
Manuscript received April 7, 2010
Current version published 06 29 2010;
Electronic version published 07 06 2010. 0098 3063/10/$20.00 © 2010 IEEE

Fast Panorama Stitching for High-Quality Panoramic Images
on Mobile Phones

Yingen Xiong and Kari Pulli, Member, IEEE

Abstract — This paper addresses the problem of creating

high-resolution and high-quality panoramic images from long
image sequences with very different colors and luminance in
source images. A fast stitching approach is proposed for
combining a set of source images into a panoramic image
using little memory, and implemented on mobile phones. In
this approach, color correction reduces color differences of
source images and balances colors and luminance in the
whole image sequence, dynamic programming finds optimal
seams in overlapping areas between adjacent images and
merges them together, and image blending further smoothens
color transitions and hides visible seams and stitching
artifacts. A sequential panorama stitching procedure
constructs panoramic images. The advantages include fast
processing speed using dynamic programming for optimal
seam finding, reducing memory needs by using the sequential
panorama stitching, and improved quality of image labeling
and blending due to the use of color correction. The approach
has been tested with different image sequences and it works
well on both indoor and outdoor scenes1.

Index Terms — Mobile panorama, image stitching, fast
labeling, image blending.

I. INTRODUCTION
A panoramic image has a wide field of view, much wider

than is available on normal cameras such as those in mobile
phones. By stitching together a sequence of overlapping
normal images, we can create a panoramic image. Image
stitching is a very important step in creating panoramas. A
simple pasting of overlapping images into the final panorama
produces visible seams due to changes of scene illumination
and camera responses, or spatial alignment errors.

The task of image stitching is to find optimal seams in
overlapping areas of source images, merge them along the
seams, and minimize merging artifacts. In this paper, we are
creating high-resolution and high-quality panoramic images
on mobile phones, so that a user can capture an image
sequence of a wide range of scenes with a camera phone and
see a panoramic image created immediately on the phone.

A. Background
Mobile phones are not only efficient communication tools,

but also capable computational devices equipped with high-
resolution digital cameras, high-quality color displays, and
GPU hardware. Applications such as mobile augmented

1 Yingen Xiong and Kari Pulli are with Nokia Research Center, Palo Alto,

CA 94304, USA (e-mail: yingen.xiong@nokia.com; kari.pulli@nokia.com).

reality, mobile local search, and mobile image matching and
recognition used to only work on desktop computers, but can
now run on mobile phones. Here we are building panorama
applications on these devices.

A panorama construction process requires a lot of
computation and memory. Mobile phones only have limited
resources. It is necessary to develop efficient stitching
methods to fit mobile applications.

B. Related Work
There are two main categories of current image stitching

approaches: transition smoothing and optimal seam finding.
Transition smoothing approaches reduce color differences

between source images to make seams invisible and remove
stitching artifacts. Alpha blending [1] is a widely used simple
and fast transition smoothing approach, but it cannot avoid
ghosting problems caused by object motion and small spatial
alignment errors. Recently, gradient domain image blending
approaches [5]-[8] have been applied to image stitching.
These algorithms can reduce color differences and smooth
color transitions using gradient domain operations, producing
high-quality composite images.

Optimal seam finding approaches [4], [9]-[12] search for
seams in overlapping areas along paths where differences
between source images are minimal. The seams can be used to
label each output image pixel with the input image that should
contribute to it label which input image contributes to each
output pixel.

The combination of optimal seam finding and transition
smoothing for image stitching has also been used in panorama
applications [4], [13], and [15]. Source images are combined
by compositing along optimal seams. If the seams and
stitching artifacts are visible, transition smoothing is applied
to reduce color differences to hide the artifacts.

Current panorama stitching approaches running on camera
phones can be found in [13], [2], and [3]. In [13], graph cut is
used for finding optimal seams to merge the source images
together and Poisson blending is used for smoothing color
transitions. High-quality panoramic images can be obtained.
However, computational and memory costs are high. In [2]
and [3], source images are stitched together with a procedure
including color correction, seam finding, and simple band-
linear blending. The stitching process is simple. However, the
quality of panoramic images is not high. There are several
problems in this approach. Pixels are easy saturated in color
correction. It does not work well for source images in very
different colors and luminance. The simple band-linear
blending is not sufficient when color correction can not

298 IEEE Transactions on Consumer Electronics, Vol. 56, No. 2, May 2010

remove color differences efficiently, which results in low-
quality panoramic images. Like other linear blending, moving
objects on the overlapping areas will cause ghosting artifacts.
All these problems are solved in our proposed approach.

