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Abstract

In this paper we present a multiview registration method
for aligning range data. We first align scans pairwise with
each other and use the pairwise alignments as constraints
that the multiview step enforces while evenly diffusing the
pairwise registration errors. This approach is especially
suitable for registering large data sets, since using con-
straints from pairwise alignments does not require loading
the entire data set into memory to perform the alignment.
The alignment method is efficient, and it is less likely to get
stuck into a local minimum than previous methods, and can
be used in conjunction with any pairwise method based on
aligning overlapping surface sections.

1. Previous work

The early approaches to registration of range data were
based on matching discrete features [9]. Many of the dif-
ficulties inherent with feature-based approaches were over-
come by the Iterative Closest Point (ICP) approach, devel-
oped by Besl and McKay, Chen and Medioni, and Zhang
[3, 6, 24]. Assuming a rough initial registration, ICP regis-
ters two meshes by pairing points in one mesh with nearby
points in the other, finding a rigid 3D motion that better
aligns the paired mesh locations, and iterating these steps
as long as the registration improves.

The two main difficulties in ICP, determining the extent
of overlap in two scans and extending the method for mul-
tiple scans, have been a focus of much further research.

1.1. Matching and alignment methods

There are two basic methods for finding matching
points (mates) on other meshes for a given mesh: finding
the closest point [3, 24], and extending point’s normal
vector until it intersects the other mesh [6, 17]. Several
additional heuristics have been developed to address the
problem of not knowing the extent of overlap and avoiding

false point matches. Almost everyone uses the simple
heuristic of disallowing pairs that are too far apart. Turk
and Levoy [22] disallow
mates that are on the mesh
boundary (usually due to a
silhouette) since otherwise
many surface points in one
view that are not visible
in the other would match
to boundary points (see
Figure 1). Godinet al. [10]
match points with closest
compatible points, where
a point is compatible if the
value of some associated

Figure 1: Allowing pairs on mesh
boundary causes many spurious pair-
ings.

feature (color, normal vector, etc.) is within a given
threshold. It is also possible to modify the distance function
to take into account such features [8, 15]. Doraiet al.
[7] discard point pairs that are not compatible with the
neighboring pairs in the sense that the distance between
a point and its mate differs from that of the neighboring
pairs.

Another approach for pairing points in a mesh is project-
ing one mesh onto the other along lines of sight of the scan-
ner. This has typically been used as an acceleration method
that avoids the expensive closest point finding [1, 4, 16].
Weik projected individual points onto the other mesh and
used intensity and gradient information to find it a better
mate nearby [23]. Pulli obtained more consistent point pairs
by projecting complete colored meshes against others, per-
forming 2D image alignment, and pairing mesh points end-
ing at the same pixel [18].

There are also two basic approaches for moving views
into a better registration: aligning points with their mates
(point-point alignment [9, 12]), and aligning points with
the tangent planes of their mates (point-plane alignment
[6]). Masudaet al. [16] used the least median squared es-
timator to make the point-point alignment method more ro-
bust against outliers due to noise or false pairing of non-
overlapping surfaces.



1.2. Multiview registration

Chen and Medioni proposed to first register two views,
merge the views into a single metaview, and incrementally
register and merge the other views into the metaview [6].
This approach was taken also by Masudaet al. [16].

Bergevinet al. [2] point out a problem in the metaview
approach: when more views are added, it is possible that
they bring in information that could improve the registra-
tion of the previously registered views. Instead, they match
points in every view with all the views overlapping with it,
and calculate a transformation that registers the first view
using all the paired points. This process is iterated over
all the views until the registration slowly converges and the
registration errors diffuse evenly among all views. Another
potential problem with the metaview approach is illustrated
in Figure 2, where several scans have already been added to
the metaview creating a shell of a finite thickness (Fig. 2(a)).
When we register yet another scan with the metaview, ide-
ally the new view would move into the middle of the pre-
vious scans (Fig. 2(b)). However, depending on the imple-
mentation, it is more likely to stick to the outer or inner shell
of the metaview (Fig. 2(c)).

