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ABSTRACT
We have built an outdoors augmented reality system for mobile
phones that matches camera-phone images against a large database
of location-tagged images using a robust image retrieval algorithm.
We avoid network latency by implementing the algorithm on the
phone and deliver excellent performance by adapting a state-of-
the-art image retrieval algorithm based on robust local descriptors.
Matching is performed against a database of highly relevant fea-
tures, which is continuously updated to reflect changes in the en-
vironment. We achieve fast updates and scalability by pruning of
irrelevant features based on proximity to the user. By compress-
ing and incrementally updating the features stored on the phone we
make the system amenable to low-bandwidth wireless connections.
We demonstrate system robustness on a dataset of location-tagged
images and show a smart-phone implementation that achieves a
high image matching rate while operating in near real-time.

Categories and Subject Descriptors
H.3.3 [Information Technology and Systems]: Information Stor-
age and Retrieval—Information Search and Retrieval

General Terms
Algorithms, Design, Performance

Keywords
local search, photo collections, geo-referenced photos, image search,
mobile computing, augmented reality

1. INTRODUCTION
High-end mobile phones have developed into capable compu-

tational devices equipped with high-quality color displays, high-
resolution digital cameras, and real-time hardware-accelerated 3D
graphics. They can exchange information over broadband data con-
nections, and sense location using GPS. This enables a new class
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Figure 1: A snapshot of the outdoors augmented reality system
being used. The system augments the viewfinder with informa-
tion about the objects it recognizes in the image taken with a
phone camera.

of augmented reality applications which use the phone camera to
initiate search queries about objects in visual proximity to the user.
Pointing with a camera provides a natural way of indicating one’s
interest and browsing information available at a particular location.
Once the system recognizes the user’s target it can augment the
viewfinder with graphics and hyper-links that provide further in-
formation (the menu or customer ratings of a restaurant) or services
(reserve a table and invite friends for a dinner). This paper presents
the technologies we have developed for supporting these kinds of
point-and-find applications.

1.1 Prior Work in Image Retrieval
Our work represents a special category of content-based image

retrieval (CBIR) [1]. We want to recognize real-world images from
a set of categories (buildings, landmarks, logos) but we want to
do it under a variety of viewing and lighting conditions. We want
the algorithms to work in the presence of transient clutter in the
foreground, and changes in appearance. Object categorization al-
gorithms [2, 3] typically require an expensive training step and are
less discriminative among similar looking object categories than
the algorithms based on robust local descriptors [4] on which we
base our system.



Research on image search services using mobile devices includes
work by Zhou et al. [5], which focuses on identifying matching
robust local features in multiple query images. Only features that
appear in many query images are used for querying a database. In
this work, capturing a sequence of query images is done using a
mobile phone, but the processing is done on a server.

Research on robust local descriptors is very active. Recent exam-
ples include, but are not limited to, SIFT by Lowe et al. [4], GLOH
by Mikolajczyk and Schmid [6], and SURF by Bay et al. [7]. For
our application, SURF features have the most favorable compu-
tational characteristics. Our image retrieval algorithm adapts the
framework of Lowe et al. [4] to work with stringent bandwidth,
memory and computational requirements. The modifications in-
clude clustering and pruning of features based on relevance rank-
ing, and feature descriptor compression.

Recent work in object-based image retrieval uses a vocabulary
of “visual words” to search for similar images in very large image
collections [8]. In this formulation, a bag of visual words is used as
an index during query and retrieval. Our application and algorithms
also focus on fast retrieval from a database of features containing
noisy data. We focus on minimizing the query time and exploiting
the spatial structure of visual words within the image to develop
techniques that are robust to noise.

1.2 Prior Work in Mobile Augmented Reality
A recent demonstration of an outdoor mobile augmented reality

application running on a cell phone is Nokia’s MARA project by
Kähäri and Murphy [9]. The system does not perform any image
analysis, instead it uses an external GPS for localization and an in-
ertial sensor to provide orientation. PhoneGuide [10] is one of the
first object recognition systems performing the computation on a
mobile phone, instead of sending the images to a remote server.
The system employs a neural network trained to recognize normal-
ized color features and is used as a museum guide. Seifer et al. [11]
use a mobile system based on a hand-held device, GPS sensor, and
a camera for roadside sign detection and inventory. Their algorithm
was efficient enough to ensure good quality results in mobile set-
tings.

