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Abstract— We propose a novel multi-sensor system for ac-
curate and power-efficient dynamic car-driver hand-gesture
recognition, using a short-range radar, a color camera, and a
depth camera, which together make the system robust against
variable lighting conditions. We present a procedure to jointly
calibrate the radar and depth sensors. We employ convolutional
deep neural networks to fuse data from multiple sensors and
to classify the gestures. Our algorithm accurately recognizes
10 different gestures acquired indoors and outdoors in a car
during the day and at night. It consumes significantly less power
than purely vision-based systems.

I. INTRODUCTION

In the United States, driver distraction was involved
in 22% of the 2.3 million motor vehicle-related injuries
and in 16% of the ~37K fatalities reported in 2008 [1].
Visual-manual interfaces, such as haptic controls and touch
screens in cars, cause significant distraction. Hand-gesture-
based user interfaces (Uls) in cars can lower visual and
cognitive distraction, and can improve safety and comfort.
Recent subjective studies suggest that gesture interfaces are
desirable to consumers [2]. They can be easily customized
to individual users’ preferences for gesture types and can
be expanded in the future to include functionality for driver
monitoring. Work to standardize vehicular gesture interfaces
is also underway [3].

Numerous video-based approaches for dynamic gesture
recognition have been developed [4], [5], [6]. With the avail-
ability of cheap consumer depth cameras, gesture recognition
systems using depth cameras have also been introduced [7].
With the exception of a few previous methods [8], [9], most
vision-based gesture recognition systems have been devel-
oped for environments with controlled illumination [10]. The
interior of a car is a challenging environment because the
lighting conditions vary a lot. Most consumer color and
depth sensors do not work reliably under all these conditions.
For example, color sensors are ineffective under low-light
conditions at night, while commodity depth cameras that
typically use projected IR signals are ineffective under direct
bright sunlight. Furthermore, both depth and color sensors
suffer from the presence of harsh shadows and hand self-
occlusion. Vehicular interfaces also have the added constraint
of stricter power efficiency requirements.

Unique micro-Doppler frequency modulation signatures
are produced by different types of motion of non-rigid
objects [11]. These signatures, as well as the range and the
instantaneous angular velocity of the object, can be measured
with RAdio Detection And Ranging (radar). Compared
to color and depth sensors, radars are robust to ambient
illumination conditions, have lower cost and computational
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Fig. 1: Multi-sensor gesture recognition system We pro-
pose a multi-sensor gesture recognition system that uses
optical, depth, and radar sensors. Data from the multiple
sensors are input into a deep neural network classifier for
recognizing dynamic gestures.

complexity, and use less power. The radar signal can also
penetrate opaque materials such as plastic.

Recently convolutional deep neural networks (DNN5s) have
made a significant impact in computer vision. DNNs have
outperformed state-of-the-art machine learning algorithms in
very large-scale image recognition [12] and hand-written
digits recognition [13]. In a recent competition on multi-
modal recognition of 20 dynamic gestures from the Italian
sign language, an algorithm based on convolutional neu-
ral networks [14] ranked first among 17 competing meth-
ods [15]. Convolutional DNNs forgo handcrafting discrim-
inatory features for classification, and instead learn them
automatically from the training data. DNNs are also attractive
for fusing data from multiple sensors because of their ability
to automatically weigh their relative importance [16], [17].

We present a novel multi-sensor system comprising of a
short-range radar, a color camera, and a time-of-flight (TOF)
depth camera for dynamic hand-gesture recognition. Our sys-
tem detects dynamic gestures with the help of the short-range
radar system. Furthermore, it uses a convolutional DNN to
fuse data from the three sensors and to classify ten different
dynamic hand gestures. An overview of our framework is
illustrated in Fig. 1. While imaging sensors [18], [19] or
acoustical sensors [4], [7] have been used individually in the
past for dynamic hand-gesture recognition, to the best of our
knowledge, ours is the first such system to effectively employ
all three sensors.