(a)                                     (b)                                   (c)

Figure 2. A problem with the metaview approach.
(a) Piece of the metaview. (b) Ideal registration for
a new scan. (c) Likely new registration.

Jinet al.’s approach was to incrementally build a surface
model, against which new views can be registered and al-
ready registered views can be reregistered [13].

Eggertet al. [8] iterate between pairing each point of
each scan with exactly one other point and minimizing the
total distance between the paired points. This avoids
many thresholding issues in
point pairing, but can prevent
the algorithm from converging
to a correct solution. The
views may form cliques such
that views within a clique are
in a good registration, but the
cliques themselves are not
well registered to each other.
If each point is always paired

Figure 3: The scans form two
cliques such that each scan is well
aligned within a clique but not
across cliques.

with a point from a mesh within the clique, the inter-clique
registration cannot improve. A trivial example of the
worst-case behavior is obtained by duplicating each mesh.

Another example is shown in Figure 3. Cliques are not
likely to form, however, if a point obtains a mate from all
the other scans that overlap the same surface location.

There have been several proposals for the alignment
phase of multiview registration. Bergevinet al.[2] calculate
a transformation for each view separately and then apply
them simultaneously before the next round of matchings.
Benjemaa and Schmitt [1] accelerate the method by apply-
ing the new transformation as soon it is calculated. A quite
different approach was taken by Stoddart and Hilton [20]
and Eggertet al. [8]. They both solve the transformations
simultaneously by attaching imaginary springs to the paired
points and simulating a simplified version of the resulting
dynamic system.

Multiview registration has also been attempted with
more general purpose optimization methods such as sim-
ulated annealing, but the results do not look very promising
in terms of speed or accuracy [4].

2. Pairwise registration

We use a fairly standard ICP derivative to generate the
pairwise registrations that our multiview method uses. For
the sake of completeness we describe in this section our
pairwise registration method. We would like to stress,
though, that our multiview method does not rely on using
this particular pairwise alignment technique.

2.1. Initial alignment

Most registration methods assume an initial approximate
transformation and concentrate on improving it. There have
been many proposals for search-based methods that can
provide a good starting point for a more fine-grained reg-
istration [5, 9, 11, 14, 19]. Unfortunately, such methods are
difficult to get to work reliably for arbitrary scan data.

The scanning process can be instrumented by tracking
how the scanner (or the object) is moved. If the instrumen-
tation is so accurate that no software alignment is necessary,
it can be considered part of the scanner. Otherwise, it can
serve as an excellent starting point for registration.

The final alternative is interactive initial alignment. In
our work, we have used a mix of instrumentation and inter-
active alignment.

2.2. Matching heuristics

We follow the ICP tradition of matching points with clos-
est points from other scans, with several additional con-
straints. First, we have adopted the closest compatible point
idea [10], allowing points to match only if their associated
normal vectors differ by less than 45 degrees. Another im-
portant constraint we use is disallowing a point pair if the



closest point on the other scan is on a mesh boundary [22].
Finally, we have two thresholds for the maximum allowed
distance between paired points, one dynamic and the other
hard. The dynamic threshold is expressed as a percentage:
keep thep% closest point pairs of those that survived the
first two tests. This threshold effectively removes many
spurious point pairs in the early iterations of the pairwise
alignment. In absence of other heuristics, the percentagep
should reflect the portion of the generated point pairs that
are on the overlap of the two meshes (this was the approach
taken by Masudaet al. [16]). In our case, disallowing point
pairs where the closest point is on the mesh boundary al-
ready removes most of the spurious matches andp can be
in practise quite high, e.g., 90%. The second, hard thresh-
old, disallows a point pair if it is too long. Initially, the
threshold should be high enough to allow point pair gener-
ation, but should be reduced later to be a small multiple of
the scanning accuracy. Conversely, when the hard threshold
is reduced, the dynamic threshold can be increased.

