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Abstract—We present an image labeling approach for merg-
ing a set of aligned source images into a composite image by
finding optimal seams in the overlapping areas of the source
images quickly and using little memory. A minimal-cost path
in the overlapping area of two images is found by dynamic
programming and used as an optimal seam to label images.
The overlapping images are cut along the seam and merged
together. A sequential image stitching procedure is integrated
with the fast image labeling for producing high-resolution and
high-quality panoramic images using large source images under
limited computational and memory resources. The approach
presents several advantages: the use of dynamic programming
optimization for finding the minimal-cost path over adjacent
source images guarantees finding the optimal seam and allows
images to be merged quickly; ghosting and blurring problems
caused by moving objects and small registration errors can be
avoided by the optimal seam finding process; the combination
of the sequential image stitching procedure with the fast image
labeling allows processing large source images for creating
high-resolution panoramic images using little memory; the fast
labeling process is easy to combine with intensive blending
to produce high-quality panoramic images. The method is
implemented in our mobile panorama system and runs with
good performance on mobile devices.
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I. INTRODUCTION

Mobile phones are not only communication tools, but
also capable computational devices equipped with high-
resolution digital cameras, high-quality color displays, and
GPU hardware. Applications such as mobile augmented
reality [1], [2], mobile local search [3], and mobile image
matching and recognition [4] used to only work on desktop
computers, but can now run on mobile phones. We are inter-
ested in creating high-resolution and high-quality panoramic
images on mobile devices. A user can capture an image
sequence for a wide range of scenes with a camera phone
and see a panoramic image created on the mobile phone
immediately, and then send it to friends or upload it onto
website.

A panoramic image is created from an image sequence.
Its construction process requires a lot of computation and
memory. This might not be a problem for desktop com-
puters, but mobile devices only have limited computational
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and memory resources. It is necessary to develop efficient
panorama stitching approaches which can be applied for
applications on mobile devices.

In this paper, we develop a fast image labeling approach
which is capable of combining a set of aligned source
images into a composite image by finding optimal seams
in overlapping areas between adjacent source images and
can be applied to produce high-resolution and high-quality
panoramic images on mobile devices using less computation
and memory than other often used methods.

A. Related Work

Our work is mainly related to image stitching. There
are two main categories of image stitching approaches:
transition smoothing and optimal seam finding. Combination
of these two categories is also used to make full use of their
advantages and avoid their disadvantages.

Transition smoothing approaches reduce color differences
between source images to remove stitching artifacts. Alpha
blending [5] is a widely used simple and fast transition
smoothing approach. It uses a weighted combination of
inputs to create a composite image. The main problem of
alpha blending is that moving objects and small registration
errors will cause ghosting artifacts and blurring problems.
Recently, gradient domain image blending approaches [13],
[71, [81, [9], [10], [11], [12] have been applied to image
stitching and editing. They create a new gradient vector
field by combining source image gradients to construct a
Poisson equation. A composite image can be recovered
from the new gradient vector field by solving the Poisson
equation with boundary conditions. These algorithms can
reduce color differences of source images due to changes of
scene illumination and variations in camera responses during
image capture and smoothen color transition for the whole
composite image, producing high-quality composite images.
However, their processing speed is slow, and memory costs
are high. It is difficult to process large source images to
create high-resolution panoramic images on mobile devices
with limited computational and memory resources.

Optimal seam finding algorithms [14], [6], [15], [16],
[17] search for optimal seams in overlapping areas where
differences between source images are minimal. Labeling
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all pixels of the composite image and source images can
be created using the optimal seams. The composite im-
age is produced by copying corresponding pixels from the
source images using labeling information. Agarwala et al.
[6] use graph cut optimization to find contribution regions
among several source images. Pixel labeling is performed
by minimizing over all source images at the same time.
The algorithm can be used to find different optimal seams
by given different cost functions to cut the source images
for creating composite images. However, computational and
memory costs are high during graph cut optimization, so
using it for image stitching on mobile devices may be too
expensive, especially with high-resolution images.