In the context of augmented reality, Fritz et al. [12] use a modi-
fied version of the SIFT algorithm for object detection and recogni-
tion in a relatively small database of mobile phone imagery of urban
environments. The system uses a client-server architecture, where
a mobile phone client captures an image of an urban environment
and sends it to the server for analysis. The SURF algorithm has
been used successfully in a variety of applications, including an
interactive museum guide [13]. Local descriptors have also been
used for tracking. Skrypnyk and Lowe [14] use the SIFT features
for recognition, tracking, and virtual object placement. Camera
tracking is done by extracting SIFT features from a video frame,
matching them against features in a database, and using the corre-
spondences to compute the camera pose. Takacs et al. [15] track
SURF features using video coder motion vectors for mobile aug-
mented reality applications.

Yeh et al. [16] propose a system for determining a user’s location
from a mobile device via image matching. The authors first build
a “bootstrap database” of images of landmarks and train a CBIR
algorithm on it. Since the images in the bootstrap database are
tagged with keywords, when a query image is matched against the
bootstrap database, the associated keywords can be used to find
more textually related images through a web search. Finally, the
CBIR algorithm is applied to the images returned from the web
search to produce only those images that are visually relevant.

1.3 Contributions and Overview
In our own work, we have developed an outdoors augmented

reality system for matching images taken with a GPS-equipped
camera-phone against a database of location-tagged images. The
system then provides the user links or services associated with the
recognized object. If no match is found, the user has an option of
associating the query image with a label from a list of nearby points
of interest and submitting the data to the server. The system is fully
implemented on the mobile device, and runs at close to real-time
while maintaining excellent recognition performance.

To ensure that our image matching algorithm is robust against
variations in illumination, viewpoint, and scale, we have adapted
the SURF algorithm [7] to run on the mobile phone. We have opti-
mized the performance and the memory usage of this already effi-
cient algorithm. Our implementation runs an average of 35% faster
than the original and uses only half as much memory. The matching
quality of our implementation is comparable to that of the original.

We wanted the image matching to be done directly on a mobile
client for several reasons. First, this significantly reduces the sys-
tem latency. Second, distributing the computation among the users
provides for better system scalability. Third, if a user takes several
images at a single location then we save on bandwidth, since the
phone has the data cached locally. Finally, we are currently extend-
ing the system described in this paper to work with real-time track-
ing [15], for which the option of uploading images to the server is
clearly impractical.

This work deals with challenging data. Our datasets are captured
in busy, outdoors settings. The images are full of occlusion by
trees, cars, pedestrians, etc. In many cases, only a small percentage
of image corresponds to the object of interest. The low resolution
images are captured using low-end cameras with poor optics and
noisy sensors. To maintain as high a recognition rate as possible, it
is critical to limit the number of possible choices.

Using location information to limit irrelevant data has been criti-
cal to our system’s performance. We do so by quantizing the user’s
position and only considering data from nearby location cells, or
loxels. We develop a method for incrementally updating the local
database of features on the handset as the user changes location.
This enables us to maintain a large pool of relevant features on
the client while keeping the bandwidth low. Another key aspect of
the quantization of space into loxels is that it allows our system to
scale to arbitrarily sized databases. This is because only a fixed,
finite number of points of interest can occur within a loxel.

To further reduce bandwidth and memory usage on the client, we
have developed a method to cluster features that appear in several
images into meta-features and prune the others by selecting a sub-
set of the most relevant features for a given geographic location.
Feature clustering and pruning also help to limit the amount of data
on the server by eliminating redundant information. We show that
this operation does not degrade the quality of the image matching
results.

After feature clustering and pruning, we achieve further savings
in bandwidth and memory usage by improving the coding effi-
ciency of the feature descriptors. By studying the entropy charac-
teristics of the SURF descriptor, we devise a compression scheme
that encodes the descriptors 7× more efficiently than without com-
pression. This is done without sacrificing matching performance.