In summary, our point matching method is as follows:
for a set of points in the first mesh, find the closest point
within the hard threshold and with a compatible normal vec-
tor in the second mesh. If such a point was found and that
point is not on the mesh boundary, create a point pair. Make
matching symmetric by matching also points from the sec-
ond mesh with the first mesh. Finally, keep thep% closest
pairs. As the registration gets better, the hard threshold is
reduced and the dynamic threshold is increased.

2.3. Alignment methods

We have implemented and experimented with the two
major alignment methods. The point-point method [12]
produces a closed form least-squares solution for finding
a rigid 3D transformation that simultaneously aligns all
points in a set with their mates. In a sense, an ideal spring
is attached between each point and its mate, and the springs
are allowed to pull the sets into better alignment.

The point-plane [6] method incrementally improves the
alignment by finding a small rotation and translation that
moves points closer to the tangent planes of their mates. In
this case one end of a spring is attached to a point, while
the other end is free to slide along a plane. Given a fixed
pairing of points with tangent planes, the alignment can be
improved by iterating a few times.

For pairwise alignment of range scans we strongly prefer
the point-plane method over the point-point approach. First,
it usually converges an order of magnitude faster. Once the
surfaces get fairly close to each other, most points on or
near the overlap area can find a nearby compatible mate,
even though accurate registration still requires one of the
surfaces to slide along the other to a good alignment. In
point-point approach (Figure 4(a)), even if several of the

(a)

(b)

Figure 4. (a) Point-point: points are mapped to dis-
crete points. (b) Point-plane: points are mapped
to continuous tangent planes.

points are paired with their ideal mates (a point that corre-
sponds to the same surface location as the first point), ev-
ery spurious point pair where the points are close to each
other resists further motion, preventing the surfaces from
moving more than a very small step. Unfortunately, even
with a slight misregistration, only a few points are actually
matched with their ideal mates. In contrast, the false point
pairs do not slow the point-plane method down much, as
each point may slide along the tangent plane of its mate
(Figure 4(b)). Additionally, the method is much more re-
sistant to wrong point pairs: pairing a point with any point
whose tangent plane coincides with that of the ideal mate
works as well as using the ideal mate. Another way to think
this is that in the point-point approach each point is asso-
ciated with adiscretepointwise approximation of the other
surface, while in the point-plane method each point is asso-
ciated with acontinuouslinear surface approximation. We
have observed that the point-point method typically requires
at least 10 times as many point matching – alignment itera-
tions as the point-plane method.

The second reason for preferring the point-plane ap-
proach is that more accurate results can be obtained with
a fast implementation. Finding the closest point in a cloud
of points is much faster than finding the closest point on a
surface (e.g., a triangle mesh), but unless the closest sur-
face point is found, the point-point method is susceptible
to aliasing artifacts due to finite and nonuniform sampling
density. The point-plane method, however, is much less
affected by aliasing, as a collection of sampled points is
aligned with a first order approximation of a continuous sur-
face, i.e., a collection of tangent planes.

However, we cannot unequivocally claim that point-
plane method is always superior to point-point method. In
situations where a correct registration is inherently diffi-
cult because the region of overlap is almost flat or has al-
most uniform curvature (such as scanning a sphere, torus,
or cylinder), the point-plane is more brittle in the sense that
the meshes can shoot widely apart starting from a slight



misregistration. Other constraints, such as matching color,
are more easily dealt with the point-point method, but are
not impossible to address with the point-plane approach.
Finally, though we prefer point-plane with pairwise align-
ment, in the following multiview alignment phase we prefer
the point-point approach; more of this in the next section.

