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Abstract

Surface Reconstruction and Display

from Range and Color Data

by Kari Pulli

Chairperson of Supervisory Committee

Professor Linda G. Shapiro

Computer Science and Engineering

This dissertation addresses the problem of scanning both the color and geometry of real ob-

jects and displaying realistic images of the scanned objects from arbitrary viewpoints. We

present a complete system that uses a stereo camera system with active lighting to scan the

object surface geometry and color as visible from one point of view. Scans expressed in

sensor coordinates are registered into a single object-centered coordinate system by align-

ing both the color and geometry where the scans overlap. The range data are integrated into

a surface model using a robust hierarchical space carving method. The fit of the resulting

approximate mesh to data is improved and the mesh structure is simplified using mesh op-

timization methods. In addition, two methods are developed for view-dependent display

of the reconstructed surfaces. The first method integrates the geometric data into a single

model as described above and projects the color data from the input images onto the surface.

The second method models the scans separately as textured triangle meshes, and integrates

the data during display by rendering several partial models from the current viewpoint and

combining the images pixel by pixel.
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Chapter 1

Introduction

Computer Vision and Computer Graphics are like opposite sides of the same coin: in

vision, a description of an object or scene is derived from images, while in graphics images

are rendered from geometric descriptions. This dissertation addresses issues from both of

these disciplines by developing methods for sampling both the surface geometry and color

of individual objects, building surface representations, and finally displaying realistic color

images of those objects from arbitrary viewpoints.

We begin this chapter by defining a set of subproblems within the greater framework

of scanning and displaying objects. We then discuss some applications that benefit from

techniques developed in this dissertation. Some relevant previous work is discussed, and

the chapter concludes with an overview of the dissertation.

1.1 Problem statement

This dissertation presents a complete system for scanning and displaying textured objects.

The tasks required to fulfill our goal can be organized into a sequence of stages that process

the input data. Each of these stages presents us with its own problems. Specifically, the

problems addressed in this dissertation are:

� How can we scan the object surface geometry using color cameras and structured

light?
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� Our scanner only allows us to digitize one view of an object at a time. Since the scan

data is expressed in the sensor coordinate system, and the sensor moves with respect

to the object between views, the data in different views are expressed in different coor-

dinate systems. How can we accurately express all the data in a single object-centered

coordinate system?

� How can we convert separate range views into a single surface description? How can

we use our knowledge of the scanning process to make this process more robust and

reliable?

� How can we manipulate the surface description so that it better approximates the input

data, and how can we control the size and resolution of the surface representation?

� How can we combine the color information from the different views together with the

surface geometry to render realistic images of our model from arbitrary viewpoints?

1.2 Motivating applications

Our research is motivated by numerous applications. The following two sections first dis-

cuss applications that require scanning surface geometry, followed by applications that ad-

ditionally require colored and textured surface descriptions.

1.2.1 Surface reconstruction

Surface reconstruction applications take geometric scan data as input and produce surface

descriptions that interpolate or approximate the data. The geometric scan data is typically

expressed as a set of range maps called views. Each view is like a 2D image, except that

at each pixel the coordinates of the closest surface point visible through the pixel are stored

instead of a color value.
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Reverse engineering

Today’s CAM (Computer Aided Manufacturing) systems allows one to manufacture objects

from their CAD (Computer Aided Design) specifications. However, there may not exist a

CAD model for an old or a custom-made part. If a replica is needed, one could scan the

object and create a geometric model that is then used to reproduce the object.

Design

Although CAD system user interfaces are becoming more natural, they still provide a poor

interface for designing free-form surfaces. Dragging control points on a computer display

is a far cry from the direct interaction an artist can have with clay or wood. Surface recon-

struction allows designers to create initial models using materials of their choice and then

scan the geometry and convert it to CAD models. One could also iterate between manufac-

turing prototypes, manually reshaping them, and constructing a new model of the modified

version.

Inspection

Manufactured objects can be scanned and the data can be compared to the specifications.

Detected deviations from the models can be used to calibrate a new manufacturing process,

or it can used in quality control to detect and discard faulty parts.

Planning of medical treatment

Surface reconstruction has many applications in medicine. Scanning the shape of a patient’s

body can help a doctor decide the direction and magnitude of radiation for removing a tumor.

In plastic surgery, scanning the patient can help a doctor to quantify how much fat to remove

or how large an implant to insert to obtain the desired outcome.
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Custom fitting

Surface reconstruction allows automatic custom fitting of generic products to a wide variety

of body sizes and shapes. Good examples of customized products include prosthetics and

clothes.

1.2.2 Textured objects

For displaying objects, rather than replicating or measuring them, one needs color informa-

tion in addition to geometric information. Some scanners, including ours, indeed produce

not only the 3D coordinates of visible surface points, but also the color of the surface at

those points. The requirements for the accuracy of the geometric data are often much more

lenient, as the color data can capture the appearance of fine surface detail.

Populating virtual worlds

Populating virtual worlds or games with everyday objects and characters can be a labor-

intensive task if the models are to be created by artists using CAD software. Further, such

objects tend to look distinctly artificial. This task can be made easier and the results more

convincing by scanning both the geometry and appearance of real-world objects, or even

people.

Displaying objects on internet

The influence of the internet is becoming more pervasive in our society. The world wide

web used to contain only text and some images, but 3D applications have already begun to

appear. Instead of looking at an object from some fixed viewpoint, one can now view objects

from an arbitrary viewpoint. Obvious applications include building virtual museums and

thus making historical artifacts more accessible both to scholars and to the general public,

as well as commerce over the internet where the potential buyer can visualize the products

before purchase.
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Special effects for films

Computer graphics is increasingly used in films. Special effects that would be otherwise

impossible, infeasible, or just expensive can be digitally combined with video sequences.

The extra characters, objects, or backgrounds tend to look more realistic if they are scanned

from real counterparts than if they were completely generated by a computer.

1.3 Previous work

In this section I briefly cover some previous work that most influenced the research de-

scribed in this dissertation. Further descriptions of related work can be found in Chapters

2, 3, 4, and 5.

1.3.1 Surfaces from range

There has been a large number of PhD dissertations and other research in surface recon-

struction from range data. The work that first motivated my research in range vision was

Paul Besl’s dissertation [Besl 86, Besl 88]. Besl did an excellent job of exploring low-level

range image processing and segmentation. Also, his later work in registration of range data

has been influential [Besl & McKay 92].

The greatest influence on this research was that of Hugues Hoppe at University of Wash-

ington with Professors Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle

[Hoppe et al. 92, Hoppe et al. 93, Hoppe et al. 94, Hoppe 94]. Whereas Besl concentrated

on low-level processing of range maps, Hoppe et al. developed a three-phase system for

reconstructing arbitrary surfaces from unstructured 3D point data. The first phase creates

an approximate triangle mesh from the point data by estimating a signed distance function

from the data and then extracting the zero set of that function. The second phase takes the

initial mesh and the point data and iteratively improves the fit of the mesh to the data and

simplifies the mesh while keeping it close to the data. In the third phase the surface rep-

resentation is changed to Loop’s subdivision scheme [Loop 87] that can represent curved
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surfaces more accurately and more compactly than a triangle mesh. Hoppe et al. extended

Loop’s scheme to allow sharp surface features such as creases and corners.

Around the same time Yang Chen [1994] worked with Professor Gerard Medioni at USC

on similar problems. Their research addressed registration of range maps into a single co-

ordinate system and then integrating the data into surface representation.

The most recent work in surface reconstruction that had a large influence on my research

was that of Brian Curless who worked with Professor Marc Levoy at Stanford [Curless 97].

Curless’s dissertation has two parts. In the first part spacetime analysis, a more robust and

accurate scheme for estimating depth using a light stripe scanning system was developed

[Curless & Levoy 95]. In the second part a volumetric method for building complex models

from range images was developed [Curless & Levoy 96].

1.3.2 Image-based rendering

My work on view-dependent texturing was heavily influenced by the image-based render-

ing papers published in SIGGRAPH 96. The Microsoft Lumigraph [Gortler et al. 96] and

Stanford Light Field Rendering [Levoy & Hanrahan 96] address the same problem: given

a collection of color images of an object from known viewpoints, how can one create new

images of the same object from an arbitrary viewpoint? Their solution was to think of the

pixels of the input images as half-rays ending at the camera image plane and encoding the

apparent directional radiance of the object surface. From these samples a function that re-

turns a color for a directed ray can be calculated. New images can then be created by eval-

uating that function over the rays associated with each pixel in the output image and paint-

ing the pixels with the returned colors. The approach is quite general and allows realistic

rendering of objects that are hard to model and render using traditional graphics methods.

However, a very large set of input images is required, and the 4D function mapping rays to

colors requires a large storage.

Debevec et al. [1996] described a system that allows a user to interactively reconstruct

architectural scenes from color images. After the user specifies the basic structure of the
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geometric models and marks correspondences between image features and model features,

the system calculates the actual dimensions of the model elements. The models are then

view-dependently textured using the original camera images.

1.4 Contributions

Here is a summary of the contributions in this dissertation:

� We have constructed a practical range scanner that uses inexpensive color cameras

and a controlled light source. The range data is inferred from camera images using

optical triangulation. The quality of the range data is increased by adapting spacetime

analysis [Curless & Levoy 95] for our scanner.

� We have developed a new method for pairwise registration of range and color scans.

Our method directly addresses the most difficult part of 3D registration: establishing

reliable point correspondences between the two scans. We implement a robust opti-

mization method for aligning the views using the established point pairs.

� We have developed a method for simultaneously registering multiple range maps into

a single coordinate system. Our method can be used in conjunction with any pairwise

registration method. The scans are first registered pairwise. The results of pairwise

registration create constraints that can be then used to simultaneously find a global

registration.

� We have developed a simple and efficient hierarchical space carving method for cre-

ating approximate meshes from registered range maps.

� We have developed two methods for view-dependent texturing of geometric mod-

els using color images. The first method is used to texture complete surface models,

while the second method models each range scan separately and integrates the scans

during display time in screen space.
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1.5 Overview

The first three chapters in this dissertation discuss methods for reconstructing geometric sur-

face models from range scans. Chapter 2 deals with data acquisition, Chapter 3 addresses

registration of the scan data, and Chapter 4 discusses methods to reconstruct surfaces from

registered range data. Chapter 5 concerns the use of color data and presents two methods for

view-dependent texturing of scanned surfaces. Chapter 6 concludes the thesis. Some mate-

rial presented in Chapters 4 and 5 has been published previously [Pulli et al. 97a, Pulli et al. 97b,

Pulli et al. 97c].



Chapter 2

Data acquisition

2.1 Introduction

It is possible to develop algorithms for surface reconstruction and view-dependent textur-

ing without having an actual range and color scanner. However, with the aid of an accurate

scanner we can create new data sets of many different classes of objects and surface mate-

rials under various scanning configurations. We can get even more control over the input

data by building a scanner instead of buying one as no data remains inaccessible inside the

scanning system.

This chapter describes the system we built for scanning both range and color data. In

Section 2.2 we describe the hardware configuration of our scanner as well as the calibra-

tion process. In Section 2.2.1 we discuss our simple but robust method for obtaining dense

range data from stereo with active lighting. The chapter concludes with a description of how

spacetime analysis, a method that was developed for another type of scanner, was adapted

to our system for more reliable and accurate scanning.

2.2 Physical setup

Our scanning system consists of the following main parts (see Fig. 2-1). Four Sony 107-A

color video cameras are mounted on an aluminum bar. Each camera is equipped with man-

ually adjustable zoom and aperture. The cameras are connected to a Matrox Meteor digitiz-

ing board, which can switch between the four inputs under computer control, and produces

images at 640� 480 resolution. The digitizing board is attached to a Pentium PC.
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Figure 2-1 The scanner hardware. Four video cameras are attached to an aluminum bar,
which rests on a tripod. A slide projector is placed on a turntable under the cameras. Table
lamps provide adjustable lighting for capturing color images.

Below the cameras, a slide projector sits on a computer-controlled turntable. The slide

projector emits a vertical stripe of white light, which is manually focused to the working

volume.

The object to be scanned is placed on a light table that is covered by translucent plas-

tic. When the lamps under the light table are turned on, the background changes; thus we

can easily detect background pixels by locating the pixels that change color.1 Next to the

scanner is a set of adjustable lamps that are used to control the object illumination when we

capture color images.

1 In order for this to work the cameras have to aim down so they don’t see past the light table.
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Figure 2-2 The calibration object is metal plate mounted on a rail. The plate is perpen-
dicular to the rail, and it can be moved in 10 mm steps along the rail. A calibration pattern
consisting of a 7� 7 dot field is pasted on the plate.

2.2.1 Calibration

In order to make any measurements from camera images, we need to know the camera cal-

ibration parameters. Some of the internal parameters (size of the CCD array, aspect ratio of

the pixels, etc.) are fixed, but others, such as focal length and distortion, vary. The exter-

nal parameters define the pose of the camera, that is, the 3D rotation and translation of the

optical center of the camera with respect to some fixed coordinate system.

We measure the calibration parameters for all four cameras simultaneously using Tsai’s

algorithm [1987] and the calibration object shown in Fig. 2-2. The calibration object con-

sists of a metal plate that can be translated along a rail that is perpendicular to the plate. A

calibration pattern made of a 7 � 7 block of circular black dots on a white background is

pasted on the metal plate.

The calibration proceeds as follows. The calibration object is placed in front of the cam-
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eras so that all four cameras can see the whole pattern. The origin of the calibration coordi-

nate system is attached to the center of the top left dot in the pattern, with the x-axis aligned

with the dot rows, the y-axis with the dot columns, and the z-axis with the rail on which

the calibration plate rests. The dots are located within the camera images using the Hough

transform [Davies 90], and the 7� 7 pattern is matched to those dot locations. The image

coordinates of each dot are then paired with the corresponding 3D coordinates. The plate is

moved by a fixed distance along the z-axis, and the process is repeated several times over

the whole working volume. The calibration parameters for each camera are estimated from

the entire set of 3D-2D point correspondences using Tsai’s algorithm [1987].

