfaces, events, or render callbacks

– No threads; all methods return only when done

• Scene update is decoupled from rendering
– render Draws an object or scene, no side-effects

– animate Updates an object or scene to the given time

– align Aligns scene graph nodes to others

What we have here is a simple, monolithic API. It’s not the usual
“extensible scene graph”, but rather a black box. There are no rendering
callbacks, no events, no interfaces, and no background threads. This
means that you can’t add your own custom objects into the scene graph
and expect the engine to call your draw() routine in the middle of the
rendering traversal. In this respect, M3G is very much like OpenGL: you
don’t expect callbacks from glDrawElements, either.
Also in the good black-box tradition, when you tell the API to render
something, it does just that, with no side-effects. It doesn’t change the
scene graph. When you need to change something, you call animate() or
align() or you use the individual set methods.

133

WorldWorld

Graphics3DGraphics3D

LoaderLoader

3D graphics context
Performs all rendering

Scene graph root node

Loads individual objects
and entire scene graphs
(.m3g and .png files)

Main ClassesMain Classes

134

Rendering StateRendering State

• Graphics3D contains global state
– Frame buffer, depth buffer

– Viewport, depth range

– Rendering quality hints

• Most rendering state is in the scene graph
– Vertex buffers, textures, matrices, materials, …

– Packaged into Java objects, referenced by meshes

– Minimizes Java-native data traffic, enables caching

135

Graphics3D: How To UseGraphics3D: How To Use

• Bind a target to it, render, release the target

void paint(Graphics g) {

try {

myGraphics3D.bindTarget(g);

myGraphics3D.render(world);

} finally {

myGraphics3D.releaseTarget();

}

}

So how do you use it? It’s as easy as 1-2-3: bind a target, render, release
the target. As shown here.

136

M3G OverviewM3G Overview

Design principles

Getting started

Basic features
Performance tips

Deforming meshes

Keyframe animation

Summary & demos

137

Renderable ObjectsRenderable Objects

MeshMesh
Made of triangles
Base class for meshes

Sprite3DSprite3D
2D image placed in 3D space
Always facing the camera

138

Sprite3DSprite3D

• 2D image with a position in 3D space

• Scaled mode for billboards, trees, etc.

• Unscaled mode for text labels, icons, etc.

• Not useful for particle effects – too much overhead

Image2D

Sprite3DSprite3D AppearanceAppearance

Image2DImage2D

CompositingModeCompositingMode

FogFog

139

MeshMesh

• A common VertexBuffer, referencing VertexArrays

• IndexBuffers (submeshes) and Appearances match 1:1

MeshMesh VertexBufferVertexBuffer coordinatescoordinates

normalsnormals

colorscolors

texcoordstexcoords

IndexBufferIndexBuffer

AppearanceAppearance

VertexArraysVertexArrays

140

VertexBuffer TypesVertexBuffer Types

FloatByte Short Fixed

Colors

Normals

Texcoords

Vertices

4D3D2D

Relative to OpenGL ES 1.1

Floating point vertex arrays were excluded for performance and code size
reasons. To compensate, there are floating point scale and bias terms for
vertex and texcoord arrays. They cause no overhead, since they can be
implemented with the modelview or texture matrix.

Homogeneous 4D coordinates were dropped to get rid of nasty special
cases in the scene graph, and to speed up skinning, morphing, lighting
and vertex transformations in general.

141

IndexBuffer TypesIndexBuffer Types

Im
plicit

Byte Short Strip Fan List

Point sprites

Points

Lines

Triangles

Relative to OpenGL ES 1.1 + point sprite extension

The set of rendering primitives was reduced to a minimum: triangle strips
with 16-bit indices (equivalent to glDrawElements) or implicit indices
(glDrawArrays).

On hindsight, triangle lists should’ve been included, since they are easier
to use and are not necessarily any slower than strips.

Point sprites are missing for a good reason: The M3G spec had been
publicly available for almost a year until point sprites were added into
OpenGL ES.

142

Buffer ObjectsBuffer Objects

• Vertices and indices are stored on server side
– Very similar to OpenGL Buffer Objects

– Allows caching and preprocessing (e.g., bounding volumes)

• Tradeoff – Dynamic updates have some overhead
– At the minimum, just copying in the Java array contents

– In the worst case, may trigger vertex preprocessing

143

Appearance ComponentsAppearance Components

CompositingModeCompositingMode

Material colors for lighting
Can track per-vertex colors

PolygonModePolygonMode

FogFog

Texture2DTexture2D

MaterialMaterial
Blending, depth buffering
Alpha testing, color masking

Winding, culling, shading
Perspective correction hint

Fades colors based on distance
Linear and exponential mode

Texture matrix, blending, filtering
Multitexturing: One Texture2D for each unit

Functionally related blocks of rendering state are grouped together.
Appearances as well as individual Appearance components can be shared
by arbitrary number of meshes.

This saves memory space, reduces garbage collection, and allows
implementations to quickly sort objects based on their rendering state.

144

The Fragment PipelineThe Fragment Pipeline

Alpha TestAlpha Test Depth TestDepth TestFogFog BlendBlend

TextureTexture
BlendBlend

TexelTexel
FetchFetch

TextureTexture
BlendBlend

FrameFrame
BufferBuffer

DepthDepth
BufferBuffer

Colored
Fragment

TexelTexel
FetchFetch

CompositingMode

Texture2D

Fog

Here is a high-level view of the M3G/OpenGL fragment pipeline, and how
some of the Appearance components map onto that. The other
components would map to the transformation & lighting pipeline in a
similar way.

145

The Scene GraphThe Scene Graph

SkinnedMeshSkinnedMesh

GroupGroup

GroupGroup

GroupGroup

MeshMesh

SpriteSprite

LightLight

WorldWorld

GroupGroup CameraCamera

GroupGroup MorphingMeshMorphingMesh

Not allowed!

Scene graph nodes can’t have more than one parent, so the scene graph
is actually just a tree.

Even though nodes can’t be instanced, their component objects can.
Textures, vertices, and all other substantial data is in the components, and
only referenced by the nodes.

146

Node TransformationsNode Transformations

• From this node to the parent node

• Composed of four parts
– Translation T

– Orientation R

– Non-uniform scale S

– Generic 3x4 matrix M

• Composite: C = T R S M
GroupGroup

GroupGroup

GroupGroup

MeshMesh

SpriteSprite

C

CC

C C

WorldWorld

147

Other Node FeaturesOther Node Features

• Automatic alignment
– Aligns the node’s Z and/or Y axes towards a target

– Recomputes the orientation component (R)

• Inherited properties
– Alpha factor (for fading in/out)

– Rendering enable (on/off)

– Picking enable (on/off)

• Scope mask

148

The File FormatThe File Format

Characteristics
– Individual objects, entire scene graphs, anything in between

– Object types match 1:1 with those in the API

– Optional ZLIB compression of selected sections

– Can be decoded in one pass – no forward references

– Can reference external files or URIs (e.g. textures)

– Strong error checking

149

M3G OverviewM3G Overview

Design principles

Getting started

Basic features

Performance tips
Deforming meshes

Keyframe animation

Summary & demos

150

Retained ModeRetained Mode

• Use the retained mode
– Do not render objects separately – place them in a World

– Minimizes the amount of Java code and method calls

– Allows the implementation to do view frustum culling, etc.