There are various advantages to combining image, depth,
and radar sensors. First, it can increase the overall sys-



tem robustness to varying lighting conditions because it
guarantees that data from at least one sensor is reliable
under all lighting conditions. Second, since the three sensors
provide complementary information about the shape, color,
and the instantaneous angular velocity of the hand, they can
be combined to improve the classification accuracy of the
system. Finally, employing the radar sensor can help to detect
and segment dynamic gestures easily and to reduce the power
consumption of the system.

In summary, our contributions are: (1) a novel multi-
sensor gesture recognition system that effectively combines
imaging and radar sensors; (2) use of the radar sensor for dy-
namic gesture segmentation, recognition, and reduced power
consumption; (3) demonstration of a real-time illumination
robust gesture interface for the challenging use case of
vehicles.

II. RELATED WORK

Video-based hand-gesture recognition algorithms, for nu-
merous applications, have been studied extensively [4], [5].
Recent work also includes depth-based algorithms [7]. Most
techniques for dynamic hand-gesture recognition involve
temporal localization of the gesture, e.g., by means of a
binary “motion” and “no motion” classifier [20]. The hand
region in gesture frames is often segmented using color
and/or depth information by dense or sparse hand-crafted
descriptors [21], and skeletal models are fit to the hand
region [10]. To identify the gesture type, sequences of
features for dynamic gestures are used to train classifiers,
such as Hidden Markov Models (HMM) [6], conditional
random fields [22], Support Vector Machines (SVM) [23],
or decision forests. Convolutional DNNs have also been
employed previously to detect and recognize 20 gestures
from the Italian sign language using RGB-D images of hand
regions along with upper-body skeletal features [20], and for
classifying 6 static hand gestures using depth images [8].
These previous DNN-based gesture recognition methods
are different from our proposed work in their data fusion
strategies, features employed, and application scenarios.

Most existing approaches for gesture recognition have
been developed for controlled lighting conditions where
commodity depth and color sensors work well [7]. Gesture
recognition becomes challenging in uncontrolled lighting
conditions, e.g., in a vehicle, and this problem is much less
studied. There exist a few video-based techniques for gesture
recognition in cars, that use special IR illuminators and near-
IR cameras [24], [25], [2]. In these methods, hand-crafted
features, including Hu moments [24], decision rules [25], or
contour shape features [2] along with HMM classifiers [25],
[24] have been employed. In [9], a system that uses RGBD
data, HOG features and an Support Vector Machine (SVM)
classifier was proposed. Note that no previous systems for
gesture interfaces in cars have employed vision-based and
radar sensors together with a DNN classifier.

Independently of vision-based techniques, human motion
recognition systems that use micro-Doppler signatures of
acoustic signals have also been developed [18], [19], [26].
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Fig. 2: The short-range radar prototype. Our prototype
radar module uses a mono-pulse FMCW radar with one
transmitting (Tx) and 3 receiving (Rx) antennas. The array
of antennas measures the spherical coordinates (distance, az-
imuth, and elevation) and radial velocity of moving objects.

While acoustical sensors for gesture recognition are not
directly applicable inside vehicles because of the presence
of significant ambient acoustical noise, their underlying
principle of using the unique Doppler signatures for gesture
identification has also motivated our work.

III. METHOD

We describe the hardware and algorithmic components of
our multi-sensor gesture recognition system.

A. Sensors

Our system uses a color camera, a time-of-flight (TOF)
depth camera, and a short-range radar. The color and depth
cameras come from the DS325 system (SoftKinetic). The
color camera acquires RGB images (640 x 480) and the depth
camera captures range images (320 x 240) of the objects that
are closest to it, both at 30 fps.

Off-the-shelf short-range radar systems in the permitted
frequency bands that are appropriate for use inside a car
are not widely available. Therefore, we built a prototype
radar system, with an operational range of <1m (Fig. 2). The
system measures the range (z) and angular velocity (v) of
moving objects in the scene, and estimates their azimuth (z)
and elevation (y) angles. It employs a mono-pulse Frequency
Modulated Continuous Wave (FMCW) signal [27], [28].
The mono-pulse technique allows for the measurement of
the angular position of moving objects by employing pairs
of vertical (for elevation) and horizontal (for azimuth) co-
located receivers. Additionally, the distance of the objects
from the radar can be measured by employing the FMCW
principle.