2.3 Range from stereo

In traditional stereo vision one tries to match pixels in one camera image to pixels in the

image of another camera [Barnard & Fischler 82]. The pixel matching relies on intensity

variations due to surface texture. If the cameras have been calibrated and the matched pixels

correspond to the same point on some surface, it is trivial to calculate an estimate of the 3D

coordinates of that point.

There is an inherent tradeoff in the choice of the baseline (the distance between the two

cameras): the longer the baseline, the more accurate the estimate, but the shorter the base-

line, the more reliably the pixels can be matched. Okutomi and Kanade [1993] implemented

a multiple-baseline stereo method that uses multiple stereo pairs with different baselines.

The use of multiple stereo pairs provides improvement both in correctly matching pixels

and in increasing the accuracy of the 3D coordinate estimation. Kang et al. [1995] later

enhanced the “passive” method by projecting stripe patterns into the scene to help match

images of untextured surfaces that do not exhibit intensity variations (“active” stereo).

We initially implemented the Kang et al. [1995] system for scanning range data. How-

ever, we had difficulties in reliably matching the camera images, especially if textures on

the object surface interfered with the projected dense stripe pattern, and close to the silhou-
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points on this line
project to 
this pixel

the 3D line is 
projected to 
another image
(epipolar line)

this pixel corresponds
to the one in the first
image

the reconstructed
3D surface point

Figure 2-3 A vertical light beam is projected onto the scene resulting in stripes that gen-
erally appear curved and discontinuous when viewed from another direction. The stripes
are located on both camera images. The 3D surface point visible through a pixel in the
left image is found by projecting the 3D line associated with that pixel onto the right im-
age, intersecting the projection with the detected stripe, and intersecting the 3D lines of
the matched pixels.

ette of the object. As scanning speed was not important for us, we chose a much slower, but

significantly more robust method that only requires two cameras and a single light stripe.

In our system we project only a single vertical light stripe onto the scene. The stripe

appears in both camera images as shown in Fig. 2-3. The set of points projecting to a pixel

forms a line in 3D, and we can calculate that line from calibration data. We match the stripe

pixels by projecting the line corresponding to a pixel in the left image onto the right image,

and then intersecting the projected line with the stripe in the right image. Once we have

matched two pixels, we use the intersection of their corresponding 3D lines to determine the

3D coordinates of the surface point visible through the pixel in the left image. The whole

scene is scanned by aiming the stripe at the left side of the working volume, reconstruct-

ing surface points illuminated by the beam, turning the beam to the right by a small fixed

angle, and repeating the process until the beam has swept over the whole working volume.
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The result is a dense range map, an image that stores the 3D coordinates of the first visible

surface point through each pixel2.

We can increase the reliability of our system by using more than two cameras. In the

basic system we can only scan points that are visible from both cameras, as well as the light

projector. If we use four cameras, we are satisfied if the surface point is visible from the first

camera, the light projector, and any of the other cameras. In the case when the point is vis-

ible from several cameras, we can check whether the match was reliable by calculating the

3D coordinates of that point from several camera pairs and checking whether the answers

agree. We can then either use the coordinates obtained from the stereo pair with the largest

baseline, which is likely to give the most accurate estimate, or compute a weighted average

of the answers.

2.4 Scanning color images

In order to detect the vertical beam projected onto the scene we have to turn all other lights

off while scanning the object, and consequently we cannot capture reliable color informa-

tion while scanning the geometry. Instead, we first scan the geometry, then turn the lights

on (and turn the stripe projector off) and take a color image with the camera that is used as

the base camera in range triangulation. This way the color and range data are automatically

registered, i.e., each range measurement is associated with exactly one pixel in the color

image.

2.5 Spacetime analysis

Our scanning method requires that we accurately locate the center of the stripe in a camera

image. At first this seems quite easy; after all, the intensity distribution across the width

of the stripe is approximately Gaussian, and simple techniques such as taking an average

2 Actually, only for pixels whose surface points are visible from both of the cameras and the light source,
and of those for ones over which the beam was actually centered.
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(a)                                             (b)

(c)                                             (d)

camera camera
light

Figure 2-4 Sources of errors in range by triangulation. In all images the central vertical
line is the light beam with Gaussian intensity distribution, on the left and right are two
sensors. (a) Ideal situation: planar object. Both sensors see the stripe and the surface is
scanned correctly. (b) The right sensor can’t see the whole stripe because of self-occlusion,
pulling the estimate forward. (c) The beam hits the surface only partially, pulling the sur-
face estimate away from the corner, though not out of the surface. (d) The sensors see only
half of the stripe well, resulting in too large a depth estimate.

weighted by pixel intensities across the beam should give good results. However, there is

a hidden assumption that the surface illuminated by the beam is locally planar and that the

whole width of the stripe is visible to the camera.

2.5.1 Problems in locating the stripe

Curless and Levoy [1995] noticed that when the assumptions of a planar surface and a fully

visible stripe are violated, the range estimates become systematically distorted. They used a

Cyberware scanner, which scans range data using a calibrated laser beam with a single cal-

ibrated camera. Figure 2-4 is adapted from Curless and Levoy’s [1995] paper to a system

of two calibrated cameras and an uncalibrated light beam, and it illustrates several config-
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 (a)                                                                   (b)

Figure 2-5 (a) Intensity changes lead to incorrect surface point estimate in a system using
calibrated light source. (b) Intensity changes move the surface point estimate along the
surface in a system using calibrated cameras and uncalibrated light source.

urations that lead to an incorrect estimate for the surface point coordinates. Figure 2-4(a)

shows the ideal situation: a completely visible stripe on a flat surface, yielding an accurate

range estimate. In Fig. 2-4(b) part of the beam is occluded in the right camera by a protu-

berance of the object. The estimate of the stripe center on the right camera is biased to the

left, pulling the range estimate closer towards the left camera. In Fig. 2-4(c) the center of

the beam is aimed at a sharp silhouette corner of the object, and only half of the beam hits

the surface. The stripe center estimate of both cameras is biased to the left, giving incorrect

3D coordinates for the surface point on the silhouette edge. Because of this phenomenon,

it is hard to scan the surface reliably all the way to the silhouette boundary. Figure 2-4(d)

shows the beam pointing at a sharp crease on the surface. The left half of the stripe is fully

visible to the left camera, whereas the right half of the stripe is foreshortened because the

surface turns away. This results in a bias to the left in the stripe center estimate. By a simi-

lar argument, the stripe center is biased to the right in the right camera, resulting in error in

scanning the surface point.

It is worth noting that Curless and Levoy presented a fourth case, where changes in sur-

face intensity bias the stripe center estimate, leading to an error in the range estimate (see

Fig. 2-5(a)). This is not really a problem in our system. Recall that while they use a cali-

brated light beam and a calibrated camera, we use an uncalibrated light beam and several

calibrated cameras. In the case of a planar textured surface, the stripe center estimates would
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be similarly biased in both cameras. However, as shown in Fig. 2-5(b), the reconstructed

point still lies on the surface.

2.5.2 Solution to the problem

The problems illustrated in Fig. 2-4 can be overcome by reformulating the task. Instead

of trying to find where the center of the beam is in a single image, one can track the time-

varying intensity profiles of the pixels to find out when the beam was centered at each pixel.

Curless and Levoy [1995] call this approach spacetime analysis. Let’s assume that the beam

is wide enough to cover several pixels in the image, its intensity has Gaussian distribu-

tion, and we move the beam in steps that are small compared to the beam width. When

the beam approaches the surface point visible through a pixel, the intensity of the pixel first

increases, and then begins to decrease as the beam sweeps past the point. The shape of the

time-varying intensity profile is always Gaussian, and the time when the beam was centered

on the pixel can be reliably estimated from that profile.

Spacetime analysis produces a function describing when (if ever) the beam was cen-

tered on each image pixel. We can use this function in our triangulation method as follows.

Choose a pixel in the left image and note the time when the beam was centered at that pixel.

Find the epipolar line corresponding to that pixel on the right image as before; i.e., project

the 3D line corresponding to the pixel onto the right image. The epipolar line defines a new

function that maps a position on the line to a time when the beam was centered on the pixel

under the line. To match the original pixel on the left image we simply search for a line posi-

tion such that the pixel under it has the same time as the original pixel. The 3D coordinates

of the surface point are found by triangulation as before. We implemented this method and

thereby reduced the errors illustrated in Fig. 2-4.

2.6 Contributions

The contributions of this chapter are:
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� Implementation of a working range and color scanning system that provides the data

used in the following chapters.

� Adapting spacetime analysis to a scanner that uses calibrated cameras and an uncal-

ibrated light beam.



Chapter 3

Registration

3.1 Introduction

Our scanner does not allow scanning all of the object without moving either the object or

the scanner. In practise, the object is placed into the working volume in front of our stereo

system, and the surfaces visible to the cameras are scanned. The object is then manually

reoriented, so that other parts of the surface can be scanned, and this is repeated until most

(ideally, all) of the object surface is scanned.

The range data in each view is expressed in the sensor coordinate system. Since the

Rigid
transformation z

x

y

z

x

y

Figure 3-1 The range maps are registered by aligning the range data in the different views,
each expressed in the sensor coordinate system. Registration of the data is equivalent to
finding the rigid transformations of the sensor between the scans.
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object was moved between scans, data points corresponding to the same surface point have

different coordinates in different views. Clearly, if we want to estimate the object surface

from the scans, we have to first align the data sets and express all data in a single, object-

centered coordinate system. This process is called registering the range data. If we knew

the relative motion of the scanner with respect to the object from view to view, we could

register the data sets by applying that same transformation to them (see Fig. 3-1). However,

even if we had a robotic system that moved the object (or the scanner) between the views,

we could typically only expect to have an approximate transformation with accuracy much

less than that of the scanner. But if we start from an approximate initial registration, and

if there is sufficient overlap in the views, we can refine the registration by finding rigid 3D

transformations that precisely align the overlapping range and color data.

This chapter presents new algorithms for registering range maps. We first describe our

fast interactive method for obtaining a coarse initial registration. We then describe previous

methods for pairwise registration of range maps, followed by our new method that makes

the registration process more robust and uses color information to improve registration ac-

curacy. We also present a new method for multiview registration that directly uses informa-

tion obtained from pairwise registration, yet distributes the registration error evenly over all

views. A short discussion concludes the chapter.

3.2 Traditional approaches to pairwise registration

If we have two range scans of the same object such that the range maps overlap, we can

register the views by aligning their overlapping geometry. Figure 3-2 illustrates the gen-

eral strategy in pairwise registration of range maps. In the upper left there are two scans of

a couch, both expressed in the sensor coordinate system. First, we obtain an approximate

alignment by interactively pairing a few (4) corresponding surface features. The initial reg-

istration is then refined by automatically pairing points in the surface scans and moving the

data into better alignment using the paired points. These two steps are iterated until the pro-
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Figure 3-2 Initially the two views are expressed in the sensor coordinates rather than in an
object-centered coordinate system. An initial registration is found by interactively match-
ing small set of features and then aligning them. The initial registration is automatically
refined.

cess converges.

A good registration can be found by minimizing the following equation:

NpX
i=1

k Tpi � qi k2, qi = arg min
q�Q

k Tpi � q k. (3.1)

Here we are looking for a rigid 3D transformation T that minimizes the distances of the

scanned points pi � P to a set Q that can be either another set of scanned points, a surface

fitted to a point set, or a complete surface model of the scanned object. Equation 3.1 is

difficult to solve directly as it tries to solve several problems simultaneously. First, there is

the transformation T that aligns the overlapping geometry. Second, there is the question of

pairing the pi’s. If the surface point corresponding to pi is not represented in Q, pi should not

even be included in the sum 3.1. Otherwise, it should be paired with qi � Q that corresponds

to the same point on the surface. However, since it is easy to solve the transformation if
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the correct point pairings are given, and vice versa, the idea of iterating over two simpler

subproblems is used in most practical registration methods.

We first describe our approach to initial registration, and we then study the state-of-the-

art in rigid 3D registration, concentrating on the iterative pairing-minimizing approach.

3.2.1 Initial registration

Registration is a nonconvex optimization problem and can therefore easily converge to an

incorrect local minimum if not given a good starting point. Therefore most registration

methods require a rough initial registration which is then refined by a local optimization

process. There are many possible ways to obtain an approximate initial solution. In a fully

automated scanning and reconstruction system, either the object or the scanner has to be

moved under computer control between scans to obtain views that cover the whole surface.

In such a system, the relative motion of the scanner and the object is likely to be directly

available. If, on the other hand, a human operator chooses the viewpoints and manually re-

orients the object (or the scanner) between scans, it is not unreasonable to ask the operator

to provide an approximation of the registration, provided there is an easy-to-use interface

that requires no more than the effort expended to reorient the object. This is the case in our

system.

Figure 3-2 illustrates our initial registration method. The user is shown images that were

taken along with the range scans. She then selects four point pairs so that each pair marks the

same surface point in both images.1 The program then finds the 3D points corresponding to

the selected points. In terms of Eq. 3.1, Np = 4 and the user indicates the pairs (pi, qi). Now

as the pairs have been fixed, we only have to find the transformation T that aligns them.

Slightly differing closed form solutions for finding the rigid Euclidean motion that mini-

mizes the sum of squared distances between the paired points were published independently

by Horn [1987] and Faugeras and Hebert [1986]. There is also a more recent formulation

1 Three point pairs would be enough to determine the relative orientation and position, but with more points
small errors in pairing have less influence on the solution.
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by Wang and Jepson [1994] that according to the authors provides more robust solutions

when the data are contaminated by anisotropic noise.