• Keep Node properties simple
– Favor the T R S components over M

– Avoid non-uniform scales in S

– Avoid using the alpha factor

M3G engines generally perform shader state sorting and view frustum
culling in retained mode. However, any culling done by the engine is very
conservative. The engine does not know which polygon mesh is a wall
that’s going to stay where it is, for instance. If you have a scene that could
be efficiently represented as a BSP tree, you can’t expect the engine to
figure that out. You need to construct the tree yourself, and keep it in the
application side.

151

Rendering OrderRendering Order

• Use layers to impose a rendering order
– Appearance contains a layer index (an integer)

– Defines a global ordering for submeshes & sprites

– Can simplify shader state for backgrounds, overlays

– Also enables multipass rendering in retained mode

• Optimize the rendering order
– Shader state sorting done by the implementation

– Use layers to force back-to-front ordering

152

TexturesTextures

• Use multitexturing to save in T&L and triangle setup

• Use mipmapping to save in memory bandwidth

• Combine small textures into texture atlases

• Use the perspective correction hint (where needed)
– Usually much faster than increasing triangle count

– Nokia: 2% fixed overhead, 20% in the worst case

153

MeshesMeshes

• Minimize the number of objects
– Per-mesh overhead is high, per-submesh also fairly high

– Lots of small meshes and sprites to render bad

– Ideally, everything would be in one big triangle strip

– But then view frustum culling doesn’t work bad

• Strike a balance
– Merge simple meshes that are close to each other

– Criteria for “simple” and “close” will vary by device

154

Shading StateShading State

• Software vs. hardware implementations
– SW: Minimize per-pixel operations

– HW: Minimize shading state changes

– HW: Do not mix 2D and 3D rendering

• In general, OpenGL ES performance tips apply

Most OpenGL ES performance tips given by Ville in the previous
presentation apply also for M3G applications.

155

Particle EffectsParticle Effects

Several problems
– Point sprites are not supported

– Sprite3D has too much overhead

Put all particles in one Mesh
– One particle == two triangles

– All glued into one triangle strip

– Update vertices to animate
• XYZ, RGBA, maybe UV

3
5

4

6

1

2

Triangle strip
starts here

Particles glued into
one tri-strip using

degenerate triangles

Use additive
alpha blend and
per-vertex colors

So how should you implement a particle system, given that points and
point sprites are not supported?

The first idea that comes to mind is to use Sprite3D. However, that would
make every particle an independent object, each with its own modelview
matrix, texture, and other rendering state. This implies a separate OpenGL
draw call and lots of overhead for each particle.

It is more efficient to represent particles as textured quads, all glued into
one big triangle strip that can be drawn in a single call. To make the
particles face the viewer, set up automatic node alignment for the Mesh
that encloses the particle system.

At run time, just update the particles’ x, y, z coordinates and colors in their
respective VertexArrays.

156

Terrain RenderingTerrain Rendering

Easy terrain rendering
– Split the terrain into tiles (Meshes)

– Put the meshes into a scene graph

– The engine will do view frustum culling

Terrain rendering with LOD
– Preprocess the terrain into a quadtree

– Quadtree leaf node == Mesh object

– Quadtree inner node == Group object

– Enable nodes yourself, based on the view frustum

When splitting the terrain, keep in mind that the per-mesh overhead can
be surprisingly high – especially on hardware accelerated platforms where
the actual rasterization is fast. The optimal tile size varies by device, but
any less than 100 polygons per mesh will most likely be
counterproductive.

Since the modelview matrix of each tile will be unique, small rounding
errors in the vertex pipeline may cause cracks between tiles. A simple
solution is to make the tiles overlap each other a bit.

157

M3G OverviewM3G Overview

Design principles

Getting started

Basic features

Performance tips

Deforming meshes
Keyframe animation

Summary & demos

158

Deforming MeshesDeforming Meshes

SkinnedMeshSkinnedMesh
Skeletally animated mesh

MorphingMeshMorphingMesh
Vertex morphing mesh

159

MorphingMeshMorphingMesh

• Traditional vertex morphing animation
– Can morph any vertex attribute(s)

– A base mesh B and any number of morph targets Ti

– Result = weighted sum of morph deltas

• Change the weights wi to animate

i
iiw BTBR

160

MorphingMeshMorphingMesh

Base Target 1
eyes closed

Target 2
mouth closed

Animate eyes
and mouth

independently

161

SkinnedMeshSkinnedMesh

• Articulated characters without cracks at joints
• Stretch a mesh over a hierarchic “skeleton”

– The skeleton consists of scene graph nodes

– Each node (“bone”) defines a transformation

– Each vertex is linked to one or more bones

– Mi are the node transforms – v, w, B are constant
i

iii vwv BM'

In the equation,
• v is the vertex position in the SkinnedMesh node’s coordinates
• Bi is the fixed at-rest transformation from SkinnedMesh to bone Ni

• Mi is the dynamic transformation from bone Ni to SkinnedMesh
• wi is the weight of bone Ni (the weights are normalized)
• 0 i N, where N is the number of bones associated with v
• v’ is the final position in the SkinnedMesh coordinate system

162

SkinnedMeshSkinnedMesh

Neutral pose, bones at restNeutral pose, bones at rest

Bone BBone A

"skin"shared vertex,
weights = (0.5, 0.5)

non-shared
vertex

163

SkinnedMeshSkinnedMesh

Bone A

B
one B

position in A's
coordinate system

position in B's
coordinate system

interpolated
position

Bone B rotated 90 degreesBone B rotated 90 degrees

The empty dots show where the vertex would end up if it were associated
with just one of the bones, respectively.

As the vertex is weighted equally by bones A and B, the final interpolated
vertex lies in between the empty dots.

164

SkinnedMeshSkinnedMesh

No skinning Smooth skinning
two bones per vertex

165

M3G OverviewM3G Overview

Design principles

Getting started

Basic features

Performance tips

Deforming meshes

Keyframe animation
Summary & demos

166

Animation ClassesAnimation Classes

KeyframeSequenceKeyframeSequence

AnimationControllerAnimationController

AnimationTrackAnimationTrack
A link between sequence,
controller and target

Object3DObject3D
Base class for all objects
that can be animated

Controls the playback of
one or more sequences

Storage for keyframes
Defines interpolation mode

167

AnimationControllerAnimationController

Animation ClassesAnimation Classes

Identifies
animated
property on
this object

Object3DObject3D

AnimationTrackAnimationTrack

KeyframeSequenceKeyframeSequence

168

KeyframeSequenceKeyframeSequence

sequence time

KeyframeSequenceKeyframeSequence

Diagram courtesy of Sean Ellis, Superscape

Keyframe is a time and the value of a property at that time

Can store any number of keyframes

Several keyframe interpolation modes

Can be open or closed (looping)