In our radar system, we employed a 24GHz front-end
Infineon chip and wave guide antennas. This frequency band
is available for public use and can be implemented using
low-cost (<$40) components. We designed analog circuits
for filtering and amplifying the received signal. We used a
Tiva C micro controller (Texas Instruments, Dallas, TX) for
controlling the radar chip, sampling the signal, generating
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Fig. 3: The radar signal processing pipeline. A dynamic
gesture generates multiple reflections, which are detected by
the range-Doppler maps of all three receivers. By comparing
the phases of the signals received by pairs of receivers, a 4D
vector comprising of the spatial coordinates and the radial
velocity is estimated for each point detected in the RDM.

the control signal, and for transferring data to the host. The
radar system consumes <1W power from the USB port. It is
currently not optimized for power efficiency, and with further
design improvements it can consume significantly less power
(~15mW [29]).

The signal-processing pipeline for the radar is illustrated
in Fig. 3. A Range-Doppler Map (RDM), which depicts
the amplitude distribution of the received signals for certain
range (z) and Doppler (v) values, is generated for each
of the three receivers. A rigid moving object appears as
a single point in the RDM and a non-rigid object, e.g.,
a hand, appears as multiple points. The radar system can
only disambiguate moving objects that are spatially separated
in the RDM. Moving objects are detected in the RDM by
applying the Cell-Average Constant False Alarm Rate (CA-
CFAR) thresholding-based detector [30]. The phase of each
detected moving object at the three receivers is compared to
estimate its azimuth and elevation angles.

B. Interface

Our gesture interface is located in the central console
facing the interior of the car within arm’s reach (50cm) of the
driver (Fig. 1). It simultaneously captures data of the moving
hand with the color camera, the depth camera, and the radar.
Since the radar signal can penetrate plastic, it can be housed
inside the dashboard. Gestures can be performed anywhere
roughly within the center of the field of view (FOV) of the
interface.

C. Calibration

We propose a procedure to jointly calibrate the depth and
the radar sensor. This calibration procedure is required to
register data from multiple sensors, each of which are in their
own coordinate system, to a common frame of reference.
The calibration is performed only once after the multi-sensor
system is installed rigidly.

We assume that a rigid transformation exists between the
optical imaging centers of the radar and depth sensors. In or-
der to estimate this transformation, we concurrently observe
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Fig. 4: Joint calibration of radar and depth sensors.
The plot presents the x coordinates of the center of the
calibration target measured by the radar and depth sensors
after calibration.

the 3D coordinates of the center of a moving spherical ball
of radius 3cm with both sensors. The best-fit rigid transfor-
mation between the 3D coordinates of the ball observed by
the two sensors is estimated using the linear least-squares
optimization. With the help of the transformation function,
the radar data is transformed to the depth camera’s coordinate
frame. This procedure successfully registers the depth and
radar data, as shown in Fig. 4.

D. Gesture Detection

We assume that a true gesture occurs only when the
radar detects significant motion, i.e., with velocity above a
configurable threshold (0.05m/s), roughly in the center of the
FOV of the Ul Since the radar system directly measures the
velocity of moving objects, it is the only sensor that is used
to detect and segment gestures in our system. The duration
of a true gesture is assumed to be between 0.3 and 3 seconds.
The gesture ends when no motion is observed by the radar
continuously for 0.5 seconds.

In our system, we operate the radar in the always-ON
mode and switch ON the color and depth cameras only for
the duration of the gesture, i.e., while the radar observes
motion. Since the radar consumes significantly less power
(<1W) than the optical and depth cameras (<2.5W), our
design significantly lowers the overall power requirement of
the gesture interface.

E. Feature extraction

We first segment the hand region in the depth image by
assuming that it is the closest connected component to the
depth camera and generate a mask for the hand region. We
normalize the depth values of the detected hand region to
the range of [0, 1]. We convert the RGB image of the hand
obtained from the color sensor to a single grayscale image
with values in the range of [0,1]. Note that we did not
segment the hand region in the color images.