There have been many suggestions on how to obtain the initial registration without user

interactions. Unfortunately, they are not robust, general purpose solutions that could be ex-

pected to work with more than a limited class of objects. We defer their discussion to Sec-

tion 3.5.

3.2.2 Iterative solution

Besl and McKay [1992], Chen and Medioni [1992], and Zhang [1994] proposed minimizing

Eq. 3.1 by iterating between pairing points and solving the transformation. Besl and McKay

called their method the Iterative Closest Point (ICP) algorithm, and we use that name to de-

scribe all methods with this common approach. The objective function is similar to Eq. 3.1:

NpX
i=1

k Tkpi � qi k2, qi = Proj(Tk�1pi, Q) (3.2)

The estimate of the registration transformation T is refined in small steps. First, while hold-

ing the transformation fixed, the points T0pi are projected onto surface Q and paired with

their projections qi. Ideally, pi and its pair qi should correspond to the same point on the

object surface. Now the pairs are held fixed, and a transformation T1 that brings P closer to

Q is calculated. As the surfaces move closer, finding better point pairs becomes easier and

more reliable, which enables finding better transformations, so projections and minimiza-

tions can be iterated until the process converges.

Pairing

It is difficult to find for each point pi � P the point qi � Q corresponding to the same 3D

surface point. Furthermore, the corresponding point does not even exist for some pi.

Besl and McKay [1992] proposed a simple way of projecting points to another surface

or point set: for each point, find the closest point in the other view. This is illustrated in
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Figure 3-3 Pair each control point with the closest point in the other view.

(i)

(ii)

(iii)
(iv)

(a)                                                                                     (b)

Figure 3-4 Point pairing heuristics. (a) Heuristics for discarding point pairs: (i) distance
is too large, (ii) normals differ too much, (iii) pairing a point with a boundary vertex pulls
the solution in the wrong direction, (iv) the point-to-point vector differs from the normal
vector. (b) A point on an occluding boundary is paired with the closest point on a hidden
surface (solid line), not with the closest point (dotted line).

Fig. 3-3, and it works best when the surfaces are close together and are relatively smooth.

Chen and Medioni [1992] preferred a different approach that was originally proposed by

Potmesil [1983]: extend the normal vector at the point pi and locate the intersection of the

normal and the surface Q.

Both of those methods are only heuristics that often fail. Many researchers have pro-

posed additional heuristics that either remove some of the pairs that are clearly wrong or

help in finding pairs that are more likely to correspond to the same surface point. Figure 3-4

illustrates some of these heuristics. Gagnon et al. [1994] do not try to pair points with nor-

mal vectors pointing away from the viewpoint of the other view as the points cannot be vis-

ible. Turk and Levoy [1994] eliminate pairs where the points are too far apart. They also

eliminate pairs where one of the points is on the silhouette of the range map, as many points
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in the other view that are not visible in the first view are paired with that point. A similar

effect, however, can be achieved by Besl and McKay’s heuristic of removing pairs in which

the vector from one point to another does not agree with the local normal vector. Koivunen

and Vezien [1994] first perform one registration step and then discard pairs if the points are

far apart or if the local normals don’t agree. Dorai et al. [1996] discard pairs if they are not

compatible with the neighboring pairs. Take two pairs, (pi, qi) and (pj, qj). Unless the dis-

tance k pi�pj k equals the distance k qi�qj k, it is not possible that both pairs are valid at

the same time, since a rigid registration transformation preserves 3D distances. Dorai et al.

filter the pairs and discard those that are not compatible with most of the neighboring pairs.

Godin et al. [1994] used a different approach. Instead of first pairing points and then

culling away bad pairs, they define a compatibility function that is used to find better pairs

for the points. In addition to the range data, they also had color data, and their compatibility

function compares local surface reflectance properties. The compatibility of two points is

based on their colors, and each point is paired with the closest compatible point. Though

Godin et al. used only reflectance information, the compatibility function can be easily ex-

tended to take into account other features such as normal vectors, curvatures, etc.

Eggert et al. [1996] proposed a clever heuristic for finding good pairs for points on an

occluding boundary. Each boundary point is paired with nearest point on the surfaces of

the other views that is hidden from the current viewpoint. Figure 3-4(b) illustrates this with

two views of a box. The dark points were scanned from the direction of the bottom corner,

while the light points were scanned from the right. The rightmost dark point is an occluding

boundary point, so it corresponds to the corner of the box. Most methods would pair that

point with closest point in the other scan (dotted line), but this heuristic pairs the point with

the closest point with a normal pointing away from the viewpoint of the current view (solid

line). This pairing pulls the corners efficiently together. Other points are paired with the

closest points, where the closeness is defined as a sum of the physical distance and a scaled

difference in normal vector orientation. The influence of the normal vectors is decreased as

the registration proceeds, because although using normals helps in the beginning, noise in
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Figure 3-5 The point p is projected onto the image plane of the other view. The intensities
of p and its projection p� are compared, and a correction displacement d is calculated using
the intensity gradient at the projection. p is paired with q, the point that projects to the
corrected image location p� + d. Points that are not visible to the other scanner due to self-
occlusions, such as point x, are not paired with any other point.

the normal estimates hinders the final convergence.

The methods described above typically find a partner for a point by searching for the

closest point in another set of points or small triangles. Although the search can be accel-

erated by organizing the data into a k-D tree [Friedman et al. 77] or into spatial bins, it can

still take a large percentage of the processing time, especially since each range map can eas-

ily contain hundreds of thousands of points. Weik [1997] developed a method that avoids

the closest point search by projecting points from one range map to another range map. As

illustrated in Fig. 3-5, a point p is paired by projecting it to p� on the image plane of the

scanner of the other view, and finding the point q� in the other view that projects to the same

location. However, they also used image intensity information to find a slightly better pair

for a point. The difference�I of the intensities I0(p) and I1(p�), as well as the intensity gra-

dientrI1(p�), are calculated. A displacement d is calculated such that�I = rI1(p�) �d, and

the original point is paired with the point q that projects to the new corrected image location

p�+ d. Weik also prevents some points from being paired if they cannot possibly be visible,

due to self-occlusion in the direction of the other view point (point x in Fig. 3-5).

A few people [Zhang 94, Godin et al. 94] have noted that the point pairing should be
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(a)                                                                                (b)

Figure 3-6 Fixed ideal springs. (a) Horn’s [1987] method pulls surfaces together in one
step, provided the paired points correspond to same surface points. (b) If many of the
paired points don’t correspond to the same surface points, many seemingly good pairs
(short distances) resist motion in all directions.

symmetric. Unless it is known that one view is a proper subset of the other, there is no reason

why one view should prevail over the other. The pairing can be made easily symmetric by

first projecting points in P to Q, then points in Q to P, and finally merging the two sets of

pairs.

Minimization

Figure 3-6(a) illustrates how Besl and McKay [1992] and Zhang [1994] bring the surfaces

closer together: the sum of the squared distances of the paired points is minimized using

Horn’s algorithm. One can try to visualize the method by imagining that the paired points

are connected by ideal springs that pull the surfaces together. The approach works well if

the paired points really correspond to the same points on the surface; in this case the cor-

rect registration is obtained in one iteration. Typically, however, even a few bad point pairs

pull the solution away from the perfect registration, producing a situation like the one il-

lustrated in Fig. 3-6(b). The surfaces are in a fair registration, but they still need to slide a

bit past each other. When the points are reprojected to the other surface and the pairs are

connected with conceptual springs, several pairs pull the solution to the correct direction.

However, most paired points are very close to each other and therefore resist motion in any

direction, preventing the surfaces from moving more than a very small step, which slows



28

the convergence near the solution.

Chen and Medioni [1992] minimize something other than the distances between the

paired points. The first surface is moved so that points on it move closer to the tangent planes

of their counterparts on the other surface. In terms of the

ideal spring analogy, only the first end of the spring is

fixed to a point, while the other end is free to slide along

the other surface. No penalty is associated with surfaces

sliding past each other, so larger steps are possible, and

the registration is likely to converge faster.

Figure 3-7: Sliding springs. Minimiz-

ing the distance from a point to a plane

allows the left pair to pull the surfaces

into alignment without the other pairs re-

sisting tangential sliding.

Although the sliding spring approach typically converges faster, there is a situation where

the fixed spring approach works better. If the point pairs are good, the fixed springs pull the

surfaces to alignment immediately, while with sliding springs a good pairing may not move

the surfaces at all if the points already lie in the tangent plane of their counterparts.

Masuda and Yokoya [1995] attempted to make Horn’s minimization step of ICP more

robust by using the least median of squares (LMS) approach [Rousseeuw & Leroy 87].

Horn’s method minimizes the sum of squared distances between all given pairs, and it there-

fore has a breakdown point of 0%, meaning that even one wrong pairing can create an ar-

bitrarily bad answer. The LMS estimator, on the other hand, minimizes the median of the

squared residuals, and it can give the correct answer even if almost 50% of the points have

been paired incorrectly. Full implementation of LMS requires selecting subsets of data points,

finding the registration that aligns the subsets, calculating the median of the squared resid-

uals for each view, and storing the answer that produces the smallest squared median. In

practice, only a relatively small number of subsets are randomly chosen and evaluated. For

each iteration of ICP, Yokoya and Masuda selected five points, paired them with the clos-

est point in the other view, calculated the registration transformation using Horn’s method,

evaluated the result, repeated the process 200 times, and selected the best result. The ap-

proach still requires the same number of ICP iterations as other methods, typically around

50. The main benefit of the method is that reliable results can be obtained without actively
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culling bad point pairs. To speed up the otherwise expensive registration function, one data

set is projected to the image plane of the other much like in Fig. 3-5 and the residuals are

calculated along the projection direction. The authors claimed a reduction in computational

costs as long as the size of the subsets (5) times the number of trials (200) does not exceed

the size of the data set (n). However, this was based on the flawed assumption that finding

the closest points has O(n2) cost, whereas with preprocessing the cost is only O(n ln n), so

the described implementation is actually slower than traditional ICP. Further, as the method

was described, a successful registration could be expected only if the two views share at

least 50% of the points.

Some other alternative approaches for minimization are discussed in Section 3.5.

3.3 Projective pairwise registration

We now consider how the point pairing heuristics presented in the previous section fare

in practice. Figure 3-8 shows some typical results. In Fig. 3-8(a) points from the dark

curve are paired with the closest point on the light curve such that the local normals agree.

The pairings in the ideal situation shown in Fig. 3-8(b) are consistently aligned, whereas

in Fig. 3-8(a) some of the points are paired with a point above them, others have pairs be-

low, to the left, or even to the right of them. In Fig. 3-8(c) points are paired with the closest

point with matching color, pairing most points with a point directly above it, though some

pairings slant to the left and others to the right. Not only are the pairings produced using

local heuristics inconsistent, but almost none of the paired points actually correspond to the

same point on the surface. It is clearly not enough to just throw away bad pairs; we should

instead concentrate on finding good ones.

Before suggesting an alternative point pairing method, we list some desirable properties

of good pairings:

� Each point and its partner should correspond to the same location on the surface, and

only points from surfaces visible in both views should be paired.
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(a)                                                                                               (b)

(c)                                                                                               (d)

Figure 3-8 Heuristics lead to inconsistent pairings. (a) Points from the dark curve are
projected to the closest point with compatible normal vector on the light curve. Some of
the pairing vectors point up, some down, some to the left, and at least one to the right. (b)
Points are projected to their true corresponding locations, and the pairs follow consistently
a single rigid transformation, in this case translation. (c) Points on the lower two-colored
curve are paired with the closest point with compatible color on the upper curve. Most
pairing vectors point up, about as many are slanted to the right as to the left, while (d)
shows that all should slant to the left.

� The mapping within the overlapping surface should be bijective, i.e., one-to-one (a

point can be paired with only a single point) and onto (every point in the overlapping

region should have a partner).

� The pairs should be consistently related with a single rigid 3D motion.

� The color data should be aligned as well as the geometry. In fact, surfaces that have

rotational or translational symmetries cannot be unambiguously registered using ge-

ometric data alone [Gagnon et al. 94, Weik 97].

It is hard to create a pairing with the above properties using only local heuristics that

myopically look for a closest compatible point without considering how the other points

are paired. We propose a new, more global metric for simultaneously pairing the points on
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overlapping surfaces. The basic idea is to use 2D image registration to align the projections

of the data sets to a plane and pair surface points projecting to the same image location.

Consider two textured surfaces that are already in close alignment. If you render the

scanned surfaces as they would be seen from an arbitrary viewpoint (from which the overlap

of the two surfaces is visible) the resulting 2D color images are also in alignment. Each point

on surface A projects to the same pixel as its corresponding point on surface B. Assuming

parallel projection, we could even translate one of the surfaces along the projection axis,

and the corresponding points would project to the same pixels.

Now let’s go back to our problem, where we have two views of a textured surface in

rough alignment and would like to improve their registration. If we could move one of the

views (partial surface) such that its projected image aligns well with the image of the other

surface, we could be fairly confident that visible surface points projecting to the same pixel

correspond to the same point on the object surface. We can then find good point pairs by

pairing points that project to the same pixel. A brief examination confirms that all the prop-

erties that we listed as desirable are indeed satisfied with this pairing.

Figure 3-9 illustrates the basic idea in our point-pairing mechanism. In Fig. 3-9(a) one

data set is rendered over the color image of the other data set, while in Fig. 3-9(b) the second

data set is rendered over the color image of the first. In Figs. 3-9(c) and (d) the rendered

images have been automatically aligned with the original color images. From the alignment

we determine which image pixels in one image correspond to the pixels in the other image,

and because we can find out which point on the mesh projects to a given pixel, we obtain

a dense set of 3D point pairs. The point pairs are used to align the data sets using a robust

version of Horn’s [1987] method. The whole process can then be iterated until the data sets

are closely aligned.