169

KeyframeSequenceKeyframeSequence

sequence time

KeyframeSequenceKeyframeSequence

Diagram courtesy of Sean Ellis, Superscape

Keyframe is a time and the value of a property at that time

Can store any number of keyframes

Several keyframe interpolation modes

Can be open or closed (looping)

170

KeyframeSequenceKeyframeSequence

Keyframe is a time and the value of a property at that time

Can store any number of keyframes

Several keyframe interpolation modes

Can be open or closed (looping)

sequence timet

v

KeyframeSequenceKeyframeSequence

Diagram courtesy of Sean Ellis, Superscape

171

AnimationControllerAnimationController

Can control several animation sequences together

Defines a linear mapping from world time to sequence time

Multiple controllers can target the same property

0 dsequence time

world timet

0

0 dsequence time

AnimationControllerAnimationController

Diagram courtesy of Sean Ellis, Superscape

172

AnimationControllerAnimationController

AnimationAnimation

4. Apply value to
animated property

0 dsequence time

1. Call animate(worldTime)

s
v

2. Calculate sequence
time from world time

3. Look up value at
this sequence time

Object3DObject3D

AnimationTrackAnimationTrack

KeyframeSequenceKeyframeSequence

Diagram courtesy of Sean Ellis, Superscape

173

AnimationAnimation

Tip: Interpolate quaternions as ordinary 4-vectors
– Supported in the latest M3G Exporter from HI Corp

– SLERP and SQUAD are slower, but need less keyframes

– Quaternions are automatically normalized before use

174

M3G OverviewM3G Overview

Design principles

Getting started

Basic features

Performance tips

Deforming meshes

Keyframe animation

Summary & demos

175

PredictionsPredictions

• Resolutions will grow rapidly from 128x128 to VGA
– Drives graphics hardware into all high-resolution devices

– Software rasterizers can’t compete above 128x128

• Bottlenecks will shift to Physics and AI
– Bottlenecks today: Rasterization and any Java code

– Graphics hardware will take care of geometry and rasterization

– Java hardware will increase performance to within 50% of C/C++

• Java will reinforce its position as the dominant platform

176

SummarySummary

• M3G enables real-time 3D on mobile Java
– By minimizing the amount of Java code along critical paths

– Designed for both software and hardware implementations

• Flexible design leaves the developer in control
– Subset of OpenGL ES features at the foundation

– Animation & scene graph features layered on top

Installed base growing by the millions each monthInstalled base growing by the millions each monthInstalled base growing by the millions each month

177

DemosDemos

178

2D

3D

Playman Winter Games –
Mr. Goodliving
Playman Winter Games –
Mr. Goodliving

179

Playman World Soccer –
Mr. Goodliving
Playman World Soccer –
Mr. Goodliving

• An interesting
2D/3D hybrid

• Cartoon-like 2D
characters set
in a 3D scene

• 2D overlays for
particle effects
and status info

180

Tower Bloxx – SumeaTower Bloxx – Sumea

• Puzzle/arcade
mixture

• Tower building
mode is in 3D, with
2D overlays and
backgrounds

• City building mode
is in pure 2D

181

Mini Golf Castles – SumeaMini Golf Castles – Sumea

• 3D with 2D
background
and overlays

• Skinning
used for
characters

• Realistic ball
physics

182

Q&AQ&A

Thanks: Sean Ellis, Kimmo Roimela,
Nokia M3G team, JSR-184 Expert Group,

Mr. Goodliving (RealNetworks),
Sumea (Digital Chocolate)

183

184

Using M3GUsing M3G

Mark Callow

Chief Architect

185

AgendaAgenda

• Game Development Process

• Asset Creation

• Program Development

• MIDlet Structure

• A MIDlet Example

• Challenges in Mobile Game Development

• Publishing Your Content

186

M3G Game DemoM3G Game Demo

Copyright 2005, Digital Chocolate Inc.

187

Game Development ProcessGame Development Process

• Traditional Java Game

Assets

Game logic Compile Java MIDlet JAR file

Images Sounds Music

Package

Other

D
istribute

Screen Image: Boulder Dash®-M.E.™

Game Platform

Sound

2D Graphics

Network

Other

Proprietary

Diagram courtesy of Sean Ellis, ARM.

Let’s have a quick look at the various steps involved in creating a traditional Java
game. We have a game platform such as MIDP 2 in the mobile device. We need
to write our game code targeted for this platform and compile it to a MIDlet. We
package this into a JAR file together with the game assets such as images,
sounds and music. Finally we distribute the game package to the customers.

I’ll be discussing each of these steps during the presentation.

188

M3G Development ProcessM3G Development Process

• How M3G Fits

Assets

Game logic Compile Java MIDlet Package JAR file

Images Sounds Music Other3D World

Expanded
game logic

Game Platform

Sound

2D Graphics

Network

Other

Proprietary

3D Graphics

D
istribute

Diagram courtesy of Sean Ellis, ARM.
Screen Image: Boulder Dash®-M.E.™Screen Image: Sega/Wow Entertainment RealTennis.™

Now what does M3G bring to the party? First and foremost of course is 3D
graphics. This means your assets will include 3d models or a 3d scene. You also
have the opportunity to expand your game logic. Effective use of 3D influences all
aspects of a game’s design and must be considered from the beginning of the
design process.

189

Assets
3D World

Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

D
istribute

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

Asset CreationAsset Creation

• Textures & Backgrounds

Images

Image EditorImage Editor with PNGwith PNG
output. E. g:output. E. g:

••Macromedia FireworksMacromedia Fireworks

••Adobe PhotoshopAdobe Photoshop

For any real m3g application, some art assets have to be created before the
program can do anything useful. So let’s look first at creating the assets and then
at the programming.

Textures and background images can be provided as PNG format files or the
image data can be included directly in an M3G file. We recommend creating
these assets in PNG format. PNG compresses better than plain zlib.

Some M3G plug-ins for 3d modeling tools automatically convert texture maps to
PNG format. If so, you can use any texture map format supported by your
modeling tool.

Do not use GIF files. Some M3G implementations appear to support GIF files as
an accidental side-effect of the underlying MIDP implementation. Do not be
fooled. The spec. does not require GIF support and many implementations do not
support the format.

190

Asset CreationAsset Creation

• Audio Tools

Assets
3D World

Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

D
istribute

Audio Production Tool; e. g.Audio Production Tool; e. g.
••Sony Sound ForgeSony Sound Forge®®

Commonly Used Formats:Commonly Used Formats:
••Wave, AU, MP3, SMAFWave, AU, MP3, SMAF

Sounds

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

The J2ME (MIDP 2.0) specification does not seem to have a list of formats for
which support is required. The formats listed here are commonly used.

SMAF (Synthetic music Mobile Application Format) is a Yamaha invented format
directly supported by chips used in many handheld portable devices. The file
extension is .mmf. SMAF files can have contain both recorded audio and
synthesizer sequences.