Figure 2 gives an overview of the system which is divided into
two major components, a mobile device and a server. These com-
ponents communicate over a wireless network. The server groups
images by location into loxels. Features are then extracted from
all images in a loxel. These features are matched against each
other, followed by a geometric consistency check which eliminates
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Figure 2: System block diagram. The system is divided into
two major components, a mobile device and a server, which
communicate over a wireless network.

incorrect matches. The server then groups the matching features
into meta-features and prunes the remaining features to reduce the
amount of data that needs to be stored on the server and sent to the
client. This compact description of the loxel is then compressed
and written into a loxel file and stored in a database for retrieval by
the mobile device.

When activated, the phone continuously sends information to the
server about its location. When the phone changes to a new loca-
tion cell it receives any loxel files that have not been cached. Fea-
tures from multiple loxel files are inserted into a single kd-tree for
fast nearest-neighbor computation. The client matches features ex-
tracted from a query photo against the features in the loxel files,
and performs a geometric consistency check to prevent false posi-
tive matches. Information or services for the highest ranked match
are then displayed to the device’s screen.

After the user is presented with the search results, data can be
uploaded to the server. In this way the system grows and learns
from user feedback. As seasons and buildings slowly change over
time the system’s database will adapt. By uploading the data after
the matching, the system can maintain a low latency.

2. ROBUST IMAGE MATCHING
Our retrieval algorithm is based on robust local image descrip-

tors. We compared the SIFT [4] and the SURF [7] algorithms for
computing visual features and concluded that the SURF algorithm
exhibits similar recognition results on our datasets while using less
RAM and being significantly faster. Hence, we chose the SURF
algorithm for implementation on a mobile phone.

2.1 Image Retrieval Pipeline
The algorithm assumes the presence of a database of labeled im-

ages. The goal is to assign labels to a test image by matching it with
images in the database. Our algorithm starts by extracting SURF
features from all labeled images and inserting them into a shared
kd-tree that allows for fast approximate nearest neighbor (ANN)
queries in high-dimensional spaces [17]. Next, the algorithm ex-

tracts features from the test image and matches them against the
features in the ANN data structure using the multiple ratio test de-
scribed below. The database images are then ranked based on the
number of features that match a query feature. For the top ranked
images, we eliminate matching features that do not pass the geo-
metric consistency check and re-rank the images based on the new
feature-match counts.

2.1.1 Multiple Ratio Test

We are trying to match the features of a test image It to the fea-
tures from a set of images Is = {I1, . . . , Im}. First, we input all
features from Is into an ANN data structure. For each feature Fi

t

in It , we compute an ordered list of the M + 1 nearest neighbors
where M is the maximum number of images in Is with the same
label. Let Ni

t = {N1, . . . ,NM+1} be the list of neighbors and let
Di

t = {D1, . . . ,DM+1} be the list of their distances to Fi
t . We decide

that Nj matches Fi
t if the ratio r j = D j/DM+1≤α , for j = 1, . . . ,M.

We refer to this method of selecting feature matches as a multiple
ratio test.

2.1.2 Geometric Consistency Check

The multiple ratio test performs well, but occasionally produces
incorrect feature pairings. A standard way of removing these out-
liers is to perform a geometric consistency check that tests if a
group of features in one image can be transformed into the match-
ing features in another image through a simple geometric operation
[4]. We experimented with three different models, affine, homogra-
phy, and epipolar. Of the three, the epipolar constraint most accu-
rately captures possible feature transformations. However, epipolar
model estimation requires more inliers and less noise than the other
two models [4]. Therefore, we have chosen to use an affine model,
which in practice performs as well as a homography [15] and is
easier to compute.

2.2 Performance Evaluation

2.2.1 Experimental Datasets

We have used camera phones to collect a dataset of geotagged
images for our experiments. We wanted to test if the quality of
images acquired with these devices is sufficient for robust opera-
tion of the system. We also wanted to see how effective the cam-
era phones are for collecting large image-based datasets. The data
were acquired over multiple shooting sessions by several individu-
als, guaranteeing a diversity of views, lighting conditions, and oc-
clusions. We labeled each photograph with a list of visible points
of interest (POIs). Our dataset contains ∼2500 images from Stan-
ford University, a shopping mall, and a commercial street. Note
that because our system uses location information it is not the size,
but the spatial density of the dataset that matters.