In the next section we describe how we use 2D registration of the color images to obtain

better point pairs. We then discuss our robust approach for calculating the 3D registration

of the data sets using those pairs. We conclude with some results and comparisons with a

previous method.
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(a)                                                                                 (b)

(c)                                                                                 (d)

Figure 3-9 Consistent pairing of points. (a) and (b): The data sets are roughly aligned.
Each data set is rendered over the color image of the other data set. (c) and (d): The im-
ages are manipulated so they align better. Now points that project to the same pixel can
be paired, and a better 3D registration can be calculated from the paired points.

3.3.1 2D Image registration

We want to align the rendered image of a range and color scan over the color image of an-

other scan. We already mentioned one possible way to do this: translate and rotate the data
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in 3D so that when viewed from the viewpoint of the other camera it aligns with the color

image taken from that point. However, if the data sets are already in rough alignment we

don’t need to search the 3D motions and repeatedly reproject the data. Instead, we can use

2D image registration techniques to register the rendered image directly with the color im-

age.

Szeliski and Shum [1997] described a method for registering color images using planar

perspective warping2. The planar perspective transform is described by
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which maps image point (x, y) to (x��w�, y��w�). The parameters mi are found by iteratively

updating the transform matrix using
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A new transformation x�� = (I + D)Mx, is determined by minimizing

E(d) =
X

i



wi
�
I1(x��i )� I0(xi)

�2 , (3.5)

where I0 and I1 are the two images, wi is a per-pixel weight, and d = (d0, � � � , d7) is the

incremental update parameter. Truncation of the Taylor series expansion around zero gives

the following approximation:

E(d) �X
i

h
wi

�
gT

i JT
i d + ei

�i2
, (3.6)

2 A planar perspective warping can precisely align images of a surface if the surface is planar. However,
when the surfaces are far from the camera and only small rotations are involved, the approximation can be
good.
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where gT
i = rI1(x�i) is the image gradient of I1 at x�i, and ei = I1(x�i) � I0(xi) is the current

color error. Ji = Jd(xi) is the Jacobian of the warped point x�� with respect to d

Jd(x) =
�x��

�d
=

�
�� x y 1 0 0 0 �x2 �xy

0 0 0 x y 1 �xy �y2

�
��

T

. (3.7)

The least-squares minimization problem Eq. 3.6 can be solved for example by completing

wigT
i JT

i d = �wiei (3.8)

to normal equations Ad = �b by multiplying both sides of Eq. 3.8 with Jigi, where

A =
X

i

wiJigigT
i JT

i (3.9)

is an 8� 8 matrix and

b =
X

i

wieiJigi. (3.10)

d is solved best by applying Cholesky decomposition for positive semidefinite matrices to

A (p. 147 [Golub & Van Loan 96]).

The previous derivation was for a single color channel. In order to calculate a weighted

least-squares solution where each color channel has weight wj, we have

A =
X

i

wiJi

�
�X

j

wjgi,jgT
i,j

	
A JT

i (3.11)

and

b =
X

i

wiJi

X
j

wjei,jgi,j, (3.12)

where j is the color channel index.

Hierarchical search

The 2D image registration method described above can find only a local minimum for M

minimizing the image registration error (Eq. 3.6). The optimal registration transformation

is unlikely to be found if the transformation moves pixels of the image more than the extent
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of the gradient operator (the gradients are estimated from the input images by convolving

the image with, e.g., Sobel operator [Klette & Zamperoni 96]). We can make the imple-

mentation more robust by solving the problem in a hierarchical fashion, which makes this

typically very nonconvex problem more convex.

We begin the hierarchical image registration by building image pyramids for the input

images. At the top of this inverted pyramid is the original image, and below it are succes-

sively coarser versions. In our implementation the image pyramid is five levels deep and a

pixel in a coarse image corresponds to four pixels in the image directly above it. We first reg-

ister a low resolution version of the image, increase the resolution, and continue the process

until the finest level of resolution is reached. Note that when moving to a finer resolution,

a pixel with coordinates (x, y) gets new coordinates (2x, 2y), and the transformation M has

to be modified by multiplying m2 and m5 by 2 and dividing m6 and m7 by 2. That way we

obtain from Eq. 3.3 �
������

2x�

2y�

w�

�
������ =
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Dense textured meshes

The images that we register are obtained by rendering two approximately registered dense

textured meshes from the same viewpoint. We get those meshes from the original data using

the following procedure. First, we label the images as background and foreground pixels

based on known background color. Treating each pixel with valid foreground data point

as a vertex, we perform a Delaunay triangulation [Guibas & Stolfi 85]. Triangles contain-

ing background pixels are removed, along with triangles that span step edges, i.e., connect

an occluding surface with the occluded one. To detect step edges, we use a heuristic that

takes into account both triangle edge length and triangle orientation. Finally, we organize

the mesh into triangle strips for efficient rendering, and texture map it with an associated

color image.
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1 2

Seen from
both cameras

Only camera
1 sees

Figure 3-10 Part of the object only visible from camera 1 hides some of the surface visible
from both cameras when viewed from a third direction.

Projection directions

We want to render the textured meshes from a viewpoint where as much of the overlap, i.e.,

surface that is scanned in both views, is visible. By definition, all of the overlap is visible to

both scanners, which gives us the scanner positions of both of the views as good candidates

for the rendering viewpoint. No other viewpoint can be any better in the sense that more of

the overlap would be visible. However, many other viewpoints, such as the point between

the two scanner viewpoints (see Fig. 3-10), are typically worse, as parts of the overlapping

surface may be occluded by some other part of the surface.

We render the views twice, once from each scanner position. As illustrated in Fig. 3-9,

the two sets of images are registered separately, producing two sets of point pairs. This way

both views are treated symmetrically, and neither view prevails over the other.

Projecting to original images

With our choice of the rendering viewpoints, we don’t need to render both of the meshes.

Instead, we can project one of the textured meshes (I0) directly to the color image of the
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other view (I1). This leads to a speedier and more robust implementation. The most im-

portant improvement is more accurate image gradients. Recall that the image gradient gT
i is

calculated on the image I1. If we calculate the gradients directly from an image of a mesh,

the gradients close to mesh boundaries become suspect as part of the gradient convolution

kernel includes background pixels. When we calculate the gradients directly from a com-

plete color image, every pixel has a meaningful color value, even if the scanner failed to

return valid range data, leading to correct gradient values.

Choosing the pixel weights

As shown in Fig. 3-9, the rendered meshes represent only parts of the visible object surface.

We only want to align the parts of the images that display portions of the surface that are

represented in both meshes. Using the notation of Section 3.3.1, let I1 be the image of the

mesh that was scanned from the current viewpoint, and I0 be the image of the other mesh

rendered from the same viewpoint. Ideally, I0 is a subset of I1. We align only that subset

with image I1 by setting the weights wi to zero at pixels in image I0 that do not contain

data. In order to make the weight function smooth, the pixels well inside the valid data in I0

have weight one, while the pixels closer to boundaries have a smaller weight that linearly

diminishes towards the boundary.

Choice of color space

It is not obvious which color space one should use for registering the color images. Szeliski

and Shum [1997] used the RGB space and didn’t discuss any alternatives. In our scanning

system the lighting is fixed while the object is reoriented between the scans, which means

that different scans see the same object in different lighting conditions. Typically the colors

remain approximately the same, while the intensity varies, especially when different parts of

the object are shadowed. It would therefore seem to be desirable to work in a color space that

separates these components, in order to downweight the relative importance of the intensity
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component.

We experimented with two alternatives to RGB. Our first choice was HSV (Hue Satu-

ration Value) [Foley et al. 90]. The first component, hue, maps colors with one of the RGB

components to a circle. The second component, saturation, tells how pure the color is, or

how much apart it is from white, while the third component, value, codes the intensity of

the color, or the distance of the color from black. The color space was designed for intu-

itive determination of the color, but it didn’t prove to be suitable for color image registration.

The main problem was that at low levels of intensity, slight changes in RGB values cause a

large change in both hue and saturation. Also, if the object has any shades of gray, the hue

component becomes indeterminate. We attempted to address that problem by scaling the

saturation by value (intensity), but we clearly cannot do the same with hue as that changes

the color. Experiments with HSV produced much poorer registration results than with RGB.

Our second attempt was rgI, which relates to RGB through the following simple equa-

tions: r = R�(R + G + B), g = G�(R + G + B), I = (R + G + B)�3. The r and g components

contain the color information, while I is directly the intensity. This color model, although

better, exhibited similar problems to HSV: the r and g components become unstable as I

becomes small. This instability can be alleviated by scaling the color components towards

gray with low intensity levels. Nevertheless, the RGB model fared better in practice.

Pairing the points

The 2D image registration provides us with a transformation matrix M that warps image I1

to I0; alternatively, we can think of image I0 being warped to I1 by the inverse transformation

M�1. Also, we can determine the 3D coordinates for a mesh point projecting to a given pixel

from the z-buffer and rendering parameters. Given the z-buffers of two meshes rendered

from the same viewpoint, and the transformation M�1, we create 3D point pairs as follows.

Consider pixel x in the image I0. That pixel is associated with pixel M�1x in I1. If according

to the z-buffer informationboth I0(x) and I1(M�1x) contain valid data (not background), pair

the 3D mesh points projecting to those pixels. As explained before, to ensure symmetry
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in registration we repeat the process of rendering data over a color image, registering the

images, and pairing surface points from the viewpoint of the second camera.

3.3.2 Minimization

After 2D image registration most of the point pairs correspond to almost the same surface

point, but we can’t expect that to be the case with all pairs. With some pairs, the distance

between the paired points can be large. An example of such a situation is close to a step edge,

where a point from the occluding surface may project to the same pixel as a point from the

occluded surface. If we proceed to minimize the sum of squared pairwise distances, the bad

pairings can have an arbitrarily large influence on the result.

We could try to deal with bad point pairs as is typically done in many ICP implemen-

tations and use various compatibility thresholds to filter out the bad pairs. However, it is

far from obvious how to choose the thresholds. Instead of thresholding,we combine Horn’s

least squares point set alignment method with a robust statistical method similar to the LMS

(least median of squares) described earlier. LTS (least trimmed squares) [Rousseeuw & van

Zomeren 90] has the same breakdown point as LMS, and can correctly fit a function when

up to 50% of the data is contaminated by outliers, but it has a better convergence rate and

a smoother objective function than LMS. In LTS we try to find a 3D rigid transformation

such that the sum
hX

i=1

(r2)i:n (3.14)

is minimized, where (r2)1:n � � � � � (r2)n:n are the ordered squared distances of points pro-

jecting to the same pixel after the transformation, n is the number of pixels, h = bn�2c +

dp�2e, and p is the number of data points required to determine a solution (in this case 3).

LTS is implemented as LMS by using stochastic sampling. We randomly select NS point

pairs and using Horn’s method find the 3D rigid transformation that best aligns the chosen

points. The transformation is evaluated by applying the transformation to the views, pro-

jecting the data to the same image plane, pairing points projecting to the same pixel, and
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evaluating the sum of Eq. 3.14. This process is repeated NI times, and the transformation

producing the smallest truncated sum is chosen as the answer. The probability that at least

one sampling consists only of inliers is

1� (1� (1� �)NS)NI , (3.15)

where � is the rate of outliers. We evaluate each trial as follows. Again, let I1 be the image of

the mesh that was scanned from the current viewpoint and I0 be the image of the other mesh

rendered from the same viewpoint; ideally, I0 is the subset of I1. We first rerender I0 using

the registration transformation of the current trial. Then, we evaluate the pairwise distances

over all the pixels in I0 that contain data by pairing points from the two meshes that project

to the same pixel. If there is no data for that pixel in I1, we set the distance to infinity. We

finally calculate the sum in Eq. 3.14, and if the sum turns out to be the smallest so far, we

store the transformation of the current trial. After NI trials the one with the smallest sum is

applied to the data.

Having obtained an estimate for the registration using LTS, we try to improve the result

by finding a least-squares solution using all good point pairs. We pair the points that project

to the same pixel, and keep only the pairs that are within 2.5 times the standard deviation

of the current fit. Rousseeuw and Leroy [1987] give a formula for estimating the standard

deviation from the median of squared residuals:

s0 = 1. 4826

�
1 +

5
n� p

�q
medir2

i . (3.16)

The factor 1.4826 is used to make s0 a consistent estimate of the standard deviation when

the ri are normally distributed. The second term, which approaches 1 when the sample size

n grows, is a correction term for small samples.

If, for example, 80% of the data are inliers, it is far better to sum the 80% smallest

squared residuals when calculating the quality of an LTS trial, rather than only 50% as the

basic method advises. At the same time we estimate the standard deviation, we also cal-

culate which percentage of the pairs are inliers, that is, how many of them are within the

threshold of 2. 5s0. We use this estimate in the next round of LTS trial evaluations.
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Using a robust method such as LMS or LTS to register two range maps is based on the

premise that many of the points for which a counterpart in the other view exists are paired

with the correct or almost correct counterpart. In our case, after 2D registration of the im-

ages this assumption holds, and we often obtain good registration in a single step. In Masuda

and Yokoya’s [1995] system the points are paired using the closest point heuristic, so in early

iterations almost no point is paired with its true counterpart. Thus finding a good registra-

tion becomes extremely unlikely, and one can only hope to improve the current registration

by a small amount. Whereas our method typically converges in a few (3-5) iterations of

pairing and minimization, their method often requires on the order of 50 iterations.