191

• Music Tools

Asset CreationAsset Creation

Assets
3D World

Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

D
istribute

MIDI Sequencer; e. g.MIDI Sequencer; e. g.
••SteinbergSteinberg CubaseCubase

Formats:Formats:
••SMAF, MIDI,SMAF, MIDI, cMIDIcMIDI,, MFiMFi

Music

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

MFi (Melody Format for i-Mode) is supported on all i-Mode phones worldwide. As
with SMAF, MFi can hold both MIDI-like data (cMIDI) and custom samples.

cMIDI is compact MIDI which reduces the range of allowed MIDI data thereby
reducing the file size.

For all of your audio , you will mostly be dealing with hardware designed for ring
tones. It is important that you understand the capabilities of the chip in your target
phone.

192

Asset CreationAsset Creation

• 3D Models

Assets
3D World

Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

D
istribute

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

3D World

3d Modeler with M3G plug3d Modeler with M3G plug--in; e.g.in; e.g.
••LightwaveLightwave

••MayaMaya

••3d studio max3d studio max

••Softimage|XSISoftimage|XSI

193

Export 3d Model to M3GExport 3d Model to M3G

194

M3G File ViewerM3G File Viewer

195

Demo: On a Real PhoneDemo: On a Real Phone

196

Tips for Designers 1Tips for Designers 1

• TIP: Don’t use GIF files
– The specification does not require their support

• TIP: Create the best possible quality audio & music
– It’s much easier to reduce the quality later than increase it

• TIP: Polygon reduction tools & polygon counters
are your friends
– Use the minimum number of polygons that conveys your

vision satisfactorily

Since we are looking at creating the 3D model assets, this is a good time for
some tips for designers.
As mentioned earlier, when designing sound it is important to be aware of the
capabilities of the target phone. Since these vary widely, it is best to create the
original audio assets at the best possible quality.

197

Tips for Designers 2Tips for Designers 2

• TIP: Use light maps for lighting effects
– Usually faster than per-vertex lighting

– Use luminance textures, not RGB

– Multitexturing is your friend

• TIP: Try LINEAR interpolation for Quaternions
– Faster than SLERP

– But less smooth

Use of linear interpolation for quaternions was already mentioned in Tomi’s
presentation.

198

Tips for Designers 3Tips for Designers 3

• TIP: Use background images
– Can be scaled, tiled and scrolled very flexibly

– Generally much faster than sky boxes or similar

• TIP: Use sprites as impostors & labels
– Generally faster than textured quads

– Unscaled mode is (much) faster than scaled

• LIMITATION: Sprites are not useful for particle
systems

Sprites may not be faster than textured quads when a GPU
is used for rendering.

In some implementations Loader.load(“/img.png”) will load
the image file via a MIDP image because native code is
unable to read from a java stream. This requires more
memory during loading.

199

AgendaAgenda

• Game Development Process

• Asset Creation

• Program Development

• MIDlet Structure

• A MIDlet Example

• Challenges in Mobile Game Development

• Publishing Your Content

200

Program DevelopmentProgram Development

Assets
3D World

Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

D
istribute

Compile Java MIDletExpanded
game logic Package JAR file

• Edit, Compile, Package

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

TraditionalTraditional
•• WtkWtk, shell, editor, make,, shell, editor, make, javacjavac

Integrated Development EnvironmentIntegrated Development Environment
•• EclipseEclipse

•• BorlandBorland JBuilderJBuilder

•• Sun Java StudioSun Java Studio

For the edit, compile build cycle you can use a traditional pipeline with a
command line shell, programmer’s editor, make and the standard java compiler
from JDK 1.4.x.

You can also use Sun’s Wireless Tool Kit, or similar, which saves you from
having to write a make file and lets you build your MIDlet with the push of a
button.

Alternatively you can use a full IDE such as Borland’s JBuilder, Sun’s Java Studio
or Eclipse.

201

Assets
3D World

Program DevelopmentProgram Development

• Test & Debug
Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

Game Platform

Sound

2D Graphics

Network

Proprietary

3D Graphics

D
istribute

Carrier/Maker supplied SDKCarrier/Maker supplied SDK
••EmulatorEmulator

••SimulatorSimulator

••Real deviceReal device

Screen Image: Sega/Wow Entertainment RealTennis.™

For testing and debugging you need to use an SDK supplied by either the carrier
or the handset maker. These SDKs contain an “emulator”, usually a PC
application that provides the functional environment of the real device. In at least
one case, Sony Ericsson, the SDK includes a way to link to a real handset
allowing applications to be tested and debugged on the real device. This is the
ideal arrangement.

Sun’s J2ME Wireless Toolkit (WTK 2.2) provides a generic emulator for
MIDP/CLDC. Two problems must be noted with this emulator. It will load GIF files
as textures. This is permitted but not required by the M3G spec. As I noted earlier,
you should avoid GIF files. Second it will not load M3G files that encode
KeyframeSequence values as short. They must be float. Several carriers make
their SDK’s by customizing WTK even though the JVM and the MIDP & 3D
renderer implementations used in WTK are often not those used in the real
phones.

This is a common problem with “emulators”. They can be quite different from the
real devices and there is typically no relationship between performance in an
“emulator” and performance on the real device.

202

AgendaAgenda

• Game Development Process
• Asset Creation
• Program Development
• MIDlet Structure
• A MIDlet Example
• Challenges in Mobile Game Development
• Publishing Your Content

203

• Derived from MIDlet,
• Overrides three methods

• And that’s it.

The Simplest MIDletThe Simplest MIDlet

Canvas.paint() performs rendering
using Graphics3D
object.

MIDlet.StartApp()

[initialize]
[request redraw]

MIDlet.destroyApp()

[shut down]
exit MIDlet.

Create canvas; load
world.

We’ve looked at creating assets and tools to use writing and debugging
the programs. What does an actual program look like? Here we’ll look at
the structure of a MIDlet, beginning with the simplest possible example?
It’s a class derived from MIDlet that overrides just 3 methods.
startApp just creates a canvas for display and loads the world to display; it
requests a redraw which results in the overridden paint method being
called which renders a view to the screen. destroyApp does some tidying
up. And that’s it. Of course, that’s not very interesting. We don’t get any
updates, and the display is static, but it shows the absolute basics. By
modifying the world and repainting, you can easily create animated 3D
scenes. Let’s have a look at the structure of a MIDlet with an update loop.

204

A More Interesting MIDletA More Interesting MIDlet
MIDlet.StartApp()

Create canvas; load
world, start update
thread

draw

Canvas.paint()

performs rendering
using Graphics3D
object

initialize

user input

scene update

request
redraw

wait

shut down

Get any user input via
Canvas.commandListener

Game logic, animate,
align if necessary

Wait to ensure
consistent
frame rate

MIDlet.destroyApp()
exit MIDlet

Exit request

Update loop.

Runnable.run()

Read user input,
update scene

Flow-chart courtesy of Sean Ellis, Superscape

So, here’s the diagram updated to show the main update loop. The MIDlet
implements the Runnable interface, which means providing one more
method, run() which contains the update loop.

The update loop reads user input, updates the scene, requests a redraw
and then waits until the next frame is scheduled. Waiting ensures a
consistent frame rate.