3. Multiview registration

The basic iterative matching-aligning approach to mul-
tiview registration has several problems that motivated our
approach.
Computational expense. In the iterative matching–
aligning cycle the matching part requires the most compu-
tation. Once the matching effort has been expended, one
should exploit it as much as possible to bring the views to
the best possible alignment. Unfortunately, given some ini-
tial registration error, most if not all the points are paired
with points that do not correspond to the same surface lo-
cation, and only modest improvements are possible before
the expensive matching part needs to be repeated, eventu-
ally dozens of times. Ideally, we would have a really good
matching to start with and only one multiview alignment
step would be required.
Large memory requirements.If we were to iterate match-
ing and aligning ofn meshes, we would need to keep com-
plete data of all views (plus additional data structures for,
e.g., closest point finding) in memory at the same time.
Such approach does not scale to very large data sets.

Figure 5. A local minimum configuration for 4 tri-
angles.

Local minima. The iterative matching-aligning cycle is
susceptible to getting stuck into a local minimum. Even
if we had correct point pairs but incorrect starting positions,
we could create situations where each mesh is in a local
minimum with respect to their neighboring meshes. Fig-
ure 5 shows a simple example of a local minimum starting
configuration are four meshes, each consisting of a single
triangle and the matching vertices have a matching symbol
(dot, square, empty). Every triangle is in a local minimum
with respect to its neighbors. We performed some tests on

this configuration to find out how stable it is. Each trian-
gle was perturbed by a rotation (uniformly random within
�10Æ) around the origin. The matching part was omitted,
i.e., each mesh was successively aligned with respect to the
other meshes using the correct vertex pairing. If we first
calculated the transformations and then simultaneously ap-
plied them to each mesh, typically even 1000 iterations was
not enough to converge to the correct solutions. When the
transformation was applied to a mesh immediately after it
was calculated, the process typically required over 20 full
iterations to converge.

However, typically the correct point matching is not
known beforehand, and such local minima are more likely
to occur. Alternatively, the configuration may not lead to an
actual local minimum, yet it may radically slow the conver-
gence of the iteration. Additionally, as pointed out in Sec-
tion 1, depending on the matching order and heuristics there
may be a danger of forming cliques of views with good
intra-clique registration but poor inter-clique registration.
Our solution. We first perform a pairwise registration be-
tween every view and each of its neighboring (overlapping)
view once. Though in our implementation of pairwise reg-
istration we do iterate matching and aligning, the pairwise
registrations converge much faster than the multiview case
and provide us with pairwise constraints between views that
we later enforce to register all the views simultaneously.
The constraints take much less space than the original data
and allows registering data sets that are too large to fit in
the memory at the same time. Finally, we incrementally
enforce these constraints to obtain a global multiview reg-
istration using a method that does not depend on the initial
registration transformations. The method is less likely to
get stuck into a local minimum and it efficiently diffuses
the alignment error among the meshes.

Next we explain the constraints obtained from pairwise
alignment, followed by a description of our incremental
alignment algorithm.

3.1. Constraints

The pairwise registrations provide us with a set of con-
straints that we should simultaneously satisfy. There are
several possible alternatives for the exact formulation of
these constraints.
Enforce relative registration transformations. We could
try to enforce the pairwise registration constraints by as-
signing each view a transformation so that the resulting rela-
tive transformations between neighboring views would dif-
fer as little as possible from the ones obtained through pair-
wise registrations. However, it is not clear how one should
measure the distance between two rigid 3D transformations.
For example, the effect of a small rotation can become very
large on the overlap area, depending on the center of rota-



tion. Even if a meaningful metric only involving the trans-
formation could be defined, it may not reflect the deviations
from relative alignments well.
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Figure 6. Visualizing concrete pairing (top) and vir-
tual pairing (bottom). The multiview alignment er-
ror is the sum of squared lengths of the dotted
lines before (left) and after (right) a perturbation.