3.3.3 Summary of the algorithm

Figure 3-11 gives pseudocode for the complete registration algorithm. The algorithm loops

between finding point pairs and minimizing the distance between the data sets as long as

the result seems to improve. The points are paired by rendering the textured mesh of one of

the views over the color image of the other view, registering the 2D images, and pairing the

points that project to the same pixels. The process is repeated by interchanging the roles of

the views. The minimization part consists of two parts. First, a robust estimate of the 3D

registration is found using the least trimmed squares method (LTS). The LTS part is repeated

N i times and the best result of all tries is stored. In each try, N s of the pairs are randomly

selected, a least squares (LSQ) solution is found using the pairs and Horn’s algorithm, and

the solution is evaluated by rerendering the meshes, pairing points, and summing up the P

percentage of the smallest distances. We used N i and N s 20 and 8, respectively, yielding

.975 probability that at least one try contains only inliers, with the assumption that 80% of

the paired points are inliers. P is initially 50%, but the estimate is updated in the final part of

the minimization algorithm. After the best LTS transformation T lts is found, it is applied

to the data, and the result is refined by doing a least squares minimization on the inliers.

For this purpose a new set of point pairs is found, again by pairing points projecting to the

same pixels. The median residual is found, the standard deviation is estimated using the
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WHILE (LTS error reduces OR P grows)

    PAIR POINTS
        FOR viewpoints 1 and 2
            render textured mesh of the other view
            2D registration of color images
            pair points at same pixel

    MINIMIZE
        LTS
            repeat N_i times
                choose N_s pairs
                LSQ estimate of T_lts
                evaluate
                    render geometry
                    pair points at same pixel
                    sum h = P*n smallest squared distances
                save T_lts if best so far
        LSQ
            apply T_lts
            render geometry
            pair points at same pixel
                estimate st.dev. (Eq. 3.16)
                accept if closer than 2.5 st.dev.
                calculate new P = #inliers/n
            LSQ estimate of T_lsq
            apply T_lsq

Figure 3-11 Registration algorithm pseudocode.

Eq. 3.16, and the pairs within 2.5 standard deviations are treated as inliers. At the same time

the percentage of the inliers is estimated, and P is updated. Finally, an LSQ transformation

estimate T lsq is found using the inlier point pairs and applied to the data.

3.3.4 Experiments

We have tested our registration method with a large number of range scans3, and all the

data used in the later chapters of this dissertation were registered using this method. In this

section we present the results of registering two range scans using both our new method and

3 14 scans in a husky dog data set, 17 scans in a flower data set, 8 scans in a chair data set, and some additional
experiments with both real and synthetic data.
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Figure 3-12 The initial registration configuration. On the left, the textured mesh of one
scan is superimposed on the camera image of the other scan. The raw point data is dis-
played on the right.

using the modified ICP method that we used previously.

It is difficult to perform quantitative comparisons of two registration methods if the ground

truth, the true registration transformation, is not known. Reporting the objective function

values is not necessary meaningful since those values only indirectly reflect the quality of

the registration. For example, with two views of a planar surface, the ICP metric of finding

for each point the closest point in the other set or on the other surface could evaluate to zero

even when the data sets are far from perfect registration. We first report some qualitative

results on our experiments with real data sets, and finally some quantitative results from

experiments with synthetic data sets where the ground truth is known.
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Qualitative comparisons with real data

Figure 3-12 shows the starting configuration. The images on the left show a textured mesh

of one scan superimposed on the camera image of the other scan, while the raw point data

is displayed on the right.

Figure 3-13 illustrates the new registration method. Images (a), (b), (c), (g) form a se-

quence as seen from one camera, (d), (e), (f), (h) as seen from the other camera. The first

image pair ((a) and (d)) shows the result when the images in Fig. 3-12 have been registered

using the 2D color image registration. The second image pair ((b) and (e)) shows the re-

sult of 3D registration using the point pairs found by matching surface point projecting to

the same pixel in Figs. 3-13(a) and (d). The second iteration of the 3D registration method

begins with the 2D registration of the color images ((c) and (f)). On the third iteration the

results do not seem to improve, and the final results are displayed in Figs. 3-13(g) and (h).

We also tried registering the same data sets from the same starting configuration using

a modified ICP. The points are paired with the closest matching point in the other data set,

where the matching criterion is that the points’ normal vectors differ at most 45 degrees.

Figs. 3-14 (a) & (b) show the final result when only pairs that are shorter than 25mm (the

diameter of the flower basket is about 300mm) are used. A quite obvious misalignment re-

mains when the method converges after 60 iterations (one iteration registers first one set to

another and vice versa). Figs. 3-14 (c) & (d) show the final result when we use a schedule of

diminishing thresholds. We begin by accepting pairs shorter than 30mm. After a few itera-

tions the threshold is lowered first to 25mm, then to 10mm, to 5mm, and finally to 2.5mm.

The results are now much better than in Figs. 3-14 (a) & (b), but the data sets are still in

worse alignment than Figs. 3-13 (g) and (h). We finally tried to start from the same initial

configuration and only accept pairs shorter than 2.5mm, but then the algorithm got stuck in

a local minimum close to the starting configuration.
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(a)                                                    (b)                                                   (c)

(d)                                                    (e)                                                   (f)

(g)                                                                              (h)

Figure 3-13 Registration results of the new method. Images (a), (b), (c), (g) form a se-
quence as seen from one camera, (d), (e), (f), (h) as seen from the other camera. (a) & (d)
The result of 2D image registration from Fig. 3-12. (b) & (e) The result after a 3D regis-
tration is found using the point pairs found through 2D registration. (c) & (f) The result of
2D registration on images (b) and (e). (g) & (h) The final result after 3 iterations.
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Quantitative comparisons with synthetic data

It is not obvious how to evaluate the resulting registration transformation. Many researchers

simply evaluate the ICP function, that is, they pair each point with the closest point on the

other surface, remove some of the pairs as outliers, and calculate a root mean square error.

If the result is within the accuracy of the scanner, it is concluded that the correct registration

was found. This is unwarranted for two reasons. First, the error is easy to bring down by

discarding the longer pairs as outliers. Second, with many objects one can slide one data

set along the other one with little penalty as most surface locations remain close to the other

surface.

If one knows the correct registration the evaluation becomes easier. Now it is possible

to directly compare the registration transformations. There is a problem, however. While it

is possible to compare the rotations, the error in the translation component depends on both

the rotation error and the choice of the origin of the coordinate system. Depending on that

choice, the translation error can vary arbitrarily.

Our choice is to calculate the average deviation of the data points from their true posi-

tions after registration. For each point, we calculate the 3D coordinates after the true regis-

tration transformation and the recovered registration transformation, and calculate the av-

erage distance between the two positions.4 This way of expressing registration quality is

intuitive, especially if the data and error are scaled so that the scanned geometry just fits to

a unit box.

Figure 3-15 shows the results on three synthetic data sets. For that purpose we created

a viewer that can view and store color and range scans of any OpenInventor models, along

with a registration transformation that aligns the data with those of the other scans. The

results of our new projection-based registration method are compared to an ICP method.

As before, in the ICP method points are paired with the closest point in the other set with a

matching normal vector. Pairs with length exceeding an interactively determined threshold

4 With nonuniform range sample distributions one could weight the individual errors with the approximate
surface area that the sample represents and divide the sum by the total area.
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(a)                                                                                  (b)

(c)                                                                                  (d)

Figure 3-14 Registration results of ICP. (a) & (b) The result of ICP when accepting all
point pairs shorter than 25mm. (c) & (d) The result of ICP that first accepts all the point
pairs shorter than 30mm, then only shorter than 25mm, then 10mm, 5mm, and finally
2.5mm.

are removed. The threshold begins large, but is reduced as the registration progresses.

The horizontal axis in the diagrams of Fig. 3-15 denotes the number of iterations, while
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Figure 3-15 Experiments with synthetic data sets. The images on the right show the start-
ing positions.

the vertical axis denotes the registration accuracy.5 The accuracy is expressed as percent-

ages of an approximation of the diameter of the data sets. Overall, the result show that the

5 For ICP, one iteration actually includes two iterations: first set A is registered with respect to set B, and
then vice versa.
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(a)                                                     (b)                                                      (c)

Figure 3-16 (a) A scanned object. (b) Initial registration of the views. (c) Errors in pair-
wise registrations accumulate.

new projective registration method converges much faster and gives comparable or more

accurate registration. Especially noteworthy is the second experiment in Fig. 3-15. In this

case, only a subset of the range data, most of the fuselage but no wings, was used, while

the color images of the whole plane were used in 2D registration. The fuselage is roughly

cigar-shaped, but not so symmetrical that geometry-based registration would be impossi-

ble. However, ICP failed to find the correct answer, while the color variations helped the

projective method to reach the correct solution.

3.4 Multi-view registration

Extending pairwise registration to simultaneously registering several views is not straight-

forward. We first describe a simple approach for generalizing pairwise registration, fol-

lowed by some proposed improvements. We then describe our approach to multi-view reg-

istration.

3.4.1 Generalize pairwise registration

A simple method for registering several views is to register views sequentially: the unreg-

istered views are registered, one at a time, to a view that has already been registered. The

problem with this approach is illustrated in Fig. 3-16. When the views are registered pair-

wise in the scanning order, small registration errors begin to accumulate. The accumulated

registration error is manifested as a large gap between two views that should overlap in

Fig. 3-16(c).
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Turk and Levoy’s [1994] solution to the compounding registration error relies on their

scanner’s ability to take cylindrical scans. A single cylindrical scan of the object is taken

and is used as an anchor; all the other scans are then registered with the cylindrical scan.

This solution limits the possible viewing directions of the linear scans by requiring there to

be a significant overlap with the anchor scan. Further, it can only be used if the scanner can

obtain a cylindrical scan. However, there is a way to develop this idea, so that these two

limitations are overcome. One can register the views one at a time, merging the registered

view into a single “metaview” [Chen & Medioni 92]. All the new views are then registered

with the metaview rather than just a single neighboring or anchor view. This approach was

also taken by Masuda et al. [1996] , as well as by Levoy’s research group [Curless 97].

Gagnon et al. [1994] point out that when more views are added, it is possible that they

bring information that could improve the registration of the previously registered views.

Gagnon et al. propose to solve this problem as follows. A set of points in view i is projected

to all the views j 	= i, and a transformation that registers view i using all the paired points is

calculated. This process is iterated repeatedly over all the views until the registration slowly

converges. Jin et al. [1995] tried to solve the same problem by incrementally building a

surface model, against which new views can be registered and already registered views can

be reregistered. The method proved quite slow as a new surface estimate was created after

every registration step.

Eggert et al. [1996a] attempt to overcome the thresholding difficulties of pairwise corre-

spondences (maximum allowed difference in position, normals, color, etc.) that most pre-

vious methods, including that of Gagnon et al., have to deal with. The distance metric is

modified to take into account normals and view directions, as described in Section 3.2.2,

but no threshold is used. The original point is projected to the tangent plane of the point

in the other views that is closest to it. They justify always pairing a point with exactly one

other point with their basic assumption that all of the object has been observed at least twice,

meaning a proper corresponding location does exist, it just needs to be found. On the other

hand, most other views cannot see the corresponding surface location. However, we have
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observed that finding a mate for a point in only one other view can prevent the algorithm

from converging to a correct solution. Sometimes the views form cliques such that all the

views belonging to a clique are in a good registration, but the cliques themselves are not well

registered to each other. As a result, the closest point is usually found in another view of the

same clique, and no further progress is made, even though the global registration may be far

from perfect. We adopted Gagnon et al.’s approach of pairing each point with the closest

points in several other views in our earlier method in order to avoid clique formation. If a

point is paired with many points, some of them in other cliques, the process is more likely

to converge into a good registration.

3.4.2 New method for multi-view registration

All the previous approaches to multi-view registration described above use the basic ICP

idea of iterating the process of pairing points and moving the views closer. The difficulty

with such an approach is pairing points with corresponding points in the other views. First,

it is a lot of work. Assuming we use the simple heuristic of pairing a point with the closest

point in each other view, we have m views, each with n points, and we find pairs for only k

points in each view: O(m2k log n) work is required each round just to find the pairs. Second,

it is hard to get the pairs right. Even with compatibility heuristics, most pairs do not corre-

spond to the same points on the object surface, and a large number of iterations is required

before the registration converges. Additionally, due to unreliable pairs, the registration of-

ten converges to a local, instead of the global, minimum.

The main idea of our new multi-view registration method is to separate the projection

and minimization steps. First, we attempt to find a set of reliable point pairs between each

view and several neighboring views. The set of pairs is then kept unchanged, and a global

registration is found that simultaneously aligns all the pairs.

We begin by finding an initial registration via interactive sequential pairwise registration

as described in Section 3.2.1. The user is given visual feedback of the initial registration by

showing the subsampled registered range data, surrounded by thumbnails of the color im-



52

Figure 3-17 Multiview registration. Initially, views are registered pairwise and a collec-
tion of reliable point pairs is stored. Using fixed point pairs a global registration is found.

ages at the viewpoint of each sensor, as shown in Fig. 3-17. Each view is then registered

pairwise with a few neighboring views. It is of no particular importance which pairwise reg-

istration method is used, as long as the results are accurate; we use the method described

in Section 3.3. As shown in Fig. 3-17, a yellow line segment is added between each reg-

istered pair of views, and a collection of point pairs between those views is stored. Once

the views are in good registration, reliable point pairs are found simply by using the same

pairing method as was used in pairwise registration, and accepting only pairs that are very

close to each other. The pairing is done symmetrically from each view to the other.

With the pairwise registrations forming a graph such that every view is connected to ev-

ery other view through several paths, the global registration is found using the stored point
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pairs. There are several possible ways to solve this problem. Shum et al. [1995] proposed to

solve it using principal component analysis with missing data. Stoddart and Hilton [1996]

and Eggert et al. [1996b] both developed a method that attaches imaginary springs to the

paired points and simulates a simplified version of the resulting dynamic system. We exper-

imented with two different approaches to minimize the sum of squared distances of paired

points.