The combination of optimal seam finding and transition
smoothing for image stitching is also used in panorama
applications on desktop [6] and mobile devices [18]. In
this case, the source images are combined together using
the seams found by the optimal seam finding operation. If
the seams and stitching artifacts are still visible, transition
smoothing is applied to reduce the color differences between
the source images to hide the seams and remove the stitching
artifacts. Graph cut optimization finds the optimal seams
and Poisson blending is applied for transition smoothing.
High-quality panoramic images can be produced, but the
computational and memory costs are high.

In our work, a fast and low memory cost image labeling
approach is created. During image labeling, an error sur-
face is constructed with squared differences of overlapped
images. A low-cost path is found through the error surface
by dynamic programming and used as an optimal seam to
create labeling. The overlapping images are merged together
along with the optimal seam. A sequential image stitching
procedure is created with the fast image labeling approach.
In this way, we can produce high-resolution panoramic
images with large source images with low computational
and memory costs. The approach is implemented in our
panorama system to create high-resolution panoramic im-
ages on mobile devices. In order to compare and evaluate the
performance of the approach, we also implement a widely
used graph-cut-based labeling algorithm. We compare results
to demonstrate advantages of the fast labeling approach in
processing speed and memory usage. Good performance has
been obtained for both indoor and outdoor scenes.

B. Organization of the Paper

In Section II, we introduce the work flow of our approach.
The details of the fast image labeling approach for producing
mobile panoramic images are described in Section III.
Applications and result analysis are discussed in Section I'V.
A summary of the paper is given in Section V.

II. SUMMARY OF OUR APPROACH

Figure 1 shows the details of the sequential image
stitching procedure with the fast image labeling approach.
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Set the stitching order of the aligned source images
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Find a minimal cost path through the error surface with dynamic
programming optimization to cut the overlapping area
v
Create labeling based on the minimal cut and merge the cut
area and the rest of the current image S, on to the current
composite image /.

Are all source images done?

yes
’ Obtain labeling and the final composite image /, F’

Figure 1. Work flow of the sequential image stitching procedure with the
fast labeling approach.

The procedure starts with setting the stitching order
(So0,51,...,S,) of the source images by sorting their off-
sets. After allocating memory space for the final composite
image I., we set the first source image Sy as the base
image and put it into /. as the current composite image. We
continue the stitching process by inputting the next source
image as the current image S..

We find the overlapping area between the current com-
posite image I. and the current image S. and compute
squared differences SD in this area as an error surface. A
minimal cost path through the error surface can be found
with dynamic programming. The two images match best
along the minimal cost path. We use it as the optimal seam
for creating labeling to cut the overlapping area. After the cut
area and the remaining part of the current image are merged
onto the current composite image, the process for the current
image is completed. We input the next source image as the
current image S, to continue the stitching process.

After all source images are processed, we obtain the final
composite image. During image stitching, we only need to
keep the current composite image and the current source
image in memory, which enables us to process large source
images with limited computational resources in the mobile
panorama system.



Figure 2. Find the optimal seam between the current composite image
and the current source image.

III. IMAGE LABELING WITH DYNAMIC PROGRAMMING
OPTIMIZATION

We aim to find optimal seams to merge the source
images together quickly and using little memory, so that
it can be applied for producing high-resolution panoramic
images on mobile devices. Here we describe the approach
in detail. In order to compare and evaluate performance,
we also implemented a labeling approach using graph cut
optimization.

A. Labeling with Dynamic Programming

We want to merge the images on places where they differ
the least. As shown in Figure 2, suppose that abcd is the
overlapping area between the current composite image I
and the current source image S.. I and S? are the over-
lapping images in the area abcd of I. and S. respectively.
We compute squared differences d between I¢ and S¢ as an
error surface,

d=(Ig - S9)% )

We apply dynamic programming to find a minimal cost path
through this surface. We scan the error surface row by row
and compute the cumulative minimum squared difference D
for all paths,

D(h,w) = d(h,w) +min(D(h — 1,w — 1),

D(h—1,w),D(h — 1,w + 1)) )

where h = 2,...,n, and w = 2,...,n, are the indices of
the row and column of the error surface respectively.