We collected test images separately, about 3-6 months after ac-
quiring the original dataset. This was done to ensure that the test
images are sufficiently different from the images in the dataset. The
images were acquired using a variety of camera-phones, such as the
Nokia N93, N95 and N5700. There are 72, 14, and 37 test images
for Stanford, the shopping mall, and the commercial street, respec-
tively. Additionally, to test the robustness of the system we have
added 28 test images of objects that are not in our database, such
as cars, trees, streets, etc. If one of these images produces a match
then it is known to be erroneous. In total, there are 151 test im-
ages. 1

1The readers can access, experiment with, and download our
databases through a web-based interface available from this URI:
http://mar1.tnt.nokiaip.net/marwebapi/benchmarks.
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Figure 3: Image recognition rate for our dataset compared to
ZuBuD. Good performance is indicated by a high true positive
rate and low false positive rate. Results for All ZuBuD are for
the ZuBuD dataset without geotagging. These results demon-
strate that our dataset is significantly more challenging than
ZuBuD.

Additionally, for comparison to other published algorithms, we
have included results for the Zürich Building Database (ZuBuD)
[18]. This dataset has ∼1000 photographs of buildings around
Zürich, and 115 separate test images. Since the publisher did not
geotag the database, we use this dataset by with synthetic geotags.
The geotags are randomly placed with a density corresponding to 5
POIs per loxel.

For each test dataset we report a percentage of correct matches
(true positives) and incorrect matches (false positives). A match
is considered correct if the top ranked image has the same label
as the query image. Since some of the images in the database have
multiple labels, and some images are entered into the database with
different labels, we decide that a match is correct if at least one of
the labels of matching images is the same as the label of the test
image.

2.2.2 Experimental Results

To tune the performance of our image retrieval pipeline we have
performed experiments with the geometric consistency check and
image resolution. We vary these parameters while querying with
our test sets and evaluating the resulting true-positive and false-
positive rates.

Since smaller images lead to faster processing, we desire the
smallest image possible without significant degredation in recog-
nition performance. We have found images of resolution 640×480
to provide robust matching with sufficient speed. Additionally, this
is the smallest native resolution of many cameras. We show in
Section 4.3.1 that at this image resolution we can get the system
running at close to real-time on a mobile phone and that we can
meet the stringent bandwidth limits set by data transfer rates over
wireless networks.

As discussed in Section 2.1.2, we have chosen an affine consis-
tency check. However, the parameters of this check can still be var-
ied to trade-off true and false positive rates. By increasing the min-
imum number of good matches, or inliers, we are able to decrease
the false positive rate. However, the associated true positive rate
also decreases as some correct, but week matches are discarded.
We choose a minimum of four matching features and require the
point-wise model error to be within 20 pixels for a match to be
considered correct.

As seen in Figure 3, these parameters provide an average match
rate of 77% true positives with 7% false positives. The matching
performance depends on the difficulty of the dataset with our data
yielding the lowest true positive rates and the highest false positive

rates. The cleaner ZuBuD datasets correctly identify almost every
query with very few false positives. The All ZuBuD results are
with the entire dataset in a single loxel. The high performance of
this dataset shows that our image retrieval algorithm scales to very
dense datasets. Figure 4 shows sample image matching results of
our test images against our database.

3. LOXEL-BASED ORGANIZATION
In this section we discuss how to adapt our local robust descrip-

tors algorithms so that they can run on mobile phones with limited
computational resources over wireless networks with low band-
width data connections. First, we examine using location infor-
mation to reduce the amount of data that need to be transferred to
and processed by the phone. Next, we present a new feature clus-
tering algorithm which reduces the size of the feature set without
degrading the recognition results. We also show how to use the
natural ranking of features produced by the clustering algorithm to
prune unimportant features. We end by describing our feature com-
pression scheme, which uses a combination of lossy and lossless
compression of feature descriptors to obtain additional bandwidth
and memory savings.