We first tried the conjugate gradients method. The solution of registering n views con-

sists of a 6n state vector that encodes three rotation and three translation parameters for each

view.6 We implemented routines that evaluate both the registration function and its gradient

at a given point of the state vector, and solved the global registration using the implementa-

tion given in [Press et al. 92]. The method worked well, giving accurate results in a matter

of minutes. Our previous approach, similar to the one in [Gagnon et al. 94], took hours, be-

cause of the costly projection step has to be repeated at every iteration, and typically dozens

if not hundreds of iterations are required, depending on the object and the accuracy of the

initial registration.

We then tried another approach that is simple to implement, is much faster, and produces

results of equal accuracy. The idea is to use successive relaxation using Horn’s [1987] al-

gorithm for pairwise registration of paired points. The algorithm is initialized as follows.

The initial set of views consists of one of the views. The other views have valid point pairs

only if any of the views it was registered with is already in that set. Each of the remaining

views is added to the set one at a time, but only if it has valid pairs. Its pose (orientation and

location) is determined by applying Horn’s algorithm to the valid pairs. Once all the views

have been added, the relaxation process begins. The pose of a view is simultaneously reg-

istered with all the views with which it has point pairs. This process is repeatedly iterated

over all the views until the views stop moving.

Where the conjugate gradients method takes minutes to complete, results of similar or

6 Strictly speaking there are only 6(n� 1) independent variables because the views can be registered with
respect to any one particular view, but there is little difference if we solve for 6n variables.
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better accuracy can be obtained by the relaxation method typically in a few seconds. The

proof for convergence is simple: at each step, the total sum of squared distances is reduced,

and as that sum is bound below (the sum is always nonnegative), the algorithm must con-

verge.

All the data sets used in the rest of this dissertation were registered using this method.

3.5 Discussion

3.5.1 Automatic initial registration

Most registration algorithms require a rough initial registration as a starting point. In our

opinion the best practical solution is to either obtain the initial estimate directly from the

scanning system, or if the system is not automated, from the operator.

There have been suggestions for other means of obtaining an initial registration. One

could use techniques from feature-based vision. Faugeras and Hebert [1986] located geo-

metric features such as corners, creases and edges, and planes from the data, and tried to

match them with similar features extracted from another data set. Typically three matched

features are needed to constrain a rigid 3D transformation. The matches are mutually con-

sistent with respect to the rigidity constraint if features in one set can be aligned with their

matched counterparts in the other set using a rigid 3D transformation. The more mutu-

ally consistent matches can be found, the greater is the confidence of the correctness of the

matches, and the greater the accuracy of the initial registration. However, not all objects

even have detectable corners or edges. Besl [1990] described numerous features for regis-

tering free-form surfaces, such as elliptic, hyperbolic, and parabolic surface patches, con-

tours of constant curvature, umbilic points, and curvature discontinuities. These, however,

are often difficult to locate reliably, especially when the data contains some noise. Other

work along these lines include [Stein & Medioni 90, Chua & Jarvis 96].

Johnson and Hebert [1997] proposed an interesting approach for automatically creating

geometric surface feature templates directly from the data. A template called the spin image
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is calculated for a surface point as follows. A local 2D

coordinate system is created centered at the point, and

the two coordinates of another 3D point in this frame are

its distance from the surface normal vector and the tan-

gent plane at the original point. The 2D spin coordinate

system is discretized, and all nearby points increment

the value of the bin corresponding to their spin coordi-

nates. Figure 3-18 shows three spin images for different

parts of the same object. Different spin images can then

be compared using image correlation, and a search simi-
Figure 3-18: A spin image.

lar to the one described in [Faugeras & Hebert 86] is used to find a set of mutually consistent

matches.

3.5.2 Other approaches to registration

Bergevin et al. [1995] implemented a heuristic search in the 6-parameter space of 3D reg-

istration (3D rotation + 3D translation). An initial rough transformation was placed at the

root of the search tree. A node is expanded by perturbing each of the 6 parameters to either

direction, the amount of perturbation depending on the depth of the node in the tree. The

expanded nodes are evaluated, and n best of them are kept in the search list. The authors

noted problems in the parametrization (the parameters are not independent) and in the con-

trol of the search, and actually ended up using the Chen and Medioni’s method with a slight

modification.

Higuchi et al. [1994] use a representation that decouples rotation and translation and

note that solving the translation is easy once the relative rotation has been solved. First, a

mesh that is the dual of a regular triangulation of a sphere is fitted to the data. While fitting,

the mesh is kept locally regular by forcing the three edges joining in a vertex to have ap-

proximately the same length. At each vertex, a discrete estimation of the Gaussian curvature
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(called the simplex angle) of the underlying surface is calculated. When the curvature distri-

bution is mapped on a sphere it results in a translation and scale invariant description of the

surface shape called the Simplex Angle Image (SAI). Before registering partial views of the

same surface, the number of nodes corresponding to the visible surface needs to be adjusted

since the relative sizes of the visible and hidden areas vary depending on the viewing direc-

tion. The rotation can be solved by searching for the rotation of a sphere that minimizes the

sum of squared differences of the spherical angles, using either a coarse-to-fine search strat-

egy [Higuchi et al. 94], or a full search at the resolution of the SAI mesh [Hebert et al. 95].

The greatest drawback of the method is that it can be applied only to objects topologically

equivalent to a sphere.

Champleboux et al. [1992] developed a registration method that directly minimizes the

distance between two surfaces. Their method is iterative, but unlike ICP-type algorithms,

it does not pair points from one surface with points in the other. The idea is to build a func-

tion that can be quickly evaluated at any 3D location and which returns the distance from

that point to the surface. The function representation allows speedy numerical estimation

of its gradients, and a surface is moved closer to the other using a gradient descent type of

optimization. The distance function was encoded in an octree-spline. The space is divided

into an octree where the nodes get progressively smaller the closer they are to the surface.

The distances from the corners of the octree nodes to the surface are calculated and stored

in advance, and the distance from any point inside a node is interpolated from the values

stored in corners. The Levenberg-Marquardt algorithm was used for finding the registration

transformation. Szeliski and Lavallée [1994] later extended the method to register non-rigid

objects. The idea is to find a combination of a rigid transformation and a space deforma-

tion that aligns the two scans. The method first performs a rigid registration, following a

sequence of increasingly general space warpings.

Blais and Levine [1993, 1995] seem to be the first ones to evaluate the quality of regis-

tration by projecting one range map to the image plane of the other. This technique was later

used by Masuda and Yokoya [1995], Weik [1997] and us. Like Masuda and Yokoya, but un-
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like Weik’s and our work, the projection is used only for evaluation, not for registration. The

optimization is done using very fast simulated reannealing (VSFR), a stochastic global opti-

mization method. The advantage of such an approach is that the registration is less likely to

get stuck in a local minimum, the disadvantage is that the method requires a large number of

evaluations of the registration function. Each function evaluation takes O(n) time, which is

significantly less than the O(n ln n) time required in traditional ICP. However, if the method

requires O(ln n) iterations, the net effort is greater than that of ICP, and certainly greater than

that required by combining the fast evaluation with iterative pairing-minimization methods.

Laurendeau et al. [1996] performed a comparative study of five general purpose opti-

mization algorithms for range image registration. The algorithms that were considered were

a simple evolutionary algorithm, a genetic algorithm, a dynamic hill climbing algorithm,

and two flavors of simulated annealing. The conclusion was that although the dynamic

hill climbing and simulated annealing methods were better than the other two methods,

none of them performed as well as most other published registration methods. Regarding

these search-based methods [Blais & Levine 95, Bergevin et al. 95, Laurendeau et al. 96]

we share Chen’s [1994] opinion: we feel that searching through the huge parameter space,

even with some heuristics, is neither computationally tractable nor necessary.

3.5.3 Contributions

The contributions of this chapter are:

� A new robust method for pairwise registration of views that exploits color informa-

tion. The method finds a consistent set of point pairs between two range maps by

projecting the colored range data to an image plane, aligning the images using a pla-

nar projective transformation, and pairing points projecting to the same pixel. The 3D

registration transformation is found by a robust LTS version of a well known least-

squares point set alignment method.
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� A new robust and fast approach for multi-view registration that separates a difficult

problem into two manageable parts. The first part registers the views pairwise using

any 3D registration method and then finds reliable point pairs. The point pairs define

constraints for a global registration that is found in a separate optimization step.



Chapter 4

Surface reconstruction

4.1 Introduction

There are two important steps in surface reconstruction from range data. The data must be

integrated into a single representation, and surfaces must be inferred either from that rep-

resentation or directly from the original data. There does not seem to be a clear concensus

in which order these two steps should be taken.

Several researchers have decided to first approximate each data set as a polygonal mesh

[Rutishauser et al. 94, Turk & Levoy 94, Pito 96]; the individual meshes are then connected

to form a single mesh covering the whole object. Soucy and Laurendeau [1995] first divide

the range data into subsets based on which surface regions are visible within each view. In

each subset, the redundancy of the views is used to improve the surface approximation. Fi-

nally, the triangulated non-overlapping subsets are connected into a single mesh.

Other authors [Hoppe et al. 92, Curless & Levoy 96, Hilton et al. 96] chose first to in-

tegrate the data into a signed distance function and then extract a polygonal mesh using the

marching cubes algorithm [Lorensen & Cline 87]. Hoppe et al.’s method was designed to

work with arbitrary point clouds. They first estimate local tangent planes to each data point,

and then propagate the tangent plane orientations over the whole data set using the minimum

spanning tree of the points1. The distance of a 3D point is evaluated as the distance to the

closest tangent plane, where the distance is positive if the point is above the plane, nega-

tive otherwise. Ideally the zero set of the distance function would follow the object surface.

1 The distance metric used for calculating the minimum spanning tree combines Euclidean distance and an
estimate of the surface curvature, so the tree tends to connect flat regions rather than connect across creases.
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Figure 4-1 Eight intensity images corresponding to the views of the miniature chair.

However, the local tangent plane estimation phase is likely to smooth the zero set. Hoppe

et al. later improved the results by fitting the result of the marching cubes approximation

better to the original data [Hoppe et al. 93].

Curless and Levoy improved the distance function estimation for the case that the in-

put is structured in the form of a set of range maps [Curless & Levoy 96]. They define a

volumetric function based on a weighted average of signed distances to each range image.

Their scheme evaluates this volumetric function at discrete points on a uniform 3D grid,

and uses these discrete samples to determine a surface that approximates the zero set of the

volumetric function. Like Hoppe et al., their scheme may fail to detect features smaller

than the grid spacing and has difficulties with thin features. Also, it requires a significant

amount of storage space, although this can be alleviated through run-length encoding tech-

niques. However, their use of space carving (throwing away regions known to lie outside

the object) makes the approach much more robust. Since their approach is less susceptible

to smoothing, they evaluate the signed distance function at very fine resolution, and use the

output of the marching cubes algorithm as their final result.

We originally used the method of [Hoppe et al. 92] to obtain an initial mesh, which we

then simplified and improved the fit to the original data using the methods of [Hoppe et al.

93]. The initial mesh algorithm does not require any knowledge (such as viewing directions)
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(a)                                                  (b)                                               (c)

Figure 4-2 An example where the old method for obtaining initial surface with correct
topology fails. (a) The registered point set. (b) The result from using the method by Hoppe
et al. [1992]. (c) The result from our method.

aside from the data points themselves. It works quite nicely if the data does not contain

outliers and uniformly samples the underlying surface. Unfortunately real data often violate

both of those requirements. Figure 4-1 shows eight views of a miniature chair (courtesy

of Prof. Patrick Flynn of WSU), and Fig. 4-2(a) shows the range maps after registration.

Although most of the outliers and background data points were interactively removed from

the data sets prior to initial mesh estimation, many outliers remain, especially around the

spokes of the back support, some data was missing, and the data wasn’t uniform enough for

the algorithm to produce a topologically correct result. Figure 4-2(b) shows the incorrect

result.

We decided to abandon Hoppe et al.’s initial mesh method and create a more robust

method that produced the result shown in Fig. 4-2(c). Like Curless and Levoy, we use the

idea of space carving. However, we use a hierarchical approach that saves storage space

and execution time, and we do not attempt to directly obtain the final result. Instead, we

concentrate on capturing the object topology as correctly as possible given the input data.

Additionally, we use only robust methods such as interval analysis [Snyder 92] that enable

us to recover thin objects that are typically difficult to model using the signed distance func-
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tion approach. We kept the mesh optimization method of [Hoppe et al. 93] since for our

purposes we typically want a mesh that is both accurate and concise. Typically one-pass

methods such as [Curless & Levoy 96] can only produce meshes that are either dense or

not very accurate. Hoppe et al.’s mesh optimization first improves the accurace, and can

also simplify the mesh drastically with little sacrifice in accuracy.

Section 4.2 describes our hierarchical space carving method for creating initial meshes,

while Section 4.3 briefly describes the mesh optimization algorithm of Hoppe et al.

4.2 Hierarchical space carving

This section describes our hierarchical space carving method for generating approximate

meshes and determining the object topology. First we introduce space carving and show

how space can be carved a cube at a time. Then we describe an improvement that concen-

trates computation close to the actual surface by using a hierarchical octree-based scheme.

We discuss how the mesh is extracted from the octree description, and then conclude the

section with a discussion of results and various properties of the method.

Our method has several assumptions. The data is assumed to be a collection of registered

range maps acquired from various viewpoints around the object. The data has to be obtained

using some line-of-sight method, so that every straight line between a data point and the sen-

sor lies entirely outside the object. Finally, the calibration parameters of the sensor must be

known in the sense that any 3D point can be projected to the sensor’s image plane, or equiv-

alently, the correspondences between 3D lines and pixels on the image plane are known. If

the calibration parameters are not known before hand, it is often possible to estimate them

directly from the known correspondences between 3D points and their 2D image coordi-

nates. For example, in the case of the dataset in Fig. 4-1 we did not have the calibration

parameters but estimated them using Tsai’s method of camera calibration [Tsai 87].
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(a)                                         (b)                                        (c)

Figure 4-3 The idea of space carving. (a) The working volume contains an object. (b) A
scan can prove some of the volume lies outside the object. (c) More scans remove more
space, but the object remains.