The optimal path m, can be obtained by tracing back the
paths with a minimal cost from bottom to top.

For the last row, the minimum value can be used to
determine the end (h,, w,) of the optimal path. For the next
upper row, if D(h, — 1, w) = D(ho,wo) — d(ho, w,), w €
{wo — 1, w,, w, + 1}, then the position of the optimal path
in this row is (h, — 1,w). We repeat the process until all
rows have been traced.

Figure 3 shows the process of optimal seam finding with
dynamic programming optimization. Figures 3 (a) and (b)
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Figure 3. Process of finding the optimal seam with dynamic programming
optimization.

are the overlapping images in the overlapping area of abcd
of I, and S, respectively. The error surface shown in Figure
3 (c) is computed through the squared differences between
the two images shown in Figure 3 (a) and (b). After that, the
cumulative squared difference D is computed with the error
surface d and is shown in Figure 3 (d). Meanwhile, we also
obtain all possible paths shown in Figure 3 (e). After tracing
back with dynamic programming, we obtain an optimal path
shown in Figure 3 (f) along which the two images in (a) and
(b) match best. We use the optimal path as an optimal seam
to create labeling and cut the overlapped images.

We update the current composite image /. by merging the
current image S, with the labeling information and continue
the labeling process with the next source image. After all
source images are processed, we obtain the final composite
image.

B. Labeling with Graph Cut Optimization

Figure 4 shows an image sequence with aligned source
images So,S1,...,5, and the composite image I.. We
apply graph cut optimization to find optimal seams
mg, My, ...,My_1 in the overlapping areas and create map-
ping or labeling between pixels in image I. and the source
images. With the labeling, we can copy corresponding pixels
from the source images to the composite image /..

Objective functions are important for graph cut optimiza-
tion. With different kinds of objective functions, we can
obtain different results. For optimal seam finding or labeling,
an objective function O is a function of a pixel labeling L,
ie., O(L).

Considering implementation on mobile devices, we create



Figure 4. Find optimal seams with graph cut optimization.

a simple and efficient objective function which includes two
items: pixel property P, and color differences D), between
neighboring pixels.

O(L) =Y Pylk, L(k)) + Y _ Dy(k,j, L(k), L(5)) (3)
K k.

where
P,(k,L(k)) depends on the property of pixel k;
D,(k,j,L(k),L(j)) is the color difference over all
pairs of neighboring pixels k, j.

For invalid pixels, we set the pixel property item
P,(k,L(k)) to a very large number, which means that the
seams may not go to invalid areas. Otherwise, we set it to
zero, i.e.,

N Vkied

0  others “)

Atk 20) = {

where

N is a large number;
® is an invalid area.

The invalid areas are created in image mapping process
after spatial alignment.

For color differences D,,, we compute Euclidean distances
in RGB space over all pairs of neighboring pixels k, 7, i.e.,

= 1Sery (k) = Seiiy () + 1Sz (G) — Scen Il (35)

where
S; is source image i;
L(k) is the label of pixel k.

Of course, we can add other items into the objective
function to consider other properties when cutting the source
images. For example, we can add an item to consider
edge information, and so on, however, it will use more
computational and memory.

The optimal seam finding or labeling problem can be cast
as a binary graph cut problem. The procedure of “alpha
expansion” [19] can be used to minimize the objective
function and obtain an optimal solution globally.

However, the optimization process using graph cuts needs
to keep all source images in memory. For implementation
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Figure 5. Panoramic images produced by the fast labeling (a) and graph
cut optimization (b) approaches with three 1024 x 768 source images (c)
of similar color and luminance.

on a desktop computer, it may not be a big problem, but for
implementation on mobile devices which have more limited
resources, it will be a crucial problem when processing large
source images. Besides, the application of multi-label graph
cuts requires a potentially large number graph cut iterations.
It is very slow for applications on mobile devices. These
problems are solved in the fast image labeling approach
presented in the previous section.