205

MIDlet PhasesMIDlet Phases

• Initialize

• Update

• Draw

• Shutdown

Let’s look at each of these phases in more detail.

206

InitializeInitialize

• Load assets: world, other 3D objects, sounds, etc.

• Find any objects that are frequently used

• Perform game logic initialization

• Initialize display

• Initialize timers to drive main update loop

Initialization gets us into a state where we can start the game. First, we
load all the assets we need, both for the 3D scene and any other UI
elements, music, sounds, etc. We should then look up any frequently used
objects in the World, to save time in the main game loop. For example, we
can find the player’s object, any non-player characters, etc. Of course, we
need to initialize anything that the actual game logic requires (monster
strengths, high-score tables, network connections to other players, or
whatever). Then we initialize the display, and the timers we use to drive
the main update loop, and kick off our first update.

207

UpdateUpdate

• Usually a thread driven by timer events

• Get user input

• Get current time

• Run game logic based on user input

• Game logic updates world objects if necessary

• Animate

• Request redraw

The update is usually attached to timer and other events. Obviously, we
need to respond to the user, so getting any input from them is the first
thing to do, and get the current time. We get the current time once to
avoid problems if the various steps here take significant time. The next
thing to do is to run the game logic based on the user input. While this will
be different for each game, the net effect of this is that it updates the state
of objects in the world as necessary. Opened a door? Rotate the door
object. Picked up a health bonus? Make it invisible, update your health,
change size of health bar. One tip here that works well is to divorce the
logic from the representation. Instead of rotating the door object to open it,
just start the “Open Door” animation. This creates fewer dependencies
between the assets and the logic, and allows the asset designers to use
rotating, sliding, dilating or exploding doors as they see fit. Call animate to
ensure that any animations actually run, then request a redraw.

208

Update TipsUpdate Tips

• TIP: Don’t create or release objects if possible

• TIP: Call system.gc() regularly to avoid long
pauses

• TIP: cache any value that does not change every
frame; compute only what is absolutely necessary

If at all possible, don’t create or release objects in the main loop. If you do have
to do this, call system.gc() regularly to ensure that you don’t get large garbage
collections that ruin the flow of the game. Cache any values that are not changing
every frame in order to avoid unnecessary recomputation.

209

DrawDraw

• Usually on overridden paint method

• Bind Graphics3D to screen

• Render 3D world or objects

• Release Graphics3D

– …whatever happens!

• Perform any other drawing (UI, score, etc)

• Request next timed update

After each update, we request a redraw. This usually results in a call to an
overridden paint method on a canvas. This is fairly simple – we just need
to bind the Graphics3D to the screen, render the world, and release it.
Remember that there is only one Graphics3D so we need to release it
whatever happens! (The best way to do this is in a finally clause.) Then we
can do any 2D UI drawing (score, health, etc) and request another update
in an appropriate amount of time.

210

Draw TipsDraw Tips

• TIP: Don’t do 2D drawing while Graphics3D is
bound

One restriction is that you can’t do 2D drawing while the Graphics3D is bound to
the screen, so you have to do it either before or after (or both).

211

ShutdownShutdown

• Tidy up all unused objects

• Ensure once again that Graphics3D is released

• Exit cleanly

• Graphics3D should also be released during
pauseApp

On shutdown, we just need to tidy up. It’s usually friendly to ensure that
the Graphics3D really has been released before exiting. This should also
happen if a call is made to pauseApp, since the new application that is
taking over the screen may also need to use 3D.

212

MIDlet ReviewMIDlet Review

draw

Graphics3D object
performs rendering

initialize

user input

scene update

request
redraw

wait

shut down

Get any user input,
network play, etc.

Game logic,
animate, align if
necessary

Wait to ensure
consistent
frame rate

Release assets,
tidy up

Exit request

Update loop.

Don’t create/destroy
objects if possible

Throttle to consistent
frame rate

Keep paint() as simple
as possible

Be careful with threads

Diagram courtesy of Sean Ellis, Superscape

Set up display, load
assets, find commonly
used objects, initiate
update thread.

So, here’s a diagram recapping what we have learned. Note that if nothing
is happening, we don’t need to continually redraw the screen – this will
reduce processor load and extend battery life. Similarly, simple scenes on
powerful hardware may run very fast; by throttling the framerate to
something reasonable, we extend battery life and are more friendly to
background processes.

Let’s look at a real example

213

AgendaAgenda

• Game Development Process
• Asset Creation
• Program Development
• MIDlet Structure
• A MIDlet Example
• Challenges in Mobile Game Development
• Publishing Your Content

214

Demo: UsingM3G MIDletDemo: UsingM3G MIDlet

Let’s have a look at the MIDlet in action before diving into the code.

215

UsingM3G MIDletUsingM3G MIDlet

• Displays Mesh, MorphingMesh and SkinnedMesh

• Loads data from .m3g files

• View can be changed with arrow keys

• Animation can be stopped and started

• Animation of individual meshes can be stopped
and started.

• Displays frames per second.

216

UsingM3G FrameworkUsingM3G Framework

import java.io.IOException;
import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;

public class Cans extends MIDlet implements CommandListener {
Command cmdExit = new Command("Exit", Command.SCREEN, 1);
Command cmdPlayPause = new Command("Ctrl",Command.SCREEN,1);
private TargetCanvas tcanvas = null;
Thread renderingT = null;
private String Filename = "/coffee.m3g";

public void startApp() {
if (tcanvas == null)
init();

renderingT = new Thread(tcanvas);
renderingT.start();
tcanvas.startPlay();

}

We’ve called our MIDlet class Cans. The interesting parts are highlighted in
green: the override of startApp() and initialization of a couple of commands.
startApp() initializes everything then kicks off the rendering thread.

Thread.start() calls the thread’s run() method. We’ll look at that later.

217

UsingM3G FrameworkUsingM3G Framework

public void pauseApp() {
if (tcanvas.isPlaying)
tcanvas.pausePlay();

renderingT.yield();
renderingT = null;

}

public void destroyApp(boolean u) {
pauseApp()
tcanvas = null;

}

Here are the overrides of pauseApp() & destroyApp(). They are very similar
functions.

218

UsingM3G FrameworkUsingM3G Framework

synchronized public void commandAction(Command c,
Displayable d)

{
if (c==cmdExit) {
notifyDestroyed();
return;

} else if (c==cmdPlayPause) {
if (tcanvas.isPlaying)
tcanvas.pausePlay();

else
tcanvas.startPlay();

}
}

This shows how to handle the exit and play-pause commands. You can study
this yourselves later.

219

UsingM3G InitializationUsingM3G Initialization

// From class Cans
public void init() {
Display disp = Display.getDisplay(this);
tcanvas = new TargetCanvas(Filename);
if (tcanvas.hasException)
notifyDestroyed();

tcanvas.setCommandListener(this);
tcanvas.addCommand(cmdExit);
tcanvas.addCommand(cmdPlayPause);
disp.setCurrent(tcanvas);

}

This shows the initialization. It’s pretty much the same for any MIDlet. Please
study it yourselves later.