4.2.1 Space carving

The idea of space carving is illustrated in Fig. 4-3. In Fig. 4-3(a) there is a working volume,

and the object we are trying to reconstruct is only known to be somewhere inside of it. Fig-

ure 4-3(b) shows a scanner and its viewing cone. The left and bottom sides of the object

are visible to the scanner, and the volume between the scanned surface and the sensor can

be removed. If there is data from the background in addition to the object, even more of

the unknown volume can be removed. Figure 4-3(c) shows how another view carves more

space away.

In the end we are left with a connected volume that closely approximates the object. An

approximation of the object surface can be obtained by extracting the boundary between the

space that was carved away and the volume that remains. The resulting surface estimate

can have arbitrary topology, i.e., the object can have any number of holes, yet the surface

itself is without boundaries or holes, even if not all of the object surface was scanned. In

general, the resulting surface is the one with maximum volume such that the model is still

compatible with all of the scanned data. Figure 4-3(c) shows a situation where the whole

top side of the object remained unseen by the scanner. Nevertheless, the gap in the input is
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Figure 4-4 The three cases of the algorithm. (a) The cube is in front of the range data. (b)
The cube is entirely behind the surface with respect to the sensor. (c) The cube intersects
the range data.

filled by a plausible solution that is not far from the true surface.

4.2.2 Carve a cube at a time

Our algorithm discretizes space into a collection of cubes or voxels and processes them one

at a time. Figure 4-4 illustrates how the status of a single cube with respect to a single view

is determined:

� In case (a) the cube lies between the range data and the sensor. Therefore the cube

must lie outside of the object and can be discarded.

� In case (b) the whole cube is behind the range data. As far as the sensor is concerned,

the cube is assumed to lie inside of the object.

� In case (c) the cube is neither fully in front of the data or behind the data, in most

cases because it intersects the range map. The cube is assumed to intersect the object

surface.
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The cubes are labeled as follows. The eight corners of the

cube are projected to the sensor’s image plane, where their

convex hull forms a hexagon. The rays from the sensor to

the hexagon form a cone, which is truncated so that it just en-

closes the cube (see Fig. 4-5). If all the data points projecting

onto the hexagon are behind the truncated cone (i.e., are far-

ther than the farthest corner of the cube from the sensor), the

cube is outside the object. If all those points are closer than the

closest cube corner, the cube is inside the object. Otherwise,

Figure 4-5: An octree cube and

its truncated cone. The arrow

points to the sensor.

we have the boundary case. Areas for which range data is missing are treated as points that

are close to the sensor. If the data has been preprocessed so that parts of the range maps

were labeled as background, the background points are treated as being infinitely far away

from the sensor.

Figure 4-6 illustrates the situation in which the whole working volume has been tessel-

lated into cubes and the scene has been scanned from several viewpoints. The cubes are

processed independently from each other. Each cube is labeled with respect to all the views

using the following rules. Determining that a cube is outside of the object is conclusive

evidence; therefore it is enough for a single view to label a cube as outside to remove it.

We can only indirectly infer that a cube is inside of the object, and then only if every view

agrees. If one more view were available, that view might indicate that the cube is really

outside the object or on its boundary, but without that view we can only assume the cube is

inside. Again, if a cube is neither in nor out, it is labeled as part of the object boundary. The

implicit surface corresponding only to the observed data will then be the surface of mini-

mum volume. That is, it biases toward range points that are behind others. This is corrected

during mesh optimization.
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Multiview rules:
any view says out

=> cube is out
all views say in

=> cube is in
else

=> cube is at 
    boundary

Figure 4-6 Multiple cubes and sensors.

4.2.3 Hierarchical approach

A fixed partitioning of space suffers from a tradeoff between accuracy and efficiency. With

large cubes the object cannot be modeled accurately. Using small cubes gives better results,

but requires much more work. However, if we take a hierarchical approach using octrees,

large chunks of space can be quickly ruled out and our efforts can be concentrated close to

the surface.

Figure 4-7 illustrates the hierarchical space carving approach for the chair data set. Ini-

tially a large cube surrounds the data. Since by definition it intersects the data, it is immedi-

ately subdivided into eight smaller cubes, which the algorithm tries to label as being outside

of the object. In Fig. 4-7 none of these eight smaller cubes were carved away. At the next

level a number of cubes are discarded. The remaining volume shrinks closer and closer to

the actual surface, until finally, in this case after seven subdivisions, we are left with a rel-

atively accurate approximation to the chair, with the correct topological structure.

In this simultaneous processing order, the whole octree is traversed once, and the con-

sensus of all the views is used to determine the labeling for each cube. Another possibility

is sequential processing, where the algorithm hierarchically processes one view at a time,

building on the results of the previously processed views. Sequential processing can be used
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Figure 4-7 Hierarchical carving of cubes.

to integrate a new view into a previously processed octree. The algorithm recursively de-

scends the octree and performs the occlusion test for each cube that has not been determined

to lie outside of the object. If the new view indicates that a cube is outside, the cube is

relabeled and the subtrees below it are removed. Similarly, a boundary label overrides a

previous inside label, in which case the cube’s descendants have to be recursively tested,

potentially to the maximum subdivision level.

Although both processing orders produce the same result, the simultaneous processing

order is in general faster [Szeliski 93]. In sequential processing the silhouette of the object

often creates a visual cone (centered at the sensor) that separates volumes known to be out-

side from those speculated to be inside. The algorithm would then have to recurse to the
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finest subdivision level to accurately determine this boundary. In simultaneous processing,

however, another view could determine at a rather coarse level of subdivision that at least

part of that boundary is actually outside of the object, and the finer levels of the octree for

that subvolume need never be processed.

The sequential processing approach has a different kind of advantage. Since we only

need to be store the data from a single view at a time, this approach scales better when there

are a large number of views of the same object. If we have dozens or even more views,

we can use a hybrid between the sequential and simultaneous approaches. First, choose a

small subset of the views (8-12) from different sides of the object. The subset is processed

using the simultaneous approach, and most of the excess space is carved away. The first set

of views is discarded, a new subset is selected, and it is processed using the current model,

until all the views have been processed.

In both the sequential and simultaneous processing approaches, we may occasionally

determine that all the children of a cube lie in free space. Whenever this happens the eight

sibling cubes are removed and their parent is labeled as lying outside the object.

4.2.4 Mesh extraction

The labeling of the octree nodes divides the space into two sets: the cubes known to lie

outside of the object and the cubes that are assumed to be part of the object. Our surface

estimate will be the closed boundary between these sets. This definition allows us to create a

plausible surface even at locations where no data was obtained. The boundary is represented

as a collection of vertices and triangles that can easily be combined to form a mesh.

The octree generated by the algorithm has the following structure: outside cubes and

inside cubes do not have any children, while the boundary cubes have a sequence of de-

scendants down to the finest subdivision level. To generate a surface representation, we

traverse the octree starting from the root. At an outside cube we don’t need to do anything.

At a boundary cube that is not at the finest level, we recursively descend to the children. If

we reach the maximum subdivision level and the cube is either at the boundary or inside,
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we check the labelings of the cube’s six neighbors. If a neighboring cube is an outside cube,

two triangles are created for the face they share. In an inside cube that is not at the maximum

subdivision level, the algorithm checks whether it abuts an outside cube, and if so creates

enough triangles (of the same size as the ones created at the finest level) to cover the shared

part of the face.

Finally, we combine the triangles into a closed triangle mesh. For the most part, con-

necting the triangles into a mesh is straightforward; triangles that share an edge become

neighbors. However, if there are two boundary cubes sharing only an edge, there is a choice

in the mesh connectivity. Since the octree cubes con-

tain all of the object and possibly some more, the vol-

umes of two cubes can only connect across faces, and

not across edges or corners. Therefore such cubes

should be separated. Similar processing is needed

when two cubes share only a single vertex. Note that

for most mesh representations this requires replicat-

easy    wrong  correct

replicate a vertex

Figure 4-8: Only cubes that share a face

should be connected in the mesh.

ing the shared vertices.

4.2.5 Discussion

Our work is not the first to use octrees for hierarchical processing of the working volume.

Szeliski [1993] constructed octree bounding volumes of objects from silhouettes extracted

from intensity images. Each silhouette forms a cone centered at the corresponding cam-

era, and the resulting model is the intersection of these visual cones. In the limit (with in-

finite number of input images) the resulting model is called the line hull. The objects do

not have to be convex for this technique to work; some holes can be recovered. However,

only surface locations that are part of the silhouette from some viewpoint can be modeled

accurately, so indentations and locations where both the principle curvatures are negative

cannot be recovered. Connolly [1984] created octree models from range maps taken from

arbitrary viewpoints. Each range map is converted to a quadtree, and the quadtrees are trans-
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formed into the octree coordinate system, and then assimilated into an octree model of the

object. The algorithm projects four rays for each quadtree node through the octree, clear-

ing octree nodes along the way. Since the level of octree nodes is the same as the level

of the quadtree node, the hole that is carved is jaggy and larger than it should be. The

carving could be made more accurate by performing the carving at a finer level of reso-

lution, but then the processing becomes more costly, and it becomes more difficult to guar-

antee that all the cubes that should be removed are removed. Chien et al. [1988] tried

to address these problems by creating range quadtrees from six orthogonal viewing direc-

tions and intersecting them into a volumetric octree model. Although the quadtrees con-

form much better to the structure of the octree, there is a large class of objects that cannot

be modeled using this approach, including objects with at least two holes that are not per-

pendicular to each other. Our approach of projecting subvolumes onto range images is a

much more robust method; it eliminates the deficiencies of Connolly’s without introduc-

ing the restrictions of Chien et al.’s approach. Other work that use similar principle to ours

include [Li & Crebbin 94, Tarbox & Gottschlich 94].

In the rest of this section we discuss some execution statistics, the connection between

our approach and interval analysis, how our method deals with thin objects, and how the

method implicitly removes many outliers in the input data.

levels 2 3 4 5 6 7 8
nodes 73 217 649 2377 9393 41201 190441
faces 74 128 422 1372 5152 18446 71038
seconds 0.1 1.2 0.8 1.7 6.0 26.1 121.1

Table 4-1 Statistics for the chair data set. For example, at 5 levels of subdivisionthe octree
contained 2377 nodes, the boundary between the object and free space was 1372 faces
(twice as many triangles), and it took an additional 1.7 seconds to process from the level
4 octree.
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Execution statistics

Table 4-1 summarizes some execution statistics for the chair data set. It shows the number

of octree nodes, the number of square faces between the outside cubes and the others, and

execution times for subdivision levels 2 through 8. The timings were obtained using an SGI

O2 with a 175 MHz R10000 processor, and they show the incremental extra time it takes to

process a level given that all the data was already processed up to the previous level. From

these results we can make several observations. First, the execution times are fast enough

to allow interactive selection of a suitable processing resolution, balancing the competing

goals of correct recovery of object topology and conciseness of the representation. Second,

the size of internal data structures, output, and execution times all grow exponentially as

powers of (approximately) four. The theoretical reason for this is quite obvious. Each in-

crease in level causes the octree cells to be bisected in three orthogonal directions, so the

number of cells grows by a factor of 23 = 8. However, the object surface is a 2D manifold

embedded in 3D, so the number of cells that intersect the surface grows only by a factor of

22 = 4. The fact that time and space requirements grow approximately by factors of four

demonstrates that the algorithm automatically concentrates its efforts close to the surface.

There is a seeming anomaly in the timing for level 3. The probable reason is that at the

coarse levels the cubes’ projections onto the sensors’ image planes cover a large area, so

the inside/outside labeling of the cubes takes a long time.

Interval analysis

Our idea in surface reconstruction was to avoid nonrobust techniques such as averaging as

much as possible. Instead, we propagate and manipulate constraints into more useful forms

that allow robust estimation of the object surface topology, while we leave the accurate fit-

ting of a concise surface representation to the data to a later stage. The space carving method

that we use to robustly determine surface topology is a particular instance of a general tech-

nique called interval analysis.
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(a)                                                                                 (b)

Figure 4-9 A thin sheet seen from the left (light gray) and right (dark gray) is reconstructed
correctly in (a). In (b) registration error and small cube size combine to cause a hole.

Interval analysis [Snyder 92] takes a conservative approach for determining function

values. Let’s assume we want to plot a function f (x), and we don’t know the actual values,

but we can somehow deduce the minimum and maximum values f attains within a given

interval. Rather than plotting some approximation of f , we can plot a block covering all the

possible values within the bounding box. Or, if we can obtain better bounds for f within a

shorter interval, we can subdivide the original interval into shorter segments. Thus, inter-

val analysis allows us to narrow down the interval within which the function value lies by

eliminating the impossible intervals, ideally converging arbitrarily close to the actual value.

In our case we use interval analysis to determine binary function values that indicate

whether a point in a volume is inside or outside an object. We partition space into regions

(cubes) and conservatively determine for each region whether it lies completely inside, com-

pletely outside, or neither. Using recursive subdivision, we efficiently prune large regions

of space away from the object boundary, and focus both computation and storage on the

spatial region of interest, that is, the region next to the surface.
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Thin objects

Some methods that employ signed surface distance functions are unable to correctly recon-

struct thin objects. Curless and Levoy [1996], for example, build a distance function by

storing positive distances to voxels in front of the surface and negative distances to voxels

behind the surface. In addition to distances, weights are stored to facilitate combining data

from different views. With this method, views from opposite sides of a thin object inter-

fere and may cancel each other, preventing reliable extraction of the zero set of the signed

distance function.