IV. APPLICATIONS AND RESULT ANALYSIS

The fast image labeling approach is integrated into a
sequential image stitching procedure and implemented in
our mobile panorama system for producing high-resolution
panoramic images on mobile devices. It has been tested
under different conditions, and it yields good performance
for both indoor and outdoor scenes. We compare the results
obtained by the fast labeling approach and graph cut opti-
mization to demonstrate advantages of the fast labeling in
processing speed and memory consumption. In this section,
we present some results obtained by running the method
on Nokia N95 8GB mobile phones with an ARM 11 332
MHz processor and 128 MB RAM. It can also be run on
other mobile devices. In these applications, the size of source
images is 1024 x 768. We have also applied the approach
to larger source images. It works fine and performance is
satisfying.



Figure 6. Panoramic images produced by the fast labeling (a) and graph
cut optimization (b) approaches with four 1024 X 768 source images (c)
of different color and luminance.

A. Applications to image stitching for source images with
similar color and luminance

We apply our approach to cases in which the color and
luminance in captured source images are similar. Figure
5 shows an example. The image sequence includes three
source images shown in Figure 5 (c). After image alignment,
the source images are stitched together to create a panoramic
image. Figures 5 (a) and (b) show the results created by the
fast image labeling and graph cut optimization approaches,
respectively. The fast labeling takes 3.44 seconds and the
graph cut optimization takes 121.88 seconds to label the
images, thus fast labeling is about 35 times faster.

We can also observe that the seams created by fast
labeling are better than the ones created by the graph cut
approach. They are almost invisible in the panoramic image
shown in Figure 5 (a). In this case we can use it as the final
result. However, the seams in Figure 5 (b) can still be seen.
Further processing is needed to reduce the color differences
between the source images for hiding the seams. Notice
also that while the image sequence is captured, people are
moving in the scene. Both approaches can find seams that
avoid ghosting or tearing problems across the seams.

B. Applications to image stitching for source images with
different color and luminance

Figure 6 shows an example of applying our approach to
stitching source images with different color and luminance
levels. The image sequence includes four source images
captured in an outdoor scene. Figures 6 (a) and (b) show
the results produced by the fast labeling and graph cut opti-
mization approaches, respectively. In the panorama stitching,
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the fast image labeling takes 5.92 seconds and the graph cut
approach takes almost 30 times longer, 165.92 seconds

Like the previous application, people in the scene are
moving while the image sequence is captured. Both ap-
proaches can create proper seams to avoid ghosting prob-
lems, but the fast labeling approach also keeps one more
moving object in the panoramic image. Since the luminance
in first two images is very different from the third and
fourth images, neither approach could find invisible seams.
Stitching artifacts can still be seen. Further blending is
needed to reduce the color differences to hide the seams
in the panoramic images.

C. Applications to image stitching for indoor scenes

We apply our approach to panorama stitching for source
images captured in indoor scenes. Figure 7 shows an ex-
ample with seven source images. The results created by the
the fast labeling and graph cut optimization approaches are
shown in Figures 7 (a) and (b), respectively. In the panorama
stitching, the fast image labeling approach takes 17 seconds
and the graph cut optimization approach takes about 35 times
longer, 595 seconds.

From Figure 7 (c) we can see that the luminance among
the source images in the image sequence is very different,
especially between the first four and the others. From the
results shown in Figures 7 (a) and (b) we can see that the
seams which are found by the fast labeling approach are
much better than those found by the graph cut optimization
approach. The previous are almost invisible and the latter
can still be seen.

D. Applications for creating 360° panorama with very long
image sequences

We apply our image stitching method for creating 360°
panoramic images with very long image sequences. Figure
8 shows an example. In this application, there are 17 source
images in the image sequence. In this case, the graph cut
optimization approach can not be run on the mobile phone
since there is not enough memory available. However, the
fast labeling approach still can. We compare their perfor-
mance by running them on a desktop computer. The results
created by the fast labeling and graph cut optimization
approaches are shown in Figure 8 (a) and (b) respectively.
The fast labeling approach is about 92 times faster than the
graph cut optimization approach. According to our tests, the
longer the image sequences, the more advantage the fast
labeling approach provides. Besides, it can process more
and larger source images than the graph cut optimization
approach can on mobile devices with limited resources.