We have created a fast image stitching approach that uses
relatively little memory. It includes color correction, image
labeling, and image blending operations. We perform color
correction for all source images to reduce color differences
and smoothen remaining color transitions between adjacent
images. Since the RGB pixel values of input images are
gamma-corrected and therefore non-linear, we calculate the
color averages used to find color correction coefficients using
linearized RGB values. A global adjustment process is applied
to reduce magnitude of average color correction to lower the
chance of saturating pixel values during color correction. In
the image labeling operation, an error surface is constructed
with squared differences between overlapping images. A low-
cost path is found through the error surface by dynamic
programming and used as an optimal seam to create labeling.
The overlapping images are merged together along the
optimal seam. Compared to the commonly used graph cut
method, the labeling process is much faster and memory
consumption is much lower. In order to further smoothen
color transitions between adjacent source images, we perform
image blending after the source images are merged using
image labels. A simple linear blending is used when source
images are similar in color and luminance. When the colors
remain too different, Poisson blending hides visible seams.
The use of color correction for the source images can improve
qualities of image labeling and image blending. It can also
speed up the blending process. A sequential panorama
stitching procedure is created with the fast image stitching
approach. In this way, we can produce high-resolution
panoramic images from large source images with low
computational and memory costs.

C. Contributions
We (i) propose a fast panorama stitching approach with

color correction, fast labeling, and image blending for creating
high-resolution and high-quality panoramic images on mobile
phones; (ii) improve qualities of optimal seam finding and
transition smoothing by combining color correction with
image labeling and image blending; (iii) reduce computation
of the Poisson blending process with pre-smoothing color
differences of source images; (iv) create a sequential image
stitching procedure for mobile applications to quickly
construct high-resolution panoramas with long image
sequences using little memory; (v) present various examples
and compare performance with other approaches to
demonstrate advantages of the proposed approach; (vi)
implement it on mobile phones.

II. SUMMARY OF OUR APPROACH
Fig. 1 shows the workflow of the fast panorama stitching

procedure. We start with setting the stitching order (S0, S1, …,
Sn) of the source images by sorting their offsets with respect to

the final panorama. We calculate color correction coefficients
for each neighboring image pair in the linearized RGB color
space for all source images, and then compute a global
adjustment factor that reduces cumulative color correction and
the risk of saturating colors. Next, we find an image with
more realistic colors in the image sequence, and adjust the
first image using a chain of relative color corrections,
modified with the global correction factor, so that the colors
of the best image remain after correction as they were. After
allocating memory for the final panoramic image Ic and
initializing it with the first image S0, we start to stitch other
source images to the panoramic image sequentially.

Fig. 1. Workflow of the fast panorama stitching approach.

We load the next source image as the current processing
image Sc and perform color correction with the color
correction coefficients and the global adjustment factor. In
order to merge the current image with the current panorama,
we extract the overlapping area between these two images and
compute a squared difference between the overlapping images
as an error surface. We find a minimal cost path through the
error surface with dynamic programming. That path is used as
an optimal seam to cut the overlapping images and merge
them together. We perform image blending to further reduce

Start
Set a stitching order (S0, S1, …, Sn) for the
source images by sorting their offsets.

Find an image with best colors in the image sequence and
use it to correct the colors of the first image.

Calculate color correction for each source image pair
and obtain color coefficients for all source images.

Calculate global adjustment factor for the color correction coefficients.

Perform color correction for the first image S0 relative to the best
image, set it as the base image, and put it into the panoramic image Ic.

Load the next source image as the current image Sc.

Perform color and luminance compensation for the current image Sc
with the compensation coefficients and the global adjustment factor.

Determine the overlap between the current
panoramic image Ic and the current image Sc.

Compute an error surface in the overlapping area.

Find a minimal cost path through the error surface with dynamic
programming and use it as an optimal seam for labeling.

Cut the overlapping images along the optimal seam and merge them.

Perform image blending and update the current
panoramic image Ic with the blending result.

Obtain the final panoramic image Ic. Stop

Are all source images done?

yes

no

Y. Xiong and K. Pulli: Fast Panorama Stitching for High-Quality Panoramic Images on Mobile Phones

299

color differences and smooth color transitions between the
current source image Sc and the panoramic image Ic. With the
blending result, we can update the panoramic image Ic.

