Mobile Visual Computing

(Invited Paper)

Kari Pulli, Wei-Chao Chen, Natasha Gelfand, Radek Grzeszczuk,
Marius Tico, Ramakrishna Vedantham, Xianglin Wang, Yingen Xiong
Nokia Research Center, Palo Alto, CA, USA
firstname.lastname @nokia.com

Abstract

Smart phones are becoming visual computing power-
houses. Using sensors such as camera, GPS, and others,
the device can provide a new user interface to the real
world, augmenting user’s view of the world with additional
information and controls. Combining computation with im-
age capture allows new kind of photography that can be
more expressive than is possible to obtain with a traditional
camera. New APIs allow harnessing more computation
power of a smart phone to visual processing than what one
can obtain from just a CPU.

1. Introduction

The modern smart phone is a compact visual computing
powerhouse. It has a capable CPU, and an increasing number
of mobile phones include a graphics processor (GPU). They
sport a high-quality color display, up to screen resolutions
of 640 x 480 and beyond. Most high-end phones have a
camera that can take megapixel images and at least VGA
resolution video. There are separate co-processors or DSPs
for image processing and encoding and decoding. Sensors
such as GPS, electronic compass, and accelerometers help
in determining where the device is and what it points at, and
fast data connection allows connection to large databases.

We cover two major application areas, followed by emerg-
ing technologies that allow faster visual processing on
mobile devices. We call the first area augmented reality.
There various sensors, especially the camera, are used to
make sense of the world around the user, and the output
mechanisms, especially the display, are used to provide user
with information about objects and locations around her.

Camera phones are also beginning to replace dedicated
digital cameras. However, sometimes the nature of multi-
purpose device and the requirement of compact size mean
compromises in camera elements such as sensor size and
lens optics. By taking several images and combining the
images using the general computational capacity of a smart
phone, one can improve the quality of the images. The
improvements could relate to overcoming some sensor lim-
itations, or create new kinds of images that cannot be

captured with a traditional camera. This application area is
often known as computational photography.

Finally, we describe how the various processing elements
available in smart phones can be harnessed for visual
computation. The CPU is readily available, and the second
generation of mobile GPUs provides programmable vertex
and pixel shaders that can be used for image processing.
Yet other processing elements such as DSPs are typically
not readily available for application programmers; OpenCL
allows easier programming and allocation of computation to
CPUs, DSPs, and GPUs.

2. Augmented Reality

Augmented Reality (AR) means experiencing the real
world and augmenting the experience, often by adding im-
ages of virtual objects or textual annotations over the scene.
AR can provide a fundamentally better user experience on a
mobile system than is possible on desktop. The first task for
an AR system is to recognize nearby objects, for example
via visual recognition using camera images. If you want to
augment the images in real time, you have to also track the
view and objects. Neither of these tasks is feasible unless
you have a model of the world around you.

2.1. Object recognition

We have built an outdoors augmented reality system for
mobile phones that matches camera-phone images against
a large database of location-tagged images using a robust
image retrieval algorithm [11], see Fig. 1. Matching is
performed against a database of highly relevant features,
which is continuously updated to reflect changes in the
environment. We achieve fast updates and scalability by
pruning irrelevant features based on proximity to the user.

Transmission and storage of robust local descriptors are
of critical importance in the context of mobile distributed
camera networks and large indexing problems. We have
proposed a framework for computing a low bit-rate feature
that represents gradient histograms as tree structures which
can be efficiently compressed [3]. Distances between de-
scriptors can be efficiently computed in their compressed
representation, eliminating the need for decoding.

Figure 1. Our outdoors augmented reality system aug-
ments the viewfinder with information about the objects
it recognizes in the image taken with a phone camera.

Figure 3. A sample view of a generated instruction. The
direction to take is displayed prominently, and a preview
of the next step is shown on top corner.

2.3. Scene modeling

i + No !
e D e , . ,
i — f i Having a 3D model of an environment and being able to
"""""""""""""""""""""""""""""" register the pose of images taken by a mobile phone user
agains.t that rr}odel creates new (?pportun'itie's for richer and
Database Database more immersive augmented reality applications. In [5], we
R B Y —7----- use computer vision techniques to compute camera poses
i

of image collections of landmarks and register them to the

Update Tracked SURFTrac and
Interest Points Query Image

Project Subgraph
Features to
Current Image

Update Label Update Feature Track Known Features Capture
Locations & Render Locations with SURFTrac Image |

Figure 2. Real-time tracking and recognition pipeline.