3.1 Location Grid
A simple but effective method of reducing the size of the feature

set is to consider only features that originate from objects directly
visible from the current location. We estimate the visibility by lay-
ing down a uniform grid over a geographic area of interest. We
refer to a grid cell as a location cell, or simply loxel,2 and we will
refer to the area visible from a given loxel as a visibility kernel, or
simply kernel. A kernel will typically span multiple adjacent lox-
els. Each loxel Li

j has an associated kernel Ki
j . Note that while the

loxels cover disjoint areas, the kernel areas overlap. This affects
the way we represent and transmit data to avoid redundancy.

To determine a kernel size that yields the best recognition rate,
we have experimented with kernels of size 1×1, 3×3, 5×5, 7×7,
etc. For our dataset, a kernel of size 1×1 is too small to gaurantee
that visible POIs fall within the kernel. A larger kernel of size
3×3 yields the best results. Kernel sizes larger than 3×3 include
POIs which are not visible, thus cluttering the search space and
decreasing the match rate. Even where POIs are further apart, a
kernel of size 3×3 performs no worse than larger kernels.

Having determined the best kernel size, we can estimate how
many features are contained in each kernel to estimate the size of
the matching problem to be performed on the mobile device. For
the our dataset, the maximum is 40K and the mean is 8K. For prac-
tical bandwidth and memory reasons, we currently allow a max-
imum of 10K features per kernel of size 3×3. Since unprocessed
kernels contain more than 10K features, we must compress the data
to stay below the limit.

3.2 Feature Clustering and Pruning
Since we envision an environment where many users contribute

images using a variety of camera-phones, we purposely collected
our datasets in a non-methodical fashion. As a result, the density
of images varies greatly within each loxel and for each POI. Some
loxels may contain many tens of images, while other loxels contain
very few image. This makes sending the correct feature descriptors
to the phone challenging. Additionally, as users contribute images
to the database the amount of data must be kept small and highly
relevant.

2Throughout the paper we use a loxel size of 30m×30m.



Figure 4: Examples of image matches. For each row, we show the test image on the left, followed by the 4 top ranked images. These
results demonstrate the difficulty of the dataset and the robustness of matching.

Figure 5: An example of a meta-feature, a feature point which
occurs in 6 different views of the same point of interest in a
loxel.

To reduce the bandwidth and memory requirements of our ap-
plication we use a carefully selected subset of all features for each
loxel. We require that this subset of features has a small amount
of data, high quality features, and a wide coverage. For practical
reasons, we currently set a limit of 10K features per kernel. Hence,
since we typically use a kernel of size 3×3, this gives us a budget
of ∼1K features per loxel. For this reason, only high quality fea-
tures that are more likely to match potential query features are sent
to the phone. For example, we should not be sending features that
come from transient occluders such as cars and people. For cover-
age, The features budgeted for a loxel must cover all of its POIs as
equally as possible.

3.2.1 Feature Clustering

As the first step, we reduce the number of features per loxel by
clustering features. If a loxel has many images, it is very likely
that some of them cover the same POI from similar views. In this
case, the corresponding feature descriptors would be similar. The
clustering algorithm tries to identify groups of features that corre-
spond to the same physical location portrayed in different images.
Once we find such features, we can cluster them into a single meta-
feature. An example of a meta-feature seen in several images is
shown in Fig. 5.

The meta-feature computation is done on the server using four
steps. First, for each image in the loxel, find all matching im-
ages using the ratio test described in Section 2.1.1. Second, build
a graph, G, on the features in the loxel. The nodes in the graph
are the features in the loxel, there is an edge between any two fea-
tures that matched in the previous step. In ideal conditions, groups
of features coming from the same world point would form cliques
in the graph, G. However, due to noise in the descriptors, view-
point variation, and the non-transitivity of the ratio test, full cliques
do not usually form. Therefore, in the next step we extract con-
nected components of G as our feature clusters. Finally, each set of
features, Fi

1 . . .Fi
k , forming the ith connected component becomes a

meta-feature, whose descriptor value is obtained by averaging and
renormalizing the descriptors of Fi

1 . . .Fi
k .

This algorithm removes redundancy from the features in each
loxel. In addition, it produces a confidence weight for each meta-
feature, which is the size of its corresponding cluster. Features with
higher weights have been seen in more images, and therefore are
good candidates to be sent to the phone, since they are likely to be
seen again. Meanwhile, singleton features, from clusters of size 1,
often come from transient foreground occluders such as cars.