The process is repeated for all source images, until we
obtain the final panoramic image. Unlike the global image
stitching in [13], we do not need to keep all source images in
memory due to the sequential stitching. The use of dynamic
programming for optimal seam finding allows image labeling
much faster than using graph cut. The combination of color
correction and image blending allows us to construct high-
quality panoramic images.

Although we describe the approach using the 1D stitching
case, i.e. cameras move horizontally or vertically, it has been
already extended to 1D stitching, i.e. cameras move in any
arbitrary direction and source images can be stitched together
in any arbitrary order.

 (a) (b)

Fig. 2. Image stitching without and with color correction

III. COLOR AND LUMINANCE COMPENSATION
We capture the images using automated settings for focus,

exposure, and white balance. As illumination changes across
the scene, different images have different values for exposure
and white balance, leading sometimes to large differences in
colors in neighboring images. If no further color processing is
done, visible artifacts may be created in panorama stitching.

Fig. 2 (a) shows an example, where the upper row shows
three source images with different colors. The bottom row
shows a stitching result. In this case, we can clearly see color
differences and seams between the source images. It is
necessary to perform color correction for the source images to
reduce the differences and improve the stitching quality.

In order to better match the colors, we compute light
averages in the overlap area using linearized RGB values
instead of the default gamma-corrected RGB. In an image
sequence S0, S1, … Si, … Sn, suppose Si-1 and Si are adjacent
images, and Si−1

o

 and Si
o

 are where image overlap. We compute
color correction coefficients for image Si by linearizing the
gamma-corrected RGB values as

,),,3,2,1(},,{
))((

))((

,

1,

, niBGRc
pP

pP

p
ic

p
ic

ic L=∈
∑

∑
=

−

γ

γ

α (1)

where Pc,i-1(p) is the color value of pixel p in image Si−1
o ; Pc,i(p)

is the color value of pixel p in image o
iS ; and γ is a gamma

coefficient. Usually we set γ to 2.2. For the first image S0, we
set αc,0 to 1. To avoid saturating color values, we perform a
global adjustment for color in the whole image sequence. We
calculate a global adjustment factor gc for each color channel c

so that the overall adjustments gcαc,i approximate 1 by solving
the least-squares equation

∑
=

∈−
n

i
iccg

BGRcg
c 0

2
, },,{)1(min α . (2)

Equation (2) is a quadratic function in adjustment gc which
can be solved in closed form by setting the derivative to 0,

),,1,0(},,{

0

2
,

0
,

niBGRcg n

i
ic

n

i
ic

c K=∈=

∑

∑

=

=

α

α
. (3)

With the correction coefficients αc,i and the global adjustment
factor gc, we perform color correction for the whole image Si,

),,1,0(},,{),()()(,
/1

,, niBGRcpPgpP iciccic K=∈← γα , (4)

where Pc,i(p) is the color value of pixel p in image Si in color
channel c∈{R, G, B}. Since the input and output values are
gamma-corrected, we also gamma-correct adjustments gcαc,i.

As described before, we use a best image found in the
image sequence to correct colors for the first image. It is
difficult to automatically determine the image with the best
colors, since that is also partially an esthetic judgment call,
and ideally the user should select the image whose colors she
likes the best. As a heuristic, we select the image with most
similar means in the R, G, and B channels, using the gray
world assumption often used in white balancing.

Fig. 2 (b) shows the results of color correction and image
stitching for the source images shown in Fig. 2 (a). From the
results we can see that color correction reduces the color
differences so that hardly any seam remains visible.

There are two main advantages in the way we do the color
correction. Linearizing the light while calculating the
correction factors matches the colors better than if the
averages were calculated in gamma-corrected RGB, and the
global adjustment for color correction coefficients attenuates
the corrections, reducing accumulation of corrections that may
lead to color saturation.

 (a) (b)

Fig. 3. Ghosting artifacts caused by object motion and deghosting.

IV. OPTIMAL SEAM FINDING AND IMAGE LABELING
Object motion and spatial alignment errors may cause

ghosting artifacts during image stitching. Fig. 3 (a) shows an
example where a person was moving while the image
sequence was captured. From the stitching result we can see
the ghosting problem caused by the motion.

300 IEEE Transactions on Consumer Electronics, Vol. 56, No. 2, May 2010

The objective of optimal seam finding is to find seams in
the overlapping areas of source images, create labeling for all
pixels in the composite image, and merge source images along
the optimal seams. Since each pixel in the composite image
comes from only one source image, the ghosting problems can
be avoided. In mobile settings, we want a method that finds
optimal seams quickly with using little memory, so that it can
be applied for creating high-resolution panoramic images on
mobile phones. Like [11] and [2], we also use dynamic
programming to find optimal seams.