Switch to New
Keynode

New Object
ID in View?,

2.2. Tracking

For continuous overlaying of text or graphics in AR
applications, one can simply repeat the same object recogni-
tion step for every input image. However, tracking is much
cheaper than repeatedly trying to recognize objects in each
frame. Our viewfinder alignment algorithm [1] can track the
camera motion in real time on a mobile device, which makes
it possible to interleave object recognition and tracking for
real-time augmentation. One can also accelerate tracking
by using dedicated video encoding hardware and extracting
motion vectors [12].

In order to compensate for the longer latency in object
recognition, it becomes necessary to pipeline tracking to-
gether with object recognition. Load-balancing these two
tasks becomes a tricky system design issue. Alternatively,
we have developed an algorithm called SURFTrac [10] that
tracks with the same features used in object recognition. This
means that tracking and object recognition can be performed
continuously to achieve natural load balance between the

world using GPS information extracted from the image tags.
Computed camera poses allow us to augment the images
with navigational arrows that fit the environment. We also
utilize an image matching pipeline based on robust local
descriptors to give users of the system the ability to capture
an image and receive navigational instructions overlaid on
their current context.

3. Computational Photography

Camera phones are convenient computational photogra-
phy platforms as they include an increasingly high quality
camera together with a general purpose computing device.
Here we introduce two computational photography applica-
tions, high dynamic range imaging and panorama capture.

3.1. High Dynamic Range Imaging

Dynamic range of a scene is defined as the ratio between
the minimum and maximum brightness values present in
that scene. Many common scenes have dynamic range that
exceeds the maximum range of brightness values that can
be recorded by an image sensor, resulting in loss of detail
in the shadows, clipped highlights, or both. HDR imaging
is a computational technique that combines several regular
images taken at different exposures into a single image with
expanded dynamic range that better reflects the brightness
variations in the scene.

Figure 4. First row: An exposure stack taken at a sculpture garden. Second row, from left to right: single best
exposure has areas that are either too bright or too dark, notice the clipped highlights on the building facade and
loss of detail in trees and shadows; standard HDR restores those details, but creates ghosts of walking people;

consistent HDR image generated by our algorithm.

The basic approach to HDR imaging assumes that nothing
in the scene moves, so all images can be used to calculate a
radiance value for each pixel. However, many scenes have
moving targets, such as people, and it is almost impossible
to take an image sequence of a tree in outdoors without
any motion of its branches or leaves. Gallo et al. [4]
developed a method that detects image locations that have
changed, selects a suitable anchor view based on which
the final, consistent image is created, and uses as much
data from other images as possible to calculate accurate
radiance values at each pixel (see Fig. 4). In this way, no
user interaction is needed to generate an artifact-free high
dynamic range image, making it possible for the camera to
produce images that more faithfully represent the captured
scene, even given the dynamic range limitations of current
camera sensors and displays.

3.2. Capturing panoramas

We have developed a complete mobile panorama appli-
cation that captures and stitches multiple high resolution
images in order to create an image with a larger field of view.
We track the camera motion and capture high-resolution
images at appropriate times, register the images, map and
resample them into spherical coordinates, and blend them
into a panorama.

Camera motion is roughly estimated by tracking consec-
utive viewfinder frames captured at a high frame rate. Our
alignment algorithm [1] creates compact summaries of the
frames that allow rapid tracking of the camera motion. The
high resolution images used to build the final panorama
are captured automatically as user pans the scene with

~ Please hold still
v TE

| ————— e

Options

Figure 5. Panorama is automatically captured and
constructed as user pans the camera around the scene.

the camera. As the camera captures an image, the user is
instructed to stop moving to avoid motion blur (see Fig. 5).

Once the high resolution images are captured, they are
registered and blended into the final panorama. An unlimited
angle of view is enabled by mapping the captured images
onto a sphere. We also register images in spherical coor-
dinates. Image-based registration is adopted at the coarse
levels of an image pyramid where the features are less
reliable, but feature-based matching is employed at the finer
levels of the pyramid. This registration approach is robust to
both moving objects in the scene and significant illumination
differences between images. A seamless image stitching is
finally achieved by labeling (selecting which input images

contribute to which areas of the output image [7]) and
Poisson blending (taking the gradients of the input images
and solving a consistent output image [8]).

4. Standards for Mobile Visual Computing

Images contain lot of pixels, and processing them requires
lot of computation power. New APIs, and the hardware
they allow application programmers to access, enable faster
execution of image processing applications. Here we address
mobile 3D graphics standards, and a new standard, OpenCL,
for high performance computing even on mobile devices.

4.1. Mobile Graphics APIs

Mobile graphics APIs such as OpenGL ES and M3G [9]
enable new types of applications on mobile devices [2]. The
obvious ones include faster user interfaces with more eye
candy, interactive games, and browsing maps and web pages.
However, they are useful also for image processing tasks. For
example image warping can be accelerated easily 10-fold
with OpenGL ES 1.1 fixed functionality graphics pipeline,
even when accounting for the data transfer overhead. Even
if the device does not have special graphics hardware, the
highly assembly-optimized software graphics engines can
typically process the pixels faster than regular image pro-
cessing C-code. The second generation of graphics hardware
and the matching APIs (OpenGL ES 2.0 and M3G 2.0)
allow more flexible pixel processing using programmable
shaders, increasing the number of algorithms acceleratable
via graphics hardware.