Align point pairs generated in pairwise registrations.A
very straightforward generalization of ICP could just store
the point pairs generated from the pairwise registrations,
fixing the matching subproblem for once and all, while the
only remaining problem would be that of alignment. The
alignment could be then solved by minimizing the sum of
squared distances of all the point pairs. Thisconcrete mate
approach (see top row of Figure 6) is a very attractive solu-
tion that addresses all the main problems that we enumer-
ated in the beginning of this section. However, it requires
that the pairwise registrations are obtained using the same
optimization method as the one that is used for multiview
alignment. For example, if we first obtained point pairs us-
ing point-plane alignment, or performed the pairwise align-
ment using some non-ICP-based method, using point-point
alignment with the same point pairs would yield different
relative registrations. A more severe problem is that a least-
squares solution for the alignment problem would bias the
answer in favor of the worst pairwise registrations, since a
small random misregistration is likely to increase the sum
of squareddistances more for the longer point pairs than
for the shorter ones.1

Enforce the relative alignments of overlapping surface
sections. What we really should do is to constrain multi-
view registration to move each scan relative to its neighbors
as little as possible, regardless how the pairwise registra-
tions were obtained. More precisely, if we have registered
(and identified) the overlap between two scans, we want to
keep the overlapping regions well aligned, whereas other
parts of the scan may shift without a penalty (of course
while remaining rigidly connected with the overlapping ar-
eas). We do this using a generalization of the concrete mate

1There would not be such bias if we summed the absolute rather than
squared distances of the pairs, or if we interpreted the pairs to be ideal
springs whose rest lengths are the initial pairwise distances instead of zero.
However, we could not solve such a system as a linear least-squares prob-
lem.

approach that we call thevirtual mateapproach. This ap-
proach requires the pairwise registrations to produce a rel-
ative transformation between the scans along with a set of
points that uniformly subsample the overlapping areas. The
relative transformation tells where each subsampled point
of one scan should appear in its neighbor’s coordinate sys-
tem, thus creating for the point a virtual mate (see the bot-
tom row of Figure 6). Note that both scans do not need to
be subsampled, in principle one would suffice.

The virtual mate approach has two major advantages
over the concrete mate approach.

� It provides a clean interface between the results of pair-
wise registrations and reaching a consensus multiview
solution that attempts to maintain the pairwise align-
ments. In particular, the results of an arbitrary pair-
wise method can be used, regardless which minimiza-
tion metric was used, as long as the method is based
on aligning overlapping regions of the scans and it is
possible to approximate (and subsample) the extent of
that overlap.

� The pairwise registrations can be simultaneously en-
forced using a linear least-squares solution without in-
troducing a bias favoring registrations that have longer
point pair distances due to more noise, lower surface
sampling density, or inferior registration. The multi-
view registration metric becomes the sum of squared
motions of the subsampled points from their ideal rel-
ative positions with respect to the neighboring views.
All of the error in the virtual mate approach is entirely
due to twisting the pairwise alignments, while in the
concrete mate approach the error would additionally
contain the pairwise registration error.

3.2. Alignment

In Section 2.3 we said that although we prefer the point-
plane method for pairwise registration, in the multiview
case we use the point-point method. In pairwise registra-
tions, when most of the point pairs are initially suspect, the
ability of the point-plane method to slide along the surface
is an asset. However, now we know where each point should
appear (with respect to the neighboring view) and we want
to minimize all motion, including tangential one.

The order in which the constraints are enforced is not
irrelevant. Simultaneously enforcing all the pairwise con-
straints can lead to a local minimum, as illustrated in Fig-
ure 5, or it can make the error landscape locally flat, pre-
venting fast convergence into the global minimum. To avoid
these problems we perform the multiview alignment incre-
mentally, reminiscent of the metaview approach of multi-
view registration (see Section 1.2): we add views into a set



of consistently aligned views one at the time while keeping
the views in that set consistently aligned.