We want to merge the images on places where they differ
the least. Suppose that abcd is the overlapping area between
the current composite image Ic and the current source image
Sc. Ii

o

 and Si
o
 are the overlapping images in the area abcd of Ic

and Sc respectively. We compute squared differences e
between Ii

o

 and Si
oas an error surface,

.)(2o
c

o
c SIe −= (5)

We apply dynamic programming to find a minimal cost
path through this surface. We scan the error surface row by
row and compute a cumulative minimum squared difference E

)),1,1(),,1(
),1,1(min(),(),(

+−−
−−+=

whEwhE
whEwhewhE

 (6)

where h = 2, …, nr and w = 2, …, nc are the indices of the
rows and columns of the error surface, respectively.

The optimal path mc can be obtained by tracing back the
paths with a minimal cost from bottom to top.

On the last row, the pixel with the minimum value is at the
end (h0, w0) of the optimal path. On the previous row, the
minimum E(h0–1,w), w∈{w0–1,w0,w0+1} denotes the
position (h0–1,w) of the optimal path at this row. Similarly, we
can follow the path up one row at a time.

Fig. 4 shows the process of optimal seam finding with
dynamic programming. Fig. 4 (a) and (b) are the overlapping
areas of Ic and Sc, respectively. The error surface e shown in
Fig. 4 (c) is computed as the squared differences between
images Fig. 4 (a) and (b). Using that, the cumulative minimum
squared difference E is computed and is shown in Fig. 4 (d).
Fig. 4 (e) shows all possible paths. After tracing back with
dynamic programming, we obtain the optimal path shown in
Fig. 4 (f), along which the two images in (a) and (b) match
best. We use that path as an optimal seam to create labeling.

We update the current composite image Ic by merging the
current image Sc with the labeling information and continue the
labeling process with the next source image. After all source
images are processed, we obtain the final composite image. Since
optimal seams are used in the image stitching process, the ghosting
problems can be avoided. Fig. 3 (b) shows the result obtained by
image stitching with optimal seam finding for the source images
shown in Fig. 3 (a). From the result we can see that ghosting
artifacts in the overlapping area have been removed by the optimal
seam finding process. In this case the paths resulted in a copy of the
moving person, other choices for the path might result in the left,
right, or neither version of the person. In any case we avoided
transparent copies, or paths splitting the person in two.

Color correction can improve quality of optimal seam
finding and image labeling. We want to find a path where the
images agree. This is more difficult to do if the colors of the
two images disagree as much as in the sequence of Fig. 5.
There is a moving object (car) in the scene, and we would like
to find a path that does not intersect the car, as the other
images do not contain it. However, on top left, where the
images have not been color-corrected, the minimum
difference path goes through the car. In top right, when the
colors have been corrected before the path search, the path
avoids the car, and a consistent panorama could be created.

Fig. 4. Process of optimal seam finding with dynamic programming.

Fig. 5. Color-correction improves the seam quality.

Fig. 6. Simple linear blending.

V. TRANSITION SMOOTHING WITH IMAGE BLENDING
Color correction reduces the differences between the

images, which makes blending easier and faster. In our fast
panorama stitching approach, we have two image blending
processes that can be used.

A. Simple Linear Blending
For the source images that are similar in color and

luminance after color correction, we perform a simple image
blending on a band that is δ pixels wide on both sides of the
seam, as shown in Fig. 6. The new color value of pixel p in
the overlapping area can be calculated by a weighted
combination of the corresponding pixels

nn
S

n
I

n

I dd
pPdpPd

pP cc

newc
21

21)()(
)(

, +
+

= , (7)

where d1 and d2 are distances from pixel p to boundaries;
)(

,
pP

newcI is the new color of pixel p; PI c
(p)

is the color of

(a) (b) (c) (d) (e) (f)

 ccI
cS

a
cm

δ δ

2d 1d
p

Y. Xiong and K. Pulli: Fast Panorama Stitching for High-Quality Panoramic Images on Mobile Phones

301

pixel p in image Ic; PSc
(p)

is the color of pixel p in image Sc;

different values of n result in different color transitions.
Linear blending is simple and computational and memory

costs are low. However, moving objects in the blending
band areas will cause ghosting artifacts. Furthermore when
source images differ, linear blending is not enough to get rid
of seams and stitching artifacts; more intensive blending is
required.