4.2. OpenCL

High-end camera phones have much more processing
power than just the CPU, but usually the other processing
units are not easily accessible by the application program-
mers. Their units may be dedicated to some particular
process, such as the phone modem, voice processing, or
video encoding, but those units can be idle when visual
processing is needed. Even if the additional units were
available for the programmer, they may be difficult to pro-
gram, each supporting a different instruction set. OpenCL,
Open Computing Language, [6] is a new standard that hides
the hardware differences under a unified abstraction layer.
GPGPU (general processing on graphics processing units)
has utilized the GPU instruction sets for other tasks such as
image processing. OpenCL generalizes the GPGPU concept
as it not only hides the details on which GPU the number
crunching takes place, but also whether the processing is
distributed to GPUs, CPUs, or even DSPs, providing a
unified programming model for all these execution units.
OpenCL will make it easier to harness all the power of
mobile devices for visual computing.

5. Conclusion

For augmented reality, smart phones now provide compu-
tation power, cameras and other sensors, data connectivity,
and good displays, and most importantly, are ubiquitous and
easy to use when actively moving. The key tasks of near-
real-time image recognition and real-time tracking have been
demonstrated on smart phones, and modeling the real world
to support them in large scale is becoming feasible. Camera
phones are also ideal computational photography platforms,
providing easy programming access to researchers, and more
versatile I/O capabilities than traditional digital cameras.
New standards such as OpenGL ES and OpenCL make
the varied computing hardware on mobile phones more
accessible to application developers.

References

[1] A. Adams, N. Gelfand, and K. Pulli. Viewfinder alignment.
Computer Graphics Forum, 27(2):597-606, 2008.

[2] T. Capin, K. Pulli, and T. Akenine-Moller. The state of the
art in mobile graphics research. IEEE Computer Graphics
and Applications, Jul-Aug 2008.

[3] V. Chandrasekhar, G. Takacs, D. Chen, S. S. Tsai,
R. Grzeszczuk, and B. Girod. CHoG: Compressed His-
togram of Gradients: A Low Bit-Rate Feature Descriptor.
In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR09), 2009.

[4] O. Gallo, N. Gelfand, W.-C. Chen, M. Tico, and K. Pulli.
Artifact-free high dynamic range imaging. In IEEE Int. Conf.
on Computational Photography (ICCP09), 2009.

[5] H. Hile, R. Grzeszczuk, A. Liu, R. Vedantham, J. KoSecka,
and G. Borriello. Landmark-Based Pedestrian Navigation
with Enhanced Spatial Reasoning. In 7th International
Conference on Pervasive Computing. Springer, 2009.

[6] Khronos Group. The OpenCL Specifica-
tion, Version 1.0, 2008. Available from
www.khronos.org/registry/cl/specs/opencl-1.0.33.pdf.

[7]1 V. Kwatra, A. Schodl, 1. Essa, G. Turk, and A. Bobick.
Graphcut Textures: Image and Video Synthesis Using Graph
Cuts. SIGGRAPH, 2003.

[8] P. Pérez, M. Gangnet, and A. Blake. Poisson image editing.
ACM Transactions on Graphics (SIGGRAPH ’03), pages
313-318, 2003.

[9] K. Pulli, T. Aarnio, V. Miettinen, K. Roimela, and J. Vaarala.
”Mobile 3D Graphics with OpenGL ES and M3G”. Morgan
Kauffman, 2007.

[10] D.-N. Ta, W.-C. Chen, N. Gelfand, and K. Pulli. SURFTrac:
Efficient Tracking and Continuous Object Recognition using
Local Feature Descriptors. In IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR09), 2009.

[11] G. Takacs, V. Chandrasekhar, N. Gelfand, Y. Xiong, W.-
C. Chen, T. Bismpigiannis, R. Grzeszczuk, K. Pulli, and
B. Girod. Outdoors Augmented Reality on Mobile Phone
using Loxel-Based Visual Feature Organization. In MIR
'08: Proceeding of the 1st ACM International Conference on
Multimedia Information Retrieval, pages 427434, 2008.

[12] G. Takacs, V. Chandrasekhar, B. Girod, and R. Grzeszczuk.
Feature Tracking for Mobile Augmented Reality Using Video
Coder Motion Vectors. In ISMAR °07: Proceedings of the
Sixth IEEE and ACM International Symposium on Mixed and
Augmented Reality, 2007.