More concretely, we begin the multiview alignment by
choosing the view that has the most connections, put that
into the active set, and all the other views into the dormant
set. We then add the views in the dormant set to the ac-
tive set one at the time. At each turn, the dormant view
with most links into the active set is chosen, and a queue
of still moving views is initialized with the current view.
This queue is processed until it becomes empty by remov-
ing a view from it, aligning it with its neighbors that are in
the active set, and merging those neighbors into the queue
if the registration error is reduced enough. The registration
errors get diffused evenly among the view pairs in this inner
loop. Figure 7 gives the pseudocode for this algorithm.

dormant_set = views

curr := most_links(dormant_set, dormant_set)

active_set.add(curr)

dormant_set.remove(curr)

WHILE NOT EMPTY dormant_set

curr := most_links(dormant_set, active_set)

active_set.add(curr)

dormant_set.remove(curr)

queue.push(curr)

WHILE NOT EMPTY queue

curr := queue.pop()

nbors := active_set.neighbors(curr)

relative_change := align(curr, nbors)

IF relative_change > tolerance

queue.merge(nbors)

Figure 7. Pseudocode for the multiview alignment
algorithm.

A view is aligned with a set of neighbors using the con-
straints obtained from pairwise registration (align(curr,

nbors) in Figure 7). The constraints take the form of two
sets of points sampled from the area of overlap, one set for
each scan, and the relative registration transformation. Two
lists of 3D points are created: in one list we put the points
of the current scan, in the other their ideal mates. The ideal
mates are calculated as follows. Let us useM i to denote the
current registration transformation of viewi and M i,j the
relative transformation that takes a point from the local co-
ordinates of viewi to the coordinates of viewj. The points
pk of view i from the overlap area with viewj are added to
the first list asM ipk, to the second list asM jM i,jpk. Finally,
we align the point lists using the point-point method.

The important feature of this algorithm is that it adds
views one at a time to a set of views in order to avoid get-
ting stuck to a local minimum due to unfavorable initial
configuration. In practise, the alignment is likely to con-
verge faster if we first run the algorithm of Figure 7 with a
larger tolerance. Once all the scans are in the active set, a

new relaxation process can be started with the desired tol-
erance threshold. The relaxation of scans could be ordered
for example by how much a neighbor of a scan improved its
registration at its turn.

4. Results

In order to give some impression of the execution times
on our system we tested our system with a data set that has
been used in several registration papers before. The data
consists of eight views of 256� 256 range samples and
is shown in Figure 8. An informal test, timed with a stop
watch on an interactive run on an SGI O2, starting with
identity transformations for each view, gave the following
times. Performing eight interactive
pairwise alignments and running for
each pair our version of ICP, includ-
ing building the kD-trees for finding
the closest point, took altogether 4
minutes. Performing multiview reg-
istration took 5 seconds. After that
we created a collection of new pair-
ings for overlapping view pairs other
than the one interactively created,
this took 10 seconds. After run-
ning another global registration (5-
10 seconds) we studied the registra-
tion statistics and interactively im-
proved some of the automatic align-
ments. Within 10 minutes from the
start the alignment was as good as

Figure 8: The NRC toy
soldier.

we were able to get it.
We have also used our method to register our own scans.

Figure 9 shows a heavily subsampled image of the raw reg-
istered scans of the David of Michelangelo. Our data set
for David, which is 517cm tall, consists of over two billion
triangles in almost 500 separate scans, each covering a sur-
face area from a few dozens of square centimeters to over
a square meter, at intersample distances of about a third of
a millimeter. Doing anything with data sets of this size,
even just displaying it, is a severe challenge. Getting the
user assisted initial and supervised pairwise registrations is
a very laborious process, however, the multiview part using
the constraints from pairwise registrations can be run in a
few minutes on an SGI Octane. Figure 10 shows a close up
of the reconstructed head.

5. Discussion

5.1. Failure modes

There are two principal failure modes for our multiview
registration algorithm. First, it may be possible that no set



Figure 9. The David of Michelangelo.