220

UsingM3G InitializationUsingM3G Initialization

class TargetCanvas extends Canvas implements Runnable
… // instance variable declarations elided
public TargetCanvas(String m3gFile)
{
try
{
fileName = m3gFile;
g3d = Graphics3D.getInstance();
Load();
w = getWidth();
h = getHeight();
cameraManip = new CameraManip(gWorld);

}
catch(IOException e)
{
System.out.println("loading fails:"+fileName);
hasException = true;

}
}

Now it gets more interesting. We begin to use the M3G API. The canvas
constructor loads the 3d data and creates a CameraManip object. This handles
rotation of the scene-graph camera.

Note that TargetCanvas extends Canvas not GameCanvas because
GameCanvas swallows key strokes from the number keys and we use the
number keys to as controls. It implements the Runnable interface so we can run
the update loop from a Thread.

221

Loading the 3D dataLoading the 3D data

// class TargetCanvas
void Load() throws IOException {
loadObjs = Loader.load(fileName);
if (loadObjs==null)
throw new RuntimeException("M3G file error");

/* find the world node */
for (int i=0; i<loadObjs.length; ++i) {
if (loadObjs[i] instanceof World) {
gWorld = (World)loadObjs[i];
hasWorld = true;
break;
}

}

if (!hasWorld)
throw new RuntimeException(

"World node not found; incorrect m3g file?“);

This method loads the m3g file using the M3G Loader and verifies that it contains
a World node.

222

Loading the 3D Data (Cont.)Loading the 3D Data (Cont.)

meshController =
(AnimationController)gWorld.find(meshControllerId);

morphingMeshController =
(AnimationController)gWorld.find(morphingMeshControll

erId);
skinnedMeshController =

(AnimationController)gWorld.find(skinnedMeshControlle
rId);

/* Clean up after the loading process. */
System.gc();

}

After loading the file, the Load method looks for some scene-graph objects
needed for the user controls to function.

223

TargetCanvas run methodTargetCanvas run method

public void run()
{
for(;;) {
long start, elapsed;
start = System.currentTimeMillis();
handleInput();
repaint(); // Request paint()
elapsed = System.currentTimeMillis() - start;
// if (want to measure true frame rate)
// Unfriendly to system!!
//renderTime += (int)elapsed;
// else {
renderTime += (elapsed < 50) ? 50 : (int)elapsed;
try {
if (elapsed < 50) Thread.sleep(50-elapsed);

} catch (InterruptedException e) { }
//}

}
}

This is the Thread’s run method, the MIDlet’s heart.

Basically we have an infinite loop. First it checks the input at which point the
scene may be modified. Then it initiates rendering by requesting a repaint. After
this the thread will sleep, provided rendering the frame did not take too long.

An alternative option is to just increment the render time and return to the top of
the loop. This is very unfriendly to the system but is necessary in order to
measure the true frame rate.

224

TargetCanvas paint methodTargetCanvas paint method

synchronized protected void paint(Graphics g)
{
if (loadObjs == null) return;
g.setClip(0, 0, w, h);
try
{
g3d.bindTarget(g);
g3d.setViewport(0, 0, w, h);
render();

} finally { g3d.releaseTarget(); }

g.setColor(0xffffffff);
g.drawString("fps: " + fps, 2, 2, g.TOP|g.LEFT);

}

Here’s our override of the Canvas paint method. We bind the graphics to the
rendering target, set up the viewport and then render the 3D scene. Note that we
make sure to always call releaseTarget(). After that we use the 2D api to draw
the frame rate.

225

TargetCanvas render
method
TargetCanvas render
method

void render()
{

if (isPlaying) {
frameCount++;
fps = (int)((1000*frameCount) / renderTime) ;
/* update the scene */
gWorld.animate((int)renderTime);

}
g3d.render(gWorld);

}

Here’s the render method. The world is animated to update everything to the
current renderTime, then it is rendered. So you can see that basic use of M3G is
very simple. Most of what you’ve seen is standard for any MIDlet.

The MIDlet’s input handling is standard MIDP code. It sets or clears state
variables according to detected key presses. Since this is an M3G course, we
won’t spend time on basic MIDP stuff. Please study the source code yourselves.
We’ll study something uniquely 3D, manipulating the camera.

226

Camera ManipulationCamera Manipulation

/**
* A camera manipulator. This class applies rotations to
* a World’s activeCamera that make it rotate around the
* prime axes passing through the World's origin.
*/
public class CameraManip
{
public CameraManip(World world) { }

public void buildCameraXform() { }

public void
baseRotate(float dAngleX, float dAngleY, float dAngleZ){ }

public void
rotate(float dAngleX, float dAngleY, float dAngleZ) { }

public void setCameraXform() { }
}

The CameraManip class applies rotations to a World’s activeCamera
that make it rotate around the prime axes passing through the
World's origin.

The application maintains variables holding deltaX and deltaY rotations. Each
time an arrow button is clicked a small value is added to or subtracted from these
values. The input handler then calls cameraManip.rotate(deltaX, deltaY, 0).

227

Initializing CameraManipInitializing CameraManip

public CameraManip(World world) {
Transform world2Cam = new Transform();
float[] matrix = new float[16];
/* … class variable initialization elided */

curCamera = world.getActiveCamera();
if (curCamera != null) {
curCamera.getTransformTo(world, world2Cam);
world2Cam.get(matrix);
distToTarget = (float)Math.sqrt(matrix[3]*matrix[3]

+ matrix[7]*matrix[7]
+ matrix[11]*matrix[11]);

curCamera.getTransform(curOriginalXform);
rotate(0, 0, 0);
world2Cam = null;

}
}

The constructor
•Initializes all the class variables
•Computes the distance between the camera and the world origin, using
getTransformTo to obtain the transform from world to camera
•Saves the transform of the current camera.
•Calls rotate(0, 0, 0) to complete the initialization.
•Lastly it sets the world2Cam = null to make sure the transform will be garbage
collected.

228

Rotating the CameraRotating the Camera

public void rotate(float dAngleX, float dAngleY,
float dAngleZ) {

if (curCamera == null) return;

baseRotate(dAngleX, dAngleY, dAngleZ);
Transform rotTrans = new Transform();

rotTrans.postRotate(angleY, 0, 1, 0);
rotTrans.postRotate(angleX, 1, 0, 0);

float pos[] = { 0, 0, distToTarget, 1 };
rotTrans.transform(pos);
dx = pos[0];
dy = pos[1];
dz = pos[2] - distToTarget;

buildCameraXform();
setCameraXform();
rotTrans = null;

}

•baseRotate sets class variables angleX, angleY and angleZ to the values of its
parameters modulo 360.
•Creates a temporary transform. new Transforms are set to Identity
•Computes the delta from the original camera position to the desired position by
rotating the point (0, 0, distToTarget) by the desired angle.
•Saves the delta in class variables, dx, dy, dz.
•Builds the new camera transform
•Sets the new camera transform
•Sets the temporary transform to null so it will be garbage collected.