B. Poisson Blending
Poisson blending is an intensive image blending approach

that performs image blending in the gradient domain. In
Poisson blending, we create a gradient vector field (Gx, Gy)
with gradients of source images using the labeling obtained
using optimal seams. In the sequential image stitching
procedure, the gradient vector field is copied from the current
source image Sc, up until the seam between it and the current
panoramic image Ic (in Fig. 6 all the pixels of Sc to the right of
the calculated seam). A divergence field div(G) is then
computed from the gradient vector field,

y
G

x
GGdiv yx

∂
∂

+
∂
∂

=)(. (8)

We use the divergence field as a guidance to construct a
Poisson equation

)(),(2 GdivyxI =∇ , (9)

where 2∇ is the Laplacian operator

2

2

2

2
2),(),(),(

y
yxI

x
yxIyxI

∂
∂

+
∂

∂
=∇ . (10)

In practical implementation, we need to use the discrete
form of Equation (9)

)1,(

),(),1(),(),(4
)1,()1,(),1(),1(

−−

+−−=−
−+++−++

yxG

yxGyxGyxGyxf
yxIyxIyxIyxI

y

yxx (11)

Equation (11) is a linear partial differential equation, which
we solve by fixing the colors at the seam and solving new
colors I(x, y) over the gradient field. We can solve the
equation using an iterative conjugate gradients solver.

Fig. 7 shows a comparison between the results created by
simple linear blending and Poisson blending for the color-
corrected source images shown in Fig. 2. The upper figure
shows the result using simple linear blending. A faint seam
can still be seen between the two source images. However, no
visible seam can be observed in the result created by the
Poisson blending shown on the bottom.

By comparison, the linear blending is simple and fast, but
blending quality is low. The Poisson blending has higher
quality; however it needs more computation and memory.

While color correction was crucial for good quality in linear
image blending, it can also help to speed up the Poisson
solver. Fig. 8 shows three source images with very different
colors and luminance. The top row shows the results after 20
iterations of Poisson solver, on the left starting from the

original inputs, on the right starting from color-corrected
inputs. Hundreds of further iterations would be needed to
obtain comparable results without color correction. With
longer sequences differences become even more pronounced.

Fig. 7. Results of linear blending and Poisson blending.

Fig. 8. Improved blending quality and speed with color correction.

VI. IMPLEMENTATION
A sequential panorama stitching procedure is created with

the fast image stitching approach. We have two
implementations for the procedure: keep the full resolution
panoramic image in memory; create a low-resolution
panoramic image in memory for display and save the full
resolution one to disk block by block while it is created.

By comparison, the previous one is faster and more
convenient for the viewing process. It can keep stitching with
frames as long as there is enough memory for the full
resolution panoramic image, the current source image, and
some work arrays. The latter one has no limitation for the
number of frames as long as there is enough memory for the
low-resolution panoramic image, the current source image,
and some work arrays. It needs to re-load the full resolution
panoramic image for viewing. By comparing with the global
image stitching [13], both implementations use much less
memory. A comparing result is given in Section VII.B.

VII. EXAMPLES AND RESULT ANALYSIS
We have implemented the fast panorama stitching approach

on mobile phones for creating high-resolution and high-
quality panoramic images. We have tested it on both indoor
and outdoor scenes and obtained good results. We present
examples for various scenes, including long image sequences
with source images with very different colors and luminance,
and compare performance with other approaches to
demonstrate advantages of our panorama stitching in
processing speed and memory consumption.

In this paper, the example applications and results are
obtained on a mobile phone with a 332 MHz processor and
128 MB RAM. It can also be run on other mobile devices. In
these applications, the size of source images is 1024×768. We
have also applied it to larger source images, with good results.

302 IEEE Transactions on Consumer Electronics, Vol. 56, No. 2, May 2010

Fig. 9. Application to a long image sequence with very different colors and luminance in source images.

A. Long Image Sequences with very Different Colors

Fig. 9 shows an example of a long image sequence with
images that have very different colors and intensities. With the
results of this example, we can also demonstrate the
performance of each process in the approach.

Fig. 9 (a) shows the original source images in the image
sequence. There are 13 source images with very different
colors and luminance in the image sequence. While it is
captured, some objects move in the scene. The different colors
and luminance between the source images are caused by the
use of automated settings of the camera.