Using the calibration information between the radar and
the depth camera, we register the radar data to the depth
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Fig. 5: Radar feature extraction. The sparse velocity values
of moving objects (left) obtained from the radar are extra-
polated across the hand region extracted from a depth camera
(middle). The velocity layer (right) is then fed into the DNN.

images. By doing so, we obtain instantaneous angular ve-
locity values for a sparse set of moving objects in the scene
(Fig. 5). We then extrapolate these sparse velocity values
over the entire FOV of the depth camera, using Voronoi
tessellation. We apply the mask for the segmented hand
region to the velocity image to retain the velocity values of
the hand region only. We call this the radar image. Finally,
the depth, grayscale and radar images are resized to 32x32
pixels before they are input to the classifier.

We represent a dynamic gesture by a batch of temporal
frames, which is input to the classifier for gesture recognition
(Fig. 6). For our proposed algorithm, each frame contains
three channels, one for each of the three sensors. The
classifier requires inputs of constant size, i.e., equal number
of frames for each gesture, but in reality the duration of the
observed dynamic gestures is variable. Hence, we temporally
normalize the gestures to 60 frames by re-sampling them via
nearest neighbor interpolation. For example, if the original
gesture contains 80 frames, every 4 frame is removed and
if the gesture contains 45 frames, every 3"¢ frame is repeated.

FE. Classifier

We train a convolutional deep neural network classifier for
recognizing different types of dynamic gestures.

1) Structure: The DNN consists of two 3D convolutional
layers, which automatically learn discriminatory spatio-
temporal filters to reduce the dimensionality of the input
gesture data (Fig. 6). Both convolutional layers contain 25
kernels of size 5 X 5 x 5 and hyperbolic tangent activation
functions. Max-pooling layers that retain only the maxi-
mum values in blocks of size 2 x 2 x 2 follow each of
the convolutional layers. Two fully-connected layers follow
the second max-pooling layer. They have linear rectified
activation functions and contain 1024 and 128 neurons,
respectively.

The output layer implements multi-class logistic regres-
sion using a softmax function and produces posterior class-
conditional probabilities for each gesture type. The final
decision is made by selecting the class with the maximum
posterior probability. There are nearly 7.8 million tunable
weights in the network that need to be learnt.

2) Initialization: We initialized the weights of the first
two 3D convolution layers with random samples from a
uniform distribution between [—W;, W3], where

6
= 1
W Vo s (D

and n; and n, are the number of input and output neurons,
respectively. We initialized the biases of the first two layers
with 0; the weights of the fully-connected hidden layers with
random samples from a normal distribution A(0,0.01) and
the biases with a value of 1; and the weights and biases of
the output softmax layer to 0.

3) Training: We learned the parameters of the DNN by
means of a labelled training data set using the Theano
package [31]. Training was performed on a CUDA capable
Quadro 6000 NVIDIA GPU. DNN training involved the
minimization of the negative log-likelihood function via
stochastic gradient descent optimization with mini-batches
of 20 training samples. The parameters of the network were
updated at each back-propagation step ¢ as

)\0

A= 2a
1 +ial (22)
oE
Vi = U1 _)\i<6> ; (2b)
M~ W/ batch
momentum N\ ——’
learning
Wi—1 + vy — YA W;—1 if w is a weight
_ ——
w; = weight decay

w;—1 + v; if w is a bias

(2¢)

where )\ is the initial learning rate, y is the momentum co-
efficient, (g—gnamh is the gradient value of the cost function
with respect to the parameter w; averaged over the mini-
batch, and ~y is the weight decay parameter. The values of the
training parameters (Eq. 2) were selected by cross-validation
and were set to A\gp = 0.01, = 0.9, and vy = 0.0005.

In order to improve the generalization capability of the
network, we trained the DNN with drop-out [32]. During
drop-out, the outputs of the second, third, and fourth layers
were randomly set to 0 with p = 0.5, and subsequently were
not used in the back-propagation step of that iteration. For the
forward propagation stage, the weights of the layer following
the dropped layer were multiplied by 2 to compensate for the
effect of drop-out.