229

Building the Camera
Transform
Building the Camera
Transform
public void buildCameraXform() {

cameraXform.setIdentity();
rotateXform.setIdentity();
transXform.setIdentity();

transXform.postTranslate(dx, dy, dz);

// rotate about the x-axis then the y-axis
rotateXform.postRotate(angleY, 0, 1, 0);
rotateXform.postRotate(angleX, 1, 0, 0);

cameraXform.postMultiply(transXform);
cameraXform.postMultiply(rotateXform);

}

public void setCameraXform() {
cameraXform.postMultiply(curOriginalXform);
curCamera.setTransform(cameraXform);

}

We keep separate position and rotation transforms for the camera.
•Multiply the position transform (transXform) by the computed delta from the
previous position
•Multiply the rotation transform (rotateXform) by the X and Y angles.
•Multiply the two transforms into the saved camera transform, transform first.
•setCameraXform() multiples the transform computed by buildCameraXform by
the original camera transform and sets this matrix to the camera.

The effect is to move the camera to the position required by a rotation around the
surface of the sphere with radius distToTarget and then orient the camera so it’s
z-axis points toward the original origin.

230

AgendaAgenda

• Game Development Process
• Asset Creation
• Program Development
• MIDlet Structure
• A MIDlet Example
• Challenges in Mobile Game Development
• Publishing Your Content

Now we’ll move on to look at the special challenges of developing games for
mobile phone handsets.

231

Why Mobile Game
Development is Difficult
Why Mobile Game
Development is Difficult

• Application size severely limited
– Download size limits

– Small Heap memory

• Small screen

• Poor input devices

• Poor quality sound

• Slow system bus and memory system

Download size limits are increasing thanks to 3G but 256k is still a common size
limit.

Poor Input Devices: Input devices are typically limited to the 12 key-pad plus a
navigation array and a few extra buttons. Yes game console style pads are
coming but they are still the rare exception.

232

Why Mobile Game
Development is Difficult
Why Mobile Game
Development is Difficult

• No floating point hardware

• No integer divide hardware

• Many tasks other than application itself
– Incoming calls or mail

– Other applications

• Short development period

• Tight budget, typically $100k – 250k

233

MemoryMemory

• Problems
Small application/download size

Small heap memory size

• Solutions
– Compress data

– Use single large file

– Use separately downloadable levels

– Limit contents

– Get makers to increase memory

234

PerformancePerformance

• Problems
Slow system bus & memory

No integer divide hardware

• Solutions
– Use smaller textures

– Use mipmapping

– Use byte or short coordinates and key values
– Use shifts

– Let the compiler do it

235

User-Friendly OperationUser-Friendly Operation

• Problems
– Button layouts differ

– Diagonal input may be impossible

– Multiple simultaneous button presses not recognized

• Solutions
– Plan carefully

– Different difficulty levels

– Same features on multiple buttons

– Key customize feature

What is most important in the game is the operation, which functions as a communication line
between the game and the player. Even within the same group of the mobile terminals, the sense
of operation differs by how the buttons are placed, which as a result changes the difficulty of the
game itself. These issues must be considered very carefully from the planning stage.

When porting onto other types of terminals, game operation is one of the items that generates
problems in the development. For example, diagonal input may have worked on the original
mobile terminal whereas it may be unavailable on the mobile terminal to which the game is being
ported. Also there are some cases where terminals fails to recognize more than one button being
pressed at the same time.

We cannot provide you with overall solution; however, I would like to introduce you some
examples on how we coped with these issues in our past contents.
1) Types of mobile terminals can be discerned to diversify the difficulty of the contents.
2) Let the player play in a lower difficulty level when diagonal input is ineffective by keeping a
diagonal input flag in the program. When the diagonal input becomes effective, then the game can
switch to its normal level of the difficulty.
3) Allocate the same features, such as “jump” and “attack” to multiple buttons or embed a key
customize feature.

With these countermeasures, the problems can be alleviated to a certain extent. Depending on
the types of the game, I surmise there may be more efficient way to solve the problem. So this is
where planners and programmers can leverage their ideas.

236

Many Other TasksMany Other Tasks

• Problem
– Incoming calls or mail

– Other applications

• Solution
– Create library for each handset terminal

237

AgendaAgenda

• Game Development Process
• Asset Creation
• Program Development
• MIDlet Structure
• A MIDlet Example
• Challenges in Mobile Game Development
• Publishing Your Content

238

Publishing Your ContentPublishing Your Content

• Can try setting up own site but
– it will be difficult for customers to find you

– impossible to get paid

– may be impossible to install MIDlets from own site

• Must use a carrier approved publisher
• Publishers often run own download sites but

always with link from carrier’s game menu.
• As with books, publishers help with distribution

and marketing

This section describes the situation for the mobile phone market.

Don’t even think about non-over-the-air distribution for mobile. It’s not the way
mobile works. Some carriers have MIDlet downloads from PC’s disabled in their
handsets.

Some carriers disable MIDlet downloads from anywhere but their own web sites.
The villains may mostly be Japanese carriers. Perhaps the anti-monopoly
authorities are more effective in other parts of the world. Vodafone KK does both
of these things and, reportedly SIM-locks their handsets.

The bottom line is you must use a carrier approved publisher.

239

Publishing Your ContentPublishing Your Content

• Typical end-user cost is $2 - $5.
• Sometimes a subscription model is used.
• Carrier provides billing services

– Carriers in Japan take around 6%
– Carriers in Europe have been known to demand as much as

40%! They drive away content providers.

• In some cases, only carrier approved games can be
downloaded to phones
– Enforced by handsets that only download applets OTA
– Developers must have their handsets modified by the carrier

Common subscription model is a flat monthly fee for access to the publisher’s
entire game library.
Game add-ons are often used. For example, connection to game site to record
high scores, chat with fellow players etc. Some sites even sell game upgrades
(either for points won in the game or for cash) that will help you do better. A
motorcycle racing game for example provides upgrades that make the bikes go
faster.

240

PublishersPublishers

• Find a publisher and build a good relationship with
them

• Japan: Square Enix, Bandai Networks, Sega WOW,
Namco, Infocom, etc.

• America: Bandai America, Digital Chocolate, EA
Mobile, MForma, Sorrent

• Europe: Digital Chocolate, Superscape,
Macrospace, Upstart Games

241

Other 3D Java Mobile APIsOther 3D Java Mobile APIs

Mascot Capsule Micro3D Family APIs

• Motorola iDEN, Sony Ericsson, Sprint, etc.)

– com.mascotcapsule.micro3d.v3 (V3)

• Vodafone KK JSCL

– com.j_phone.amuse.j3d (V2), com.jblend.graphics.j3d (V3)

• Vodafone Global

– com.vodafone.amuse.j3d (V2)

• NTT Docomo (DoJa)

– com.nttdocomo.opt.ui.j3d (DoJa2, DoJa 3) (V2, V3)

– com.nttdocomo.ui.graphics3D (DoJa 4) (V4)

Mascot Capsule Micro3D Version Number

For sake of completeness, I’ll mention some other 3D Java APIs you will find on
various mobile devices. These are all based on HI’s Mascot Capsule Micro3D
Engine Mascot Capsule Micro3D Version 3 pre-dates M3G by 1 year. Version 4
supports M3G. The APIs above are found on many handsets.