Image matching with meta-features requires a modification to
the multiple-ratio test described in Section 2.1.1. Using meta-
features, the M +1 nearest neighbor is an over-estimate of the first
outlier. To determine the correct outlier we compute the cumulative
sum of the meta-features’ cluster size. The first meta-feature whose
cumulative sum exceeds M is considered an outlier.

The addition of feature clustering enhances the matching per-
formance of the system, since the averaged descriptor values are
more robust to noise, and a match against a meta-feature is auto-
matically counted as a match against several images. However, the
compression rate achieved by feature clustering alone is relatively
low, about 10− 20%. Even for dense loxels, most of the features
are singletons. Thus meta-features alone are not sufficient to reduce
the number of features. In addition, if some POI has only a single
image in the database, all of its features are singletons and would
be thrown out by this method. Thus, we propose a feature budget-
ing method that ensures that each POI in the loxel has a sufficient
number of features representing it.
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Figure 6: Matching performance as a function of feature clus-
tering and pruning. The matching rate is relativly unchanged
until the budget drops below 1000 features.

3.2.2 Feature Budgeting

Feature budgeting selects a pre-determined number of features,
N, for each loxel, such that all POIs are covered by roughly equal
number of features. The best features are then selected for each
POI. This motivates the need for ranking features and images.

Image ranking: All images in a loxel need to be ranked by their
content and the features that they contain. The rank of an image
is given as the number of meta-features weighted by each meta-
feature’s cluster size. Therefore, images which have many features
that belong to large clusters are moved up in the ranked list.

Feature allocation: We want to make sure each POI in a loxel
is equally well covered by features. Therefore, we allocate to each
POI a budget of N/P feature points, where P is the number of POIs
in the given loxel. The allocation of features to POIs works as
follows.

First, we allocate meta-features by going through the images in
order of decreasing rank. As long as the feature budget is not
reached, we add all meta-features from the next image to the set
of allocated features. Next, the meta-features within each image
are ranked and picked according to decreasing cluster size. Fi-
nally, if we have not reached the feature budget for the POI and all
meta-features have been picked, we make a second pass through the
ranked images adding all singleton features from each subsequent
image until the feature budget is reached.

In both budgeting passes, we set a minimum threshold of the
number of features per image we must pick (currently set to 30).
That is, either we pick at least 30 point per image, or none at all.
This ensures that each image has enough features picked for the
success of the geometric consistency check.

The budgeting algorithm maintains all the requirements outlined
in the beginning of the section. Because the images are ranked by
the number of meta-features, and the meta-features are ranked by
their size, features that are present in many images are picked first.

This method scales well and becomes increasingly robust as more
images are added to the loxel, since we are able to better distinguish
transient foreground objects and discard their features, focusing our
attention on features belonging to objects of interest. As the num-
ber of images in a loxel becomes very large, new images need only
be matched against highly ranked images.

3.2.3 Feature Clustering Results

Figure 6 illustrates how feature clustering and pruning impacts
the recognition performance. We see that clustering features into
meta-features and pruning slightly degrades the match rate but can
provide a 4× reduction in data.

3.3 Feature Compression
Further savings in memory and bandwidth are possible by con-

sidering the information redundancy within each feature descriptor.
Traditionally, this has been done by applying dimensionality reduc-
tion techniques to the space of feature descriptors [19]. Instead, we
take an information theoretic approach and show that the coding
efficiency of the SURF descriptors can be significantly improved.
By studying the entropy characteristics of the SURF descriptor we
were able to produce a very efficient encoding for the descriptor
that is 7× smaller than the original at the same feature matching
performance. (We are able to compress a 256 byte SURF descrip-
tor to 36.8 bytes.) We first use lossy compression to discard as
many bits as possible through quantization and then we losslessly
compress the remaining data with entropy coding.

3.4 Data Organization and Transmission
Our system operates as a client-server architecture, where a client

indicates its current location to a server by specifying that it is in
loxel Li

j and the server ensures that the client has all the relevant
data for kernel Ki

j. We organize the data for neighboring kernels
so that duplication of information is minimized by associating all
the feature data and all the point of interest data with the loxels.
Only the nearest-neighbor data structure is associated with the ker-
nels, but since they are very fast to build, we simply do that on the
phone. See the timing results in Section 4.