We trained the network for 200 epochs. To avoid over-
fitting we employed early stopping by selecting the network
configuration, which resulted in the least error on the vali-
dation data set.

We found that a number of procedures helped to in-
crease the accuracy of the system. Weight decay and drop-
out prevented the network from over-fitting to the training
data and improved the classification accuracy by 2.3% on
average. Augmenting the training dataset with transformed
versions of the training samples also helped to improve
the generalization capability of the DNN. We applied the
same transformation to all the three sensor channels of each
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Fig. 6: DNN pipeline. The deep neural network classifier used for dynamic gesture recognition. Numbers on the bottom
show dimensionality of the data at the output of the corresponding layer (number of channels@XYT)

gesture, which included (a) adding salt and pepper noise, (b)
random uniform temporal shifts of +5 frames or temporal
scaling between 80-120% of the entire gesture, or (c) random
uniform spatial shifts between 42 pixels, rotation between
410 degrees, or scaling between 80-120% of all frames of
the gesture.

IV. EVALUATION

We describe the experiments that we conducted to evaluate
the performance of our hand-gesture recognition system.

A. Database

We collected gesture data indoors in a driving simulator
and outdoors in a real car (Fig. 7). For safety reasons, all
gestures were performed with the car in the parked position.
We acquired data (a) indoors in artificial lighting at night
and under indirect sunlight during the day, and (b) outdoors
in a car under direct/indirect sunlight during the day and
in the absence of light at night (Fig. 8). We collected data
in 10 distinct recording sessions. A session included several
repetitions of each gesture performed by one subject in a
particular environment.

The database contained a total of 1714 gestures of 3 sub-
jects. The gestures included left/right/up/down palm motion,
shaking of the hand, CW/CCW hand rotations, left/right
swipe, and calling (Fig. 9). Each subject performed 10-
20 repetitions of every gesture. In addition to these 10

Fig. 7: Experimental setup. We used two different experi-
mental setups for gesture data acquisition, i.e., outdoors in a
real car (left) and indoors in a driving simulator (right).

Fig. 8: Examples of gesture inputs. Each column represents
a different environmental condition: indoors, nighttime inside
a car, daytime inside a car, daytime indoors, and nighttime
indoors from left to right. The inputs from different sensors
are shown in each row: optical, depth, and radar from top to
bottom. The colors in the third row indicate the instantness
angular velocity measured by the radar sensor.

premeditated gestures, we also acquired a set of random hand
motions of the subject.

B. Results

We evaluated the performance of the gesture classification
system for two experiments with different partitioning of
the database. We performed leave-one-session-out and leave-
one-subject-out cross-validation. We evaluated the perfor-
mance of the DDNs with input from individual sensors, pairs
of sensors and all three sensors. When a sensor was not used,
its input values were set to zero. We individually trained
and tested the DNNs for different sensor types and their
combinations.

We computed the average Precision, Recall, and
F'score, and the accuracy of the gesture recognition system.
Precision is defined as TP/(TP + FP), where TP and
F'P are the number of true and false positives, respectively.
Recall is defined as TP/(TP + FN), where FN is the
number of false negatives. The F'score is defined as 2 x
Precision x Recall/(Precision + Recall). We estimated
these values for each of the 11 gesture classes and then
averaged them together to produce single values. In addition,
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Fig. 9: Gesture types We used 10 different dynamic gestures for training our system: moving left/right/up/down (classes
1-4), swiping left/right (classes 5-6), shaking (class 7), CW/CCW rotation (classes 8-9), and calling (class 10).

TABLE I: The classification performance (%) of leave-one-
session-out cross-validation for different input sensors.

(6] D R DR DO RO DRO
Precision | 70.3 | 924 | 90.0 || 92.9 | 93.1 | 93.3 94.7
Recall 60.1 | 91.5 | 90.0 || 919 | 924 | 929 94.2
Fscore 63.1 | 91.6 | 89.3 923 | 925 | 93.0 94.3
Accuracy | 60.1 | 909 | 89.1 91.7 | 92.1 | 92.6 94.1

we calculated the accuracy of the system as the proportion
of test cases that were correctly classified.