Fig. 9 (b) shows the composite image obtained by optimal
seam finding. From the result we can see that the optimal
seam finding process in our panorama stitching can find the

best way to label images and merge them to a composite
image. Although there are moving objects in overlapping
areas of source images, there is no ghosting or blurring
problems in the composite image. The use of dynamic
programming for optimal seam finding is one of the main
reasons why the proposed panorama stitching works fast.

Fig. 9 (c) shows the result created by the simple linear blending
for the composite image obtained by optimal seam finding. From
the result we can see that the color differences across the optimal
seams are reduced to some extent. This means that the simple linear
blending process can smooth color transitions across the seams.
The processing speed of the blending is very fast. However, since
the source images are very different in colors and luminance, the
color differences in the whole composite image still can be seen.
Other processing is needed to further reduce the differences.

(a) Source image sequence.

(b) Optimal seam finding.

(c) Linear blending along with the seams.

(d) Poisson blending with 5 iterations.

(f) Source images after color correction.

(g) Linear blending for source images after color correction.

(h) Poisson blending with 5 iterations for source images after color correction.

(e) Poisson blending with 150 iterations.

Y. Xiong and K. Pulli: Fast Panorama Stitching for High-Quality Panoramic Images on Mobile Phones

303

Fig. 10. Panoramic image created by the approach in [2].

Fig. 11. Comparison of color correction approaches in [2] and in the proposed fast panorama stitching approach.

Fig. 9 (d) shows a result produced by Poisson blending in
which the linear solver uses 5 iterations. From the result we
can see that the effect of the blending is almost the same as the
simple linear blending shown in Fig. 9 (c). It is still far away
from a satisfying result. The color differences in the
composite image can still be seen clearly.

 Fig. 9 (e) shows a result obtained by Poisson blending after
150 iterations. The result is improved much compared to the
result shown in Fig. 9 (d). This means that much more
computation is needed to obtain a better result. However, the
result is still not satisfying. We can still see color discontinuity
in the composite image, especially on the right side.

Fig. 9 (f) shows the source images after color correction.
From the result we can see that the color correction process
can reduce differences in colors and luminance between two
images and adjust colors globally in the whole image
sequence. Although the original source images are very
different, the differences are smoothed after color correction.
Also, there are no pixel saturation artifacts after the color
correction process. We can see that the performance of the
color correction process is very satisfying.

Fig. 9 (g) shows a result created by the simple linear
blending process after color correction. As we can see,
combination of color correction with the simple linear
blending can produce very satisfying panoramic images. Both
processes of color correction and linear blending are simple
and use little memory. The combination is suitable for mobile
implementation and applications.

Fig. 9 (h) shows a result produced by Poisson blending with
the source images after color correction. We can see that there
are no visible artifacts. In this case, Poisson blending still uses
5 solver iterations, however, the result is much better than in
Fig. 9 (e), which uses 150 iterations for the source images that
are not processed by color correction. Again, the conclusion is
that color correction can improve Poisson blending quality
and speed up the processing speed. The combination makes
Poisson blending much more suitable for mobile devices.

From the evaluation of this example we can see that each
process of the proposed panorama stitching approach
functions well. The approach can produce high-quality and

high-resolution panoramic images on mobile phones. It can
handle source images in long image sequences with very
different colors and luminance.

B. Comparison with Other Approaches
Fig. 10 shows a panoramic image created by the approach

proposed in [2] with source images shown in Fig. 9 (a). From
the result we can see that color differences and seams between
source images can be seen clearly. Since the source images are
very different in colors and luminance, the color correction
approach can not remove the differences completely and the
simple band-linear blending can not smooth the color
transitions, so that a low-quality panoramic image is obtained.
Actually, this is one of the main disadvantages of the
panorama stitching approach in [2]. It can not handle long
image sequences with source images in very different colors
and luminance. On the other hand, for same image sequence,
the proposed fast panorama stitching approach can produce
high-quality panoramic images shown in Fig. 9 (g) and (h)
due to better color correction and image blending procedures.
In general, the proposed approach can handle this kind of
image sequences very effectively.

Fig. 11 shows a comparison of color correction results
between the approach in [2] and the proposed approach. In
this case, there are 14 source images with very different colors
and luminance shown in Fig. 11 (bottom). Fig. 11 (top) shows
the panoramic image created with the color correction in [2].
From the result we can see that the color correction approach
does not work well. The color differences could not be
removed. There is a main problem in this result that a large
part of the pixels are saturated after color correction. Most
details such as in the sky and road in this result are lost. Fig.
11 (middle) shows the panoramic image created with the color
correction in the proposed approach. From the result we can
see that all details are kept and pixels are not saturated after
color correction. Colors in the whole panoramic image are
very natural. Color transitions are smoothed. The good color
correction promises to obtain high-quality panoramic images.
Furthermore, Poisson blending can further improve quality of
the final result.