Loxel-centric organization of data allows for incremental up-
dates of the working set of features stored on the client. If a client
moves from loxel Li

j to loxel Li+1
j , the server only needs to send to

the client the data associated with the three new loxels from column
i+2. The client then rebuilds a new approximate nearest-neighbor
data structure for kernel Li+1

j .
We use four data structures for a single loxel. A feature block

stores the feature data such as its descriptor, weight, and a pointer
to a list of feature identifiers. For a singleton feature, the list has one
entry. For a meta-feature, this list has a length equal to the weight
of the meta-feature. A feature identifier has a pair of records, one
specifies the image to which the feature belongs, the other stores
the image coordinates of the feature. The coordinates are used for
the geometric consistency check. An image label database stores
the list of labels associated with individualimages.

A POI database stores the information associated with the points
of interest inside the loxel, such as its name, address, URL, etc.
This database is indexed with the image labels.

At any time, the phone client will have these data structures
available for all the loxels of the kernel it is in. The approximate
nearest-neighbor (ANN) data structure is the only data structure
accessing the information from the data structures of the different
loxels. The ANN structure does not differentiate between the meta-
features and the regular features in any way.

For a typical query, a feature match is computed by looking up
the query feature in the ANN data structure. The information about
the feature is then identified by following a link to the feature block
database. The identifiers of the images associated with that feature
are extracted from the feature identifier array and the feature counts
for all these images are incremented.

The image information database is used to look up the labels
for a given image. Additionally, if we must conduct a geometric
consistency check, we can use the image information database to
look up the image coordinates of a feature associated with a given
image.
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Figure 7: Impact of search accuracy on the quality and the
speed of feature matching. The time is measured in millisec-
onds and the accuracy is measured as a fraction of correctly
label points.

4. MOBILE PHONE IMPLEMENTATION
In this section, we present our implementation of the SURF al-

gorithm and its adaptation to the mobile phone. Next, we discuss
the impact that accuracy has on the speed of the nearest-neighbor
search and show that we can achieve an order of magnitude speed-
up with minimal impact on matching accuracy. Finally, we dis-
cuss the details of the phone implementation of the image matching
pipeline. We study the performance, memory use, and bandwidth
consumption on the phone.

4.1 SURF Implementation
Our mobile phone implementation of the SURF algorithm [20]

focuses on using memory efficiently and on reducing computation.
The algorithm consists of three major steps: interest-point extrac-
tion, repeatable angle computation, and descriptor computation. In
the first two steps of the algorithm, we use the integral image [21]
for efficient Haar transform computation as described in the origi-
nal paper. For memory efficiency, we only store either the original
image or the integral image, and convert between them as needed.
This is possible because the conversion takes minimal time com-
pared to the rest of the algorithm. After tuning, our implementation
runs an average of 35% faster than the original and uses only half
as much memory with comparable descriptor quality.

4.2 Image Query Time
The accuracy of the ANN search is controlled by a parameter ε .

If ε = 0, the returned result is identical to the exact result, otherwise
it is at most (1+ ε)-times the distance to the closest point [17].

We measure the query time for different values of ε using 10 in-
dependent tests sets, each with∼300 query points and an ANN tree
with ∼40K features. Fig. 7 shows an average of the 10 trials. The
left graph shows the impact of ε on the query speed, and the right
graph shows the percentage of feature match errors, with respect to
an exact search (ε = 0).

For ε = 1.5 we get an order of magnitude improvement in per-
formance and a minimal decrease in accuracy. We verified that this
result is consistent across different datasets and at different prob-
lem sizes. Additionally, we achieve an additional 4× speedup by
vectorizing the ANN algorithm.

4.3 Performance Analysis

4.3.1 Execution Profile

We have implemented our system on a Nokia N95 smart-phone.
Here we report the timing of the algorithm pipeline stages execut-
ing on a 332MHz ARM11 CPU with a VFP unit capable of issuing
4 single-precision floating-point instructions in one cycle.