1) Leave-one-session-out cross-validation: In this exper-
iment we left out each of the 10 gesture recording sessions
from the training set once. We split the gestures from the
left-out session evenly (50/50) into validation and test sets.
We averaged, taking into account the number of samples, the
results of all sessions to generate the aggregate performance
statistics for the system. This experiment was designed to
evaluate the generalization performance of the classifier to
data acquired under different lighting conditions.

The classification performance of DNNs with different
sensors for this experiment is presented in Table I. Among
the individual sensors, the best results were achieved by
the depth sensor (accuracy = 90.9%), followed by the
radar sensor (accuracy = 89.1%). The worst performance
was achieved by the optical sensor (accuracy = 60.1%).
Employing two sensors improved the accuracy relative to
the individual sensors: DR increased the accuracy of the
individual depth and radar sensors by 0.7% and 0.8%,
respectively, DO by 0.9% and 1.2%, and RO by 3.7% and
2.5%. The best overall performance (accuracy = 94.1%)
was achieved by a combination of all three sensors. This
network achieved an accuracy of 3.2% higher than the depth
only sensor. Lastly, note that the addition of the radar sensor
to the depth and optical sensors (DO) improved its accuracy
by 2%.

The confusion matrix for the network with all three sensors
(DRO) for leave-one-session-out cross-validation is shown in
Table II. Observe that most classes were classified correctly.
The highest miss-classification rate of 17.7% was observed
when class 8 (shake) was miss-classified as class 6 (swipe
left).

epth sensor only (D):

All sensors tcﬁether (DRO):

- AT
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Fig. 10: Projections of the kernels learned at the first
3D convolution layer. Each sensor is represented by colors:
Depth—blue, Radar—green, Optical—red. Each column is a
kernel. The three rows are projections on to the yt, zt, and
zy planes, respectively.

The kernels learned by the first convolutional layer of the
DRO network are illustrated in Fig. 10. Assuming that z and
y are spatial dimensions, and ¢ is the temporal dimension,
projections of the learnt convolutional kernels on to the
yt, xt, and xy planes are depicted. Observe that all three
sensors contributed towards the final decision made by the
network. This suggests that the depth, radar, and optical
sensors encode complementary information, which helps to
improve the accuracy of gesture recognition.

2) Leave-one-subject-out cross-validation: We also eval-
vated our system’s performance for the leave-one-subject-
out task with all three sensors contributed to the decision
making (DRO network). This experiment helps to evaluate
the generalization capability of our system to gestures of
unseen subjects. We reserved data from each of the three
subjects in our database and trained with data from the two
remaining subjects. Our gesture recognition system achieved
a classification accuracy of 75.1 £ 5.4% in this experiment.

The confusion matrix of the DRO network for leave-one-
subject-out cross-validation is shown in Table III. The lowest
correct classification rate was observed for class 11 (call).
The up gesture (class 4) was frequently miss-classified as



TABLE II: Confusion matrix of the multi-sensor network (Depth+Radar+Optical) for leave-one-session-out cross-validation.

Decision
Truth Unknown ‘ Left ‘ Right ‘ Up ‘ Down ‘ Swipe Left ‘ Swipe Right ‘ Shake ‘ CcwW ‘ CCW ‘ Call
Random 93.3 0 1.1 2.2 0 0 1.1 0 0 0 2.2
Left 0 97.8 22 0 0 0 0 0 0 0 0
Right 0 0 100. 0 0 0 0 0 0 0 0
Up 10.9 0 0 89.1 0 0 0 0 0 0 0
Down 5.9 0 0 0 9.1 0 0 0 0 0 0
Swipe L 0 0 0 0 0 971 1.5 0 0 0 1.5
Swipe R 0 0 0 0 0 0 97. 0 0 0 3.
Shake 1.6 0 0 4.8 0 11.3 0 823 0 0 0
CW 1.8 0 0 0 0 0 0 0 98.2 0 0
CCW 0 1.5 0 0 0 0 0 0 1.5 97 0
Call 49 1.6 0 0 0 0 33 0 0 0 90.2

a random gesture (class 1). The shake gesture (class 8)
was miss-classified as a swipe left gesture 34.5% of the
times. The left palm motion, CW and CCW rotation, and
the swipe left gestures were classified correctly most of the
time. Observe also that none of the random gestures were
miss-classified as a premeditated gesture.