Figure 10. The reconstructed head.

of rigid transformations exists that would simultaneously al-
ing all the scans. The object may have deformed during the
scan, either the scanner or the object may have moved dur-
ing a scan, or the calibration of the sensor is not perfect. A
non-rigid registration may sometimes be the only solution
(see, e.g. [21]). Otherwise, one can break large scans into
partially overlapping smaller scans, thus adding flexibility
that may allow data to align better.

The second failure mode is particular to our method. We
assume that the pairwise alignments are nearly perfect, and
we try to preserve them as well as is possible. If the over-
lap region between two scans is flat or has nearly constant
curvature, it is hard to reliably obtain a good pairwise reg-
istration, whereas other methods that reregister a scan with
all of its neighbors could overcome a bad initial registration.
On the other hand, our approach provides some diagnostic
tools that allow us locate false initial registrations and have
much more control to avoid accidental sliding across rela-
tively featureless regions.

5.2. Diagnostic tools

There are few diagnostic tools for assessing the quality
of registration for traditional multiview registration meth-
ods. One can, of course, visually inspect the alignment and
perhaps identify obviously misaligned scans. One can also
study the overall distance from a scan to other nearby scans,
but this distance is not always a good indication of the qual-
ity of registration, as scans may drift across relatively fea-
tureless regions with little penalty. Yet if a clear misalign-
ment is detected, very little can be done to rectify the prob-
lem except move the offending scan, restart the process, and
hope it does not shift back where it was previously found.

In our system the multiview registration metric explic-
itly tracks how well a scan can be simultaneously aligned
with all its neighbors. If a scan had been correctly pair-
wise aligned with every neighbor, and assuming the range
data was not warped, it is likely to be able to enforce all the
pairwise registrations simultaneously reasonably well. If,
however, a scan moved away from its pairwise registration
with a neighbor, this is an indication of a pairwise misalign-
ment. In such case we can, for example, first eliminate the
pairwise constraint, perform the multiview alignment with
all the other constraints, and redo the pairwise registration
using the resulting relative pose between the two scans as
the starting point. Alternatively, if weknow that the pair-
wise registration was very good, yet the multiview phase
attempts to move the scans apart, we can assign a higher
weight to this particular constraint, either explicitly or by
storing more subsampled points from the region of overlap.



5.3. Workflow

When dealing with data sets consisting of hundreds of
scans, it is not practical to perform supervised pairwise reg-
istrations aligning each scan with other partially overlap-
ping scans. If the scans are already in coarse initial align-
ment, we create the first pairwise registrations by attempt-
ing to automatically align each pair of scans whose bound-
ing boxes intersect. Otherwise we process the scans one at
a time by first interactively aligning a scan with one of the
previous scans and then automatically creating more pairs.

After the initial pair creation, we perform multiview
alignment. We then check the pairs that do not retain their
pairwise alignments well. Typically this is due to an incor-
rect pairwise registration, which is then interactively cor-
rected. Sometimes even a good pairwise alignment cannot
be enforced due to mistakes elsewhere, in which case we
can increase the relative weight of that pair. This is likely
to make the real culprit more obvious by increasing its reg-
istration error.

6. Conclusions

In this paper we have presented a new framework for
multiview registration. The previous multiview approaches
that spread the remaining registration error among all views
are direct generalizations of the ICP match–align strategy,
and require the expensive matching part repeated hundreds
of times while keeping the scan data and supplementary
data structures in memory. We perform pairwise registra-
tions once and store from those constraints that are satisfied
in the multiview alignment part as well as possible. This
yields not only time savings, we can also perform a global
registration for data sets that are too large to keep in mem-
ory. The method is general in the sense that any pairwise
registration method can be used, as long as the relative reg-
istration calculation and a subsampling of the overlap can
be obtained. The multiview alignment method is indepen-
dent of the initial registration transformations and is thus
less likely to get stuck into a local minimum. We have tested
our method with a collection of very large real data sets.
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