We timed our system using the settings discussed in the paper:
image resolution of 640×480, 250 query features, and 7000 fea-

tures in the ANN data structures. For feature matching, we use the
multiple ratio test with α = 0.8 and the accuracy of the ANN search
set to ε = 1.5. The ANN query routine has been vectorized. This
gives the following execution profile: SURF computation—2.4 sec,
ANN query—0.3 sec, geometric consistency check—0.1 sec. The
total runtime for image matching on the phone is 2.8 seconds.

In an application where real-time performance is critical, we can
use images of resolution 320×240 as queries. This yields ∼ 4×
reduction in the time to compute features and feature matches. The
system then runs at about 1 frame per second while maintaining a
very high image retrieval quality.

The time to build the ANN tree is 0.5 sec. Since we need to
rebuild the ANN tree only once per loxel change, it is much more
efficient to do this task on the phone. Thus we never send the ANN
data structures from the server, instead we build them on the phone.

4.3.2 Memory Usage

In the current implementation, the feature descriptors get de-
compressed right when they arrive at the client and before they are
inserted into the ANN data structure. Assuming an ANN tree with
7000 descriptors, this translates to 7K×256B=1.8MB. In the fu-
ture, we plan to modify the ANN tree to operate on the quantized
descriptors. This would reduce our memory requirement for this
data structure by 4×.

Our implementation of the SURF algorithm uses memory very
efficiently. At any given time, it needs at most 1.75× the original
image size. For a 640×480 grayscale image, we can represent its
intensity using 307KB. Hence, the most memory we will ever use
for the SURF feature calculation is 538KB.

4.3.3 Bandwidth Consumption

We would like our system to operate within the bandwidth con-
straints of existing wireless networks. A typical 3G network sup-
ports download speeds of up to ∼2 Mbps and upload speeds of
∼150 kbps. More than 95% of the data sent to the phone is de-
voted to feature descriptors. We can ignore the nearest-neighbor
data structures since it is more efficient to build these on the client
than to transfer them from the server. Hence the communication of
feature descriptors to the client dominates the bandwidth consump-
tion of our system.

Let’s assume a kernel of size 3×3 loxels, a loxel of size 30m
× 30m, and an average time to traverse a loxel (at walking speed)
of 20 sec. The size of the feature descriptor after compression is
36.8 bytes and we have a maximum of 1000 features per loxel after
feature budgeting. At each loxel change, the data for 3 new loxels
need to be transmitted. This corresponds to 110 KB of data, which
will take negligible time to download over a 3G network. For all
practical purposes, a person using the system while walking will
have the data on the phone updated right after entering a new loxel.

To compare the latency, we have implemented the same system
in both a client-side and server-side configuration. The client-side
configuration does feature computation and image matching di-
rectly on the phone, as previously discussed. The server-side con-
figuration uploads the query image to the server and does all the
computation there. For the this configuration, the upload time dom-
inates the computation time. Using typical 75 KB JPEG images
over a 3G wireless network, our experiments show that it takes 5-6
seconds for the server-side configuration and 2-3 seconds for the
client-side configuration. The latency advantage of the client-side
configuration will continue to grow as the speed of mobile devices
continues to grow faster than the upload rate of wireless networks.
Additionally, as we move towards video frame-rates transmitting
frames over the network will become infeasible.



5. CONCLUSION
Simply pointing your camera at objects around you and finding

information about them provides a very intuitive user interface for
accessing information and services around your current location.
Such a system provides a bridge between the digital and physical
worlds.

In this paper we have studied the image processing aspects of
such a system, and how the image and location database should be
organized on the server, and updated on the mobile client. A modi-
fied SURF is a good choice for robust image recognition that can be
implemented on modern smart-phones. Our database organization
and update mechanism can work with the constraints of the current
data bandwidth. SURF and other similar systems yield many fea-
tures per image, which would overwhelm a naïve implementation.
We have addressed that by pruning features that are likely to be
noise, thus concentrating on features that are repeatedly found in
several images, and aggressively compressing the features without
degrading the recognition rates. By including user feedback, our
system can adapt to changing environments.

We have tested the system with real data, obtained by camera
phones with a GPS sensor. The data were collected from several
locations, by several people, at several times of the year and day.
The recognition system has been implemented and tested on mo-
bile phones. Our preliminary results indicate the system works fast
enough for a large set of applications, such as a tourist guide for
pedestrians.
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