304 IEEE Transactions on Consumer Electronics, Vol. 56, No. 2, May 2010

Fig. 12. Panoramic image produced by the fast panorama stitching with 7 source images in an indoor scene with moving objects.

Fig. 13. Panoramic image produced by the fast panorama stitching with 8 source images in an outdoor scene with moving objects.

Fig. 14. A panoramic image created by our fast panorama stitching with 17 1024×768 source images on mobile phones.

TABLE I
COMPARISON OF MEMORY CONSUMPTION OF IMAGE STITCHING IN [13] AND

THE PROPOSED APPROACH
A 2 3 4 5 6 7 8 9 10
B 11.4 13.3 15.1 16.9 19 20.5 21.4 23.4 24.2
C 10.1 10.8 11.4 12.2 13 13.6 13.7 14.7 15.0

We have compared memory consumptions between the
proposed sequential panorama stitching with the global
panorama stitching in [13] which needs to keep all source
images in memory for global optimization during image
stitching. The result is shown in Table I. In the table, row A
means the number of source images used, B shows the
memory consumption using global panorama stitching, and C
shows the memory consumption of sequential panorama
stitching. The unit of memory consumption is MB. From the
results we can see that the more source images in panorama
stitching, the more memory the sequential stitching saves. In
this comparison, both implementations keep full panoramic
images in memory during panorama stitching.

C. Image Stitching of an Indoor Scene
Fig. 12 shows an example of an indoor scene with 7 source

images. The result created by the proposed fast panorama

stitching is shown on the top of the figure. The stitching
process takes 19 seconds and the graph cut approach [13]
takes 672 seconds, about 35 times longer.

We can also notice some other aspects. Although the people
in the scene are moving during the capture of the sequence,
the stitching process finds good seams and avoids ghosting
and blurring problems caused by these moving objects.
Although there are some differences of the source images in
colors and luminance, they are removed after color correction
and image blending in the resulting panoramic image. The
color transitions are smoothed in the final results.

D. Image Stitching of an Outdoor Scene
The outdoor image sequence in Fig. 13 (bottom) includes

eight source images that are stitched together to create a
panoramic image. Fig. 13 (top) shows the result created by the
fast panorama stitching approach. The stitching takes 23
seconds and the graph cut [13] takes 756 seconds, about 32
times longer. Also here we find good seams, and selecting
single input image per output pixel helps to avoid ghosting
problems due to object motion.

Y. Xiong and K. Pulli: Fast Panorama Stitching for High-Quality Panoramic Images on Mobile Phones

305

E. Creating 360◦ Panoramas with very Long Image Sequences
Fig. 14 shows a 360o panoramic image. The top shows the

created panoramic image and the bottom shows the 17 source
images. From the image sequence we can see that the source
images are very different in colors and luminance and there
are some moving objects in the scene while the image
sequence is captured. However, the approach still produces a
high-quality panoramic image.

The panorama stitching process takes 34 seconds and again
is much faster than the commonly used graph cut approach.
According to our tests, the longer the image sequences, the
greater the speed advantage of the fast panorama stitching is.
Since the fast panorama stitching is a sequential image
stitching procedure, it only needs to keep the panoramic image
and the current source image in memory. As long as there is
enough memory for the final panorama and the current source
image, the approach does not care how many source images
are processed. Fast processing speed and low memory
consumption are the main advantages of the proposed
approach, both very important in a mobile implementation.

Our approach has been tested with many image sequences
with different cases on different types of mobile phones and it
performs well.

VIII. DISCUSSION AND CONCLUSIONS
A fast panorama stitching approach that uses little memory

is developed and implemented on mobile phones for creating
high-resolution and high-quality panoramic images. It has
been tested with different image sequences captured under
different lighting conditions. It is much faster than the graph
cut approach. The fast stitching approach can be applied to
create high-resolution panoramic images with large source
images as long as the system has enough memory for the final
panorama and the current processing source image.

The fast speed of the proposed approach is mainly due to
the fast labeling approach created with dynamic
programming. It is very simple to implement. After the
overlap between two images is located, an error surface is
created by computing the squared differences of colors in
the overlapping area. A low-cost path where the image
values agree is found by dynamic programming. The path is
used as the optimal seam to create labeling, and the two
images can be cut along the seam and merged together.
Labeling allows us also to avoid ghosting when objects
move as the images are captured.