3) Comparison to other methods: Our gesture recognition
system is designed to operate inside a car under varied
lighting conditions. Ohn-Bar and Trivedi also proposed a
solution for this problem using RGBD data [9]. They com-
pared a number of different feature extraction techniques
together with a SVM classifier. They obtained their best
results with HOG and HOG? features extracted from the
segmented gesture’s video and an SVM classifier with the
x? kernel function. We implemented their technique on our
data with the following modifications: (a) to fit our dataset we
used gestures of size 32x32x60 as inputs to the classifier;
(b) instead of RGBD data we used gray-scale and depth
images; and (c) we selected the scaling parameter ~ for the
x? kernel function and the regularization parameter C' for
training the SVM classifier using a grid search performed
on the validation set. For the HOG features, we evaluated
cell sizes of 4x4, 8x8 and 16x16 pixels and obtained the
best results for cells of size 8x8.

On our dataset, Ohn-Bar and Trivedi’s method resulted in
accuracies of 88.2% and 51.8%= 21.83% for the leave-one-
ssession-out and leave-one-subject-out cross-validation ex-
periments, respectively. For both experiments, our proposed
algorithm outperformed their method by 5.9% and 23.3%,
respectively.

A comparison of the correct classification rates of various
classifiers for gesture sessions conducted under different
lighting conditions is presented in Table IV. For our method,
observe that adding the optical sensor to the DR network
at night did not change the accuracy of the system. For
data acquired in the evening and during the day under
shadows, the optical sensor improved the accuarcy by 1.5%.
During the day, under bright sunlight, adding the optical
sensor considerably improved the accuracy by 13.4%. Ohn-
Bar and Trivedi’s method shows comparable performance in

TABLE IV: The correct classification rates (%) for the DR
and DRO DNN-based classifiers and Ohn-bar and Trivedi’s
method [9] for sessions recorded under different lighting
conditions.

DR | DRO | [9] (DO)
Night 933 | 933 77.8
Evening 97.0 | 98.5 97.54
Day (shadow) | 90.3 | 91.7 87.0
Day (sunlight) | 79.1 | 92.5 79.1

the evening and during the day under shadows, where all
sensors provide reliable data. However, at night where the
intensity data is unreliable and during the day under bright
sunlight where the depth data is unreliable, the performance
of their algorithm decreases. This result suggests that in
comparison to SVMs DDNs are more affective at merging
partially reliable data from multiple sensors.

4) Power consumption: An off-the-shelf CUDA imple-
mentation of our gesture recognition system ran in 52ms on
a Quadro 6000 NVIDIA GPU. Our system requires only the
lower-powered (1W) radar to be ON constantly, while the
imaging sensors (2.5W) only need to be switched ON for
the duration of a gesture. Assuming that 10 gestures/hour
are performed for an average duration of 2s each, our
design results in ~50% reduction in power (1.14W) versus
an always-ON pure imaging (depth and optical) solution
(2.5W). Furthermore, a power-optimized version of the
radar prototype (15mW) would result in ~16x lower power
(0.154W) consumption versus a purely imaging system.

V. CONCLUSIONS

In this paper, we introduce a novel multi-sensor system
that recognizes dynamic gestures of drivers in a car. Our
preliminary experiments demonstrate that the joint use of
short-range radar, color, and depth sensors improves the
accuracy, robustness, and power consumption of the gesture-
recognition system.

In the future, we will explore using the micro-Doppler
signatures measured by the radar as features for gesture
recognition. We will also expand the study to a larger data set
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