242

Mascot Capsule V3 Game
Demo
Mascot Capsule V3 Game
Demo

Copyright 2005, by Interactive Brains, Co., Ltd.

Just because it’s a really cool game…

243

SummarySummary

• Use standard tools to create assets

• Basic M3G MIDlet is relatively easy

• Programming 3D Games for mobile is hard

• Need good relations with carriers and publishers to
get your content distributed

244

ExportersExporters

3ds max
– Simple built-in exporter since 7.0

– www.digi-element.com/Export184/

– www.mascotcapsule.com/M3G/

– www.m3gexporter.com

Maya
– www.mascotcapsule.com/M3G/

– www.m3gexport.com

Softimage|XSI
– www.mascotcapsule.com/M3G/

Cinema 4D
– www.c4d2m3g.com

• Site appears to be defunct

Lightwave
– www.mascotcapsule.com/M3G/

Blender
– http://www.nelson-games.de/bl2m3g/

m3gexport.com under Maya is NOT a typo.

http://www.digi-element.com/Export184/
http://www.mascotcapsule.com/M3G/
http://www.m3gexporter.com
http://www.mascotcapsule.com/M3G/
http://www.m3gexport.com
http://www.mascotcapsule.com/M3G/
http://www.c4d2m3g.com
http://www.mascotcapsule.com/M3G/
http://www.nelson-games.de/bl2m3g/

245

SDKsSDKs

• Motorola iDEN J2ME SDK
– idenphones.motorola.com/iden/developer/developer_tools.jsp

• Nokia Series 40, Series 60 & J2ME
– www.forum.nokia.com/java

• Sony Ericsson
– developer.sonyericsson.com/java

• Sprint Wireless Toolkit for Java
– developer.sprintpcs.com

• Sun Wireless Toolkit
– java.sun.com/products/j2mewtoolkit/download-2_2.html

http://www.forum.nokia.com/java

246

SDKsSDKs

• VFX SDK (Vodafone Global)
– via.vodafone.com/vodafone/via/Home.do

• VFX & WTKforJSCL (Vodafone KK)
– developers.vodafone.jp/dp/tool_dl/java/emu.php

pVodafone global requires you become a partner of Via Vodafone. You have to
submit a questionnaire before they will even talk to you. Very unfriendly.

Vodafone KK is a little more friendly. You just need to complete a simple
registration before you can download the SDK. But the web page is in Japanese.
There are 2 SDKs. VFX is Vodafone Global’s SDK. WTKforJSCL has JSCL (J-
Phone Specific Class Libraries) instead of M3G. Both are based on Sun’s
Wireless Toolkit (WTK).

247

IDE’s for Java MobileIDE’s for Java Mobile

• Eclipse Open Source IDE
– www.eclipse.org

• JBuilder 2005 Developer
– www.borland.com/jbuilder/developer/index.html

• Sun Java Studio Mobility
– www.sun.com/software/products/jsmobility

• Comparison of IDE’s for J2ME
– www.microjava.com/articles/J2ME_IDE_Comparison.pdf

Although Eclipse is largely written in Java and has many java development tools,
it is not clear at the time of writing that Eclipse has a specific set of tools for
supporting J2ME.

Sun Java Studio Mobility is available at no cost by “simply register[ing] for a Sun
online account”.

http://www.eclipse.org
http://www.borland.com/jbuilder/developer/index.html
http://www.sun.com/software/products/jsmobility
http://www.microjava.com/articles/J2ME_IDE_Comparison.pdf

248

Other ToolsOther Tools

• Macromedia Fireworks
– www.adobe.com/products/fireworks/

• Adobe Photoshop
– www.adobe.com/products/photoshop/main.html

• Sony SoundForge
– www.sonymediasoftware.com/products/showproduct.asp?PID=961

• Steinberg Cubase
– www.steinberg.de/33_1.html

• Yamaha SMAF Tools
– smaf-yamaha.com/

http://www.adobe.com/products/fireworks/
http://www.adobe.com/products/photoshop/main.html
http://www.sonymediasoftware.com/products/showproduct.asp?PID=961
http://www.steinberg.de/33_1.html

249

(Dear Dog) Demo(Dear Dog) Demo

While I take your questions, I’ll leave a final demo running. We created this to
show the richness that is technically possible with M3G. Unfortunately this
particular animation is too big to load into a real phone … today.

250

Thanks: HI Mascot Capsule Version 4
Development Team, Koichi Hatakeyama,

Sean Ellis, JSR-184 Expert Group

Demonstrate dog animation

251

252

Closing & SummaryClosing & Summary

• We have covered
– OpenGL ES

– M3G

253

API paletteAPI palette

3D
Small footprint 3D for
embedded systems

Vector 2D
Low-level vector
acceleration API

Media Engines – CPUs, DSP, Hardware Accelerators etc.

Platform Media
Frameworks

IL
SOUND
Low-level

gaming audio
acceleration

API Image Libraries, Video Codecs,
Sound Libraries

Accelerated media
primitives for codec

development
DL

Component interfaces
for codec integration

AL

Playback and
recording
interfaces

Khronos defines low-level, FOUNDATION-level APIs.
“Close to the hardware” abstraction provides portability AND flexibility

The Khronos API family provides a complete ROYALTY-FREE,
cross-platform media acceleration platform

Applications or middleware libraries (JSR 184 engines, Flash players, media players etc.)

EGL
Abstracted Access to

OS Resources
Fast mixed mode 2D/3D

rendering

254

• An open interchange format
– to exchange data between

content tools

– allows mixing and
matching tools for
the same project

– allows using desktop
tools for mobile content

Physics

Scene Graph

Materials

Animation

Textures

Meshes

Shader FX

255

Shaders? Yes!Shaders? Yes!

• OpenGL ES 2.0
– subset of OpenGL 2.0, with very similar shading

language

– spec draft at SIGGRAPH 05, conformance tests
summer 06, devices 08 (?)

• M3G 2.0
– adds shaders and more to M3G 1.1

– first Expert Group meeting June 06

256

2D Vector Graphics2D Vector Graphics

• OpenVG
– low-level API, HW acceleration

– spec draft at SIGGRAPH 05, conformance tests summer 06

• JSR 226: 2D vector graphics for Java
– SVG-Tiny compatible features

– completed Mar 05

• JSR 287: 2D vector graphics for Java 2.0
– rich media (audio, video) support, streaming

– work just starting

257

EGL evolutionEGL evolution

• It’s not trivial to efficiently combine use of
various multimedia APIs in a single
application

• EGL is evolving towards simultaneous
support of several APIs
– OpenGL ES and OpenVG now

– all Khronos APIs later

258

SummarySummary

• Fixed functionality mobile 3D is reality NOW
– these APIs and devices are out there

– go get them, start developing!

• Better content with Collada

• Solid roadmap to programmable 3D

• Standards for 2D vector graphics

259