When running on a mobile phone, the fast image labeling
approach takes 34 seconds and the result is the same as in
Figure 8 (a). Since the fast labeling approach is integrated
in the sequential image stitching procedure, during the
panorama stitching, it only needs to keep the panoramic



Figure 7.

Panoramic images produced by the fast labeling (a) and graph cut (b) with 7 1024 X 768 source images (c) in an indoor scene. The seams

found by the fast labeling approach are much better than the ones by the approach with graph cut optimization. They are almost invisible. However, the

graph cut seams can be seen clearly.

Figure 8.
source images (c). The previous is more than 92 times faster than the latter and only needs to keep one source image in memory during the stitching while
graph cuts needs to keep all source images.

image and the current source image in memory. As long
as there is enough memory for the final panoramic image
and the current source image, the approach does not care
how many source images are processed during stitching.
However, the graph cut optimization approach needs to keep
all source images in memory to find all optimal seams
globally for the panoramic image at one time. It needs
much more memory than the fast labeling approach for
processing the same number of source images. The fast
processing speed and low memory consumption are two
main advantages of the fast labeling approach for mobile
implementation.
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Panoramic images produced by image stitching using the fast image labeling (a) and graph cut optimization (b) with 17 1024 x 768 aligned

Our approach has been tested with many image sequences
with different cases. Figure 9 shows more results produced
by the fast image labeling approach with long image se-
quences. All these results were obtained on mobile phones.
In order to reduce differences of color and luminance and to
hide the seams, we perform color and luminance compensa-
tion for source images before stitching them onto panoramic
images and simple linear blending along with the seams in
these applications. We will report these details in a future
paper. From Figure 9 we can see that the panoramic images
have good color and luminance transition. The fast labeling
approach presents good performance in these different cases.



Figure 9. More examples of panoramic images produced by image stitching using the fast image labeling with long image sequences.

V. CONCLUSIONS AND DISCUSSION

W have presented a fast image labeling approach and
implemented it in our mobile panorama system to produce
high-resolution panoramic images. Compared to graph cut
optimization, it can produce panoramic images much faster
and using much less memory. When it is applied to scenes
of from 5 to 17 images, it is from 30 to 92 times faster
than the graph cut approach, respectively, and when the
scene illumination does not change much while the image
sequence is captured, it may find invisible seams for the
panoramic image. The approach can be applied to create
very large high-resolution panoramic images with large
source images as long as the system has enough memory
for the final panoramic image and the current processing
source image.

The approach is very simple. After the overlapping area
between two images is located, an error surface created by
computing the squared differences of color in the overlap-
ping area. A low-cost path is found by dynamic program-
ming optimization. Along with the low-cost path, the two
images match best. The path is used as the optimal seam
to create labeling. The two images can be cut along the
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seam. A sequential image stitch procedure is also created
and integrated with the fast labeling approach to create
panoramic images. The use of the integration allows us to
produce high-resolution panoramic images from large source
images with fast speed and low memory consumption.

There are two main advantages of the approach. It can
perform image labeling in panorama stitching with very fast
speed. The stitching quality is as good, and sometimes better,
as the graph cut optimization approach. The combination of
the sequential image stitching procedure and the fast labeling
approach allows us to create large panoramic images with
limited resources. These advantages are crucial for imple-
mentation on mobile devices.

Our approach is implemented in a mobile panorama
system and can be run on mobile devices. It has been tested
and applied to different scenes with different conditions.
From the example applications and tests, we can analyze
the performance of the approach. The approach has these
properties: in the case of source images with similar color
and luminance, the approach may find invisible seams; like
other optimal seam finding approaches, it can find optimal
seams to avoid ghosting and blurring problems caused by



moving objects and small spatial registration errors; the
property of fast speed and low memory consumption allows
us to create high-resolution and high-quality panoramic
images on mobile devices efficiently; and it can be applied
to quickly create 360° panoramic images from long image
sequences on mobile devices.

Future work includes color and luminance compensation
before image labeling and combination with fast transition
smoothing for hiding visible seams and removing stitching
artifacts.
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