Two image blending processes can be used in this fast
panorama stitching approach. When source images are
sufficiently similar in colors after color correction, a
simple and fast linear blending suffices. When source
images are too different for the simple linear blending, a
Poisson blending removes visible seams. Applying color
correction helps also Poisson solver to find a good
solution faster.

A sequential panorama stitching procedure is created and
integrated with color correction, fast labeling, and image

blending to create panoramic images. The integration allows
us to create high-resolution panoramic images from several
large source images quickly using little memory.

Future work includes speeding up the Poisson blending
process and reducing its memory consumption.

REFERENCES
[1] Y. Xiong and K. Pulli, “Mask based image blending approach and its

applications on mobile devices,” in SPIE Multispectral Image Processing
and Pattern Recognition (MIPPR), 2009.

[2] S. Ha, H. Koo, S. Lee, N. Cho, and S. Kim, “Panorama mosaic
optimization for mobile camera systems,” IEEE Transactions on,
Consumer Electronics, vol. 53, no. 4, pp. 1217–1225, Nov. 2007.

[3] S. Ha, S. Lee, N. Cho, S. Kim, B. Son, "Embedded panoramic mosaic
system using auto-shot interface," IEEE Transactions on Consumer
Electronics, Vol. 54, No. 1, pp.16-24, Feb. 2008.

[4] A. Agarwala, M. Dontcheva, M. Agrawala, S. Drucker, A. Colburn, B.
Curless, D. Salesin, and M. Cohen, “Interactive digital photomontage,”
ACM Trans. Graph, vol. 23, pp. 294–302, 2004.

[5] A. Levin, A. Zomet, S. Peleg, and Y. Weiss, “Seamless image stitching
in the gradient domain,” in European Conference on Computer Vision
(ECCV), 2004, pp. 377–389.

[6] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,” ACM
Trans. Graph., vol. 22, no. 3, pp. 313–318, 2003.

[7] J. Jia, J. Sun, C.-K. Tang, and H.-Y. Shum, “Drag-and-drop pasting,” in
ACM SIGGRAPH, 2006, pp. 631–637.

[8] Z. Farbman, G. Hoffer, Y. Lipman, D. Cohen-Or, and D. Lischinski,
“Coordinates for instant image cloning,” ACM Trans. Graph., vol. 28,
no. 3, pp. 1–9, 2009.

[9] N. Gracias, M. Mahoor, S. Negahdaripour, and A. Gleason, “Fast image
blending using watersheds and graph cuts,” Image Vision Comput., vol.
27, no. 5, pp. 597–607, 2009.

[10] D. L. Milgram, “Computer methods for creating photomosaics,” IEEE
Trans. Comput., vol. 24, no. 11, 1975, pp. 1113–1119.

[11] A. A. Efros and W. T. Freeman, “Image quilting for texture synthesis
and transfer,” in ACM SIGGRAPH, 2001, pp. 341–346.

[12] J. Davis, “Mosaics of scenes with moving objects,” in IEEE Conference
on CVPR, 1998, pp. 354–360.

[13] Y. Xiong and K. Pulli, “Gradient domain image blending and
implementation on mobile devices,” in International Conference on
Mobile Computing, Applications, and Services (MobiCase), 2009.

[14] V. Kolmogorov and R. Zabih, “What energy functions can be minimized
via graph cuts,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 26, pp. 65–81, 2004.

[15] Y. Xiong and K. Pulli, “Sequential image stitching for mobile
panorama,” in IEEE International Conference on Information,
Communications and Signal Processing (ICICS), 2009.

BIOGRAPHIES

Yingen Xiong works at Nokia Research Center. His
research interest areas include computer vision, pattern
recognition, and computational photography. Previously
he was a research professor in Virginia Polytechnic
Institute and State University and Wright State
University. He received PhD degree from Nanjing
University of Aeronautics and Astronautics.

Kari Pulli is a research fellow at Nokia Research Center.
He has been an active contributor to several mobile
graphics standards and recently wrote a book about
mobile 3D graphics. Pulli received a PhD in computer
science from University of Washington and an MBA
from University of Oulu. Contact him at
kari.pulli@nokia.com.

306 IEEE Transactions on Consumer Electronics, Vol. 56, No. 2, May 2010

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