In the case of a thin sheet of paper, our algorithm would construct a thin layer of octree

cubes (voxels) straddling the paper by carving away the space between the sensor and the

object but leaving the voxels that intersect the object, creating a shell around the surface.

This is illustrated in Fig. 4-9(a). Note, however, that our method can fail in the presence

of measurement noise and registration error if the minimum cube size is set too small, as

illustrated in Fig. 4-9(b). Due to a registration error the indentation on the light gray view

penetrates in front of the darker view, and vice versa. This causes too many cubes to be

carved away, creating a hole. This example shows that in order to correctly reconstruct thin

objects, the minimum size for the cubes should be larger than the sum of the registration

error, the range sampling error, and the sampling density.

Implicit removal of outliers.

One of the benefits of our approach is that it automatically removes most of the outliers in the

input data. Suppose that our first view contains some outlier data points that fall outside the

object. Because we have only a single view, our algorithm first labels the cubes containing

the outliers as lying on the object surface. However, if from the perspective of another view

one of these cubes lies in front the object (or even background), the cube is removed, thereby

eliminating the corresponding outlying data. This may also happen if the outlying point is a

valid data point from the background instead of an erroneous range measurement. Suppose
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that the views were obtained by reorienting the object in front of a stationary scanner and

that the views have been registered into a common coordinate system using a subset of the

surface points. Now the background moves relative to the object from view to view, and in

general the background data in one view can be identified by another view and labeled as

such or removed altogether.

Outliers that lie behind the surface as seen from the scanner can be damaging, since

they could cause our algorithm to incorrectly carve away a piece of the object. For several

reasons, this has not been a problem for us. Most outliers we have observed either belong

to other objects in the background, or appear around the silhouette edges of the object. We

use background data to carve the space around the object more efficiently, and outliers at

the object boundaries do not cause deep holes to be carved into the object.

Contributions

The main contribution of this section is the development of a robust method for generating

an initial mesh that recovers the object topology. In comparison with Curless and Levoy’s

[1996] space carving method, our method has the following desirable properties:

� It is easier to implement.

� It is faster to execute.

� Its hierarchical processing saves resources and makes it easy to interactively decide

the desired level of resolution.

� It can better deal with thin surfaces.

4.3 Mesh optimization

The hierarchical space carving algorithm produces a mesh that is not a very good approx-

imation for the object surface. The mesh is dense, and the orientations of the mesh faces
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Figure 4-10 An initial mesh for a temple (smoothed for display, 203442 faces) and a sim-
plified version obtained using the mesh optimization algorithm of [Hoppe et al. 93] (188
faces).

suffer from severe quantization as they are strictly aligned with the coordinate axes. How-

ever, the mesh is a proper 2D manifold and its vertices are relatively close to the object

surface, so it serves as an excellent starting point for nonrobust optimization methods.

The mesh optimization method we adopted is described by Hoppe et al. [1993,1994].

The approach tries to fit the initial mesh to a set of unorganized points, while at the same

time simplifying the structure of the mesh. Clearly these two goals are conflicting: the more

faces there are in the mesh, the more accurately the data can be approximated. However,

a concise surface description is faster to operate on, to transfer, and to display. A practical

goal is therefore a compact but still fairly accurate mesh. The left side of Fig. 4-10 shows

the initial mesh created from a synthetic data set describing a temple. The mesh is dense,

containing over 200,000 triangles, and it has been smoothed for display using a simple sur-

face fairing method introduced by Taubin [1995]. On the right is the simplified and fitted

result containing less than a tenth of a per cent of the original faces. The planar sections of

the temple have an excellent fit, while some accuracy was sacrificed for conciseness in the

curved regions.

For completeness, we briefly describe the mesh optimization algorithm developed by

Hoppe et al., including the energy function and the iterative process by which it is mini-

mized. Finally we show another mesh optimization example.
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4.3.1 Energy function

A central concept in mesh optimization is the definition of the energy function that is to be

minimized. Hoppe et al. [1993] proposed an energy function that is the sum of three terms:

Edist, Erep, and Espring.

The first term, Edist, attempts to pull the mesh close to the data points. It is defined by the

sum of the squared distances of the data points to the mesh. The second term, Erep, strives to

make the mesh simple. Its definition is simply the number of vertices in the mesh scaled by

a representation cost crep. Adding vertices increases Erep while deleting vertices decreases it.

The last term, Espring, is defined as the sum of squared lengths of the mesh edges, scaled by

a spring coefficient �. This term is not intended to smooth the mesh. Instead, it is meant to

guide the optimization into a stable energy well, and its influence can be gradually decreased

by decreasing � as the optimization converges to a solution. A nonzero spring coefficient is

especially useful at surface locations that are due to hole filling properties of space carving,

as those areas have no corresponding range data.

4.3.2 Iterative minimization method

Directly minimizing the energy function is a difficult discontinuous nonlinear optimization

problem. Hoppe et al. break the solution process into two simpler optimization steps that

are applied iteratively to the current mesh. In the first step, the mesh structure/connectivity

is held fixed, while the vertices are moved to bring the mesh close to the data points. The

second step attempts to simplify the mesh structure while keeping the mesh close to the

data. As the iteration proceeds, parameters such as the representation cost crep and the spring

coefficient � are modified. Typically, crep is increased as the mesh gets more concise, while

� can be reduced if the mesh seems to behave well and the input data is not very noisy.
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Figure 4-11 The structure of the linear system Ax = b.

Optimize over vertex positions

The first subproblem is to optimize the vertex positions over a fixed mesh. First, the data

points are projected to the closest point on the mesh, and the barycentric coordinates of the

projection point are calculated with respect to the mesh triangle containing it. Using this in-

formation we can separately find the x, y, and z coordinates by minimizing a function of the

form kAx�bk2
2, once for each vertex coordinate. Minimizing that function is equivalent to

solving in the least-squares sense the linear system Ax = b, whose structure is illustrated in

Fig. 4-11. Let us denote the number of data points by n, the number of vertices in the mesh

by m, and the number of edges in the mesh by e. Then A is an (n + e) � m matrix and b is

an (n + e) vector, where the first n rows correspond to Edist and the last e rows correspond

to Espring, while x contains the unknown vertex coordinates. In Fig. 4-11 the first data point

projects onto the mesh triangle spanned by the vertices i, j, and k. All columns of the first

row of A are zeros except the columns i, j, and k, which contain the barycentric coordinates

of the projection of the first point. The first row in b contains one of the coordinates of the

first point. All rows up to row n are filled in the same manner. Assuming the first edge in the
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(a)                                     (b)                                     (c)                                     (d)

Figure 4-12 Elementary mesh transformations. (a) The initial configuration, with the cur-
rent edge drawn in bold. (b) Edge swap. (c) Edge collapse. (d) Edge split.

mesh connects vertices i and j, row n + 1 of A contains
p
� and �p� in the corresponding

columns and zeros elsewhere, while the corresponding row in b contains zero. This system

is best solved using the method of conjugate gradients (cf. [Golub & Van Loan 96]), which

can take advantage of the system’s sparse structure. Strictly speaking, this system does not

minimize the distances of the data points to the mesh. Instead, the relative locations of the

data points’ projections onto the mesh are fixed and the vertex positions that minimize the

data points’ distances to their fixed projections are found. This tends to pull the mesh trian-

gles close to the data, but allows very little sliding of the mesh along the data, even with a

large spring coefficient.

Optimize over mesh transformations

The second subproblem is to lower the energy by altering the mesh structure. This is done

by repeated applications of the three elementary mesh transformations: edge swap, edge

collapse, and edge split. These transformations are illustrated in Fig. 4-12. All the edges

are placed into a candidate set and they are randomly removed one at a time. The algorithm

first tries to collapse the selected edge. An edge collapse removes the edge and the two

incident triangles; it also unifies the vertices at the edge’s ends. If the edge collapse does not

change the topological type of the mesh, a local optimization process finds a new position

for the unified vertex, and if the total energy is reduced, the edge collapse is accepted. If the

edge cannot be collapsed, the algorithm considers edge swap and edge split, in that order,

with similar local optimizations and consistency checks. If one of the transformations is
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(a)                                                                  (b)                                                                      (c)

(d)                                                                  (e)                                                                      (f)

Figure 4-13 (a) Point cloud of toy dog. (b) Initial mesh created by hierarchical space carv-
ing, 49,316 faces. (c) First simplification of the mesh, 13,262 faces. (d) Second simplifica-
tion, 4,610 faces. (e) Third simplification, 1,008 faces. (f) Last simplification, 576 faces.

accepted, all the neighboring edges are added to the candidate set. The process is repeated

until the candidate set is empty.

4.3.3 Discussion

Figure 4-13 shows a typical mesh optimization sequence using the method presented above.

We start with a point cloud (a) and a dense initial mesh (b) created by our hierarchical space

carving algorithm. Figures 4-13(c)-(f) show four snapshots from the optimization process.

The representation penalty crep is increased monotonically during the iteration. The spring

constant � seemed to be too low at first, resulting in a roughly chiseled mesh, and was kept at

a higher constant level during later iterations. We end up with a concise but accurate model

of a toy dog.



Chapter 5

View-dependent texturing

5.1 Introduction

If the purpose for scanning objects and reconstructing their surfaces is to display the objects

on a computer monitor, obtaining the surface geometry is not enough. Although the coarse

polygon mesh in Fig. 5-1(a) is recognizable as a toy husky, we can get a much more realistic

picture by texture mapping one or more color images onto the mesh surface. The textured

model in Fig. 5-1(b) almost completely hides the polygonal nature of the underlying surface

representation, and the intricate fur texture hints at a very detailed geometry, which in fact

only exists in the mind of the beholder.

Although texture mapping is currently the most practical approach to adding realistic

colors to a geometric model, we could take an approach based more closely on physics.

(a)                                                                                                  (b)  

Figure 5-1 (a) The geometry of a toy husky. (b) Realism is much enhanced by texture mapping.
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Instead of mapping an image onto the surface, we could map a reflectance function that

relates the incoming light to the reflected light. There are many practical difficulties in es-

timating this function, as it depends on the angles of the incoming and reflected light (with

respect to the surface normal) as well as the wavelength composition of the incoming light.

Also, interreflections are problematic both for acquisition and rendering. Additionally, in

order to create realistic renderings, the geometric description of the surface would have

to be very detailed. Even if it is, the resulting images can usually be immediately recog-

nized as computer-generated, because many lighting effects created by detail like the fur in

Fig. 5-1(b) are extremely difficult to recreate.

Conventional texture mapping assigns to each surface its own texture map that is in-

dependent of the viewing direction. While this approach is straightforward to implement

and works well with models that have been directly produced by a computer, it has sev-

eral shortcomings when used to texture map an approximate geometric model reconstructed

from scanned range data. Figure 5-2 demonstrates that the quality of scanned color depends

on the view direction. In Fig. 5-2(a) an individual scan of a flower basket is seen from ap-

proximately the same direction as it was scanned, and it looks very realistic. Figure 5-2(b)

shows the same textured surface from another viewpoint. This second view makes obvious

the low quality of both the color and geometry data on surfaces that are nearly parallel to

the scanning direction.

The problem shown in Fig. 5-2 can be at least partially overcome by using only the color

information obtained from directions approximately normal to each surface patch and then

warping the color data slightly so the different images blend together smoothly. However,

there is a more fundamental problem with static texturing, as illustrated in Fig. 5-3. There

we have only a coarse representation of the flower basket geometry, yet the color variations

in Figs. 5-3(a) and (b) suggest fine geometric detail in the weave pattern of the basket. How-

ever, when the model in (b) is seen from the viewpoint in (a) or vice versa (as in Figs. 5-3(c)

and (d)), the result is an unnatural warping of the weave pattern. This suggests that if textur-

ing is used to convey the illusion of fine geometric features on coarse approximate surfaces,
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(a)                                                                                                  (b)  

Figure 5-2 View-dependent scan data. (a) A realistic looking textured surface. (b) The
same surface looks much less realistic when viewed from a different direction.

there may not exist any single texture that would look natural from every direction.

To avoid these problems we use view-dependent texturing of surface models. View-

dependent texturing combines a number of images in varying proportions based on the view-

ing direction. View-dependent texturing was initially used in image-based rendering sys-

tems [Chen & Williams 93, McMillan & Bishop 95, Gortler et al. 96, Levoy & Hanrahan

96], some of which do not use any geometric information, but it is also increasingly be-

ing used to texture map geometric models [Debevec et al. 96, Niem & Wingbermühle 97,

Matsumoto et al. 97, Pulli et al. 97a].

In the next section we examine how image-based rendering interpolates between suit-

able pixels from the input images to create pixels in the output image. That analysis is used

as justification in the two subsequent sections for our two methods of view-dependent tex-

turing. First, we describe a method for how the complete models created using the methods

presented in Chapter 4 can be texture mapped. This method projects a ray through each pixel

of a virtual camera to the object, projects the ray-surface intersection back to input images,

and combines the colors at those locations using various weights. Then we present another

method that we call view-based rendering. In view-based rendering the range maps are not
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(a)                                                                                                                 (c)

(b)                                                                                                                (d)

Figure 5-3 No single texture looks good from every direction. (a) and (b) show the same
detail of a basket from two directions. (c) and (d) show the data rotated as seen from the
other viewpoint.

integrated into a global model. Instead, we approximate the range map of each view by a

triangle mesh that is texture mapped using the associated color image. A few such textured

meshes are rendered from the viewpoint of a virtual camera, and the views are integrated in

image space rather than in 3D. Finally, a discussion section concludes the chapter.

5.2 Image-based rendering

The basic problem in image-based rendering is to compute an image of a scene from a new

camera pose, given a set of input images and their corresponding camera poses. A useful

abstraction in this context is the light field function (also known as the plenoptic function).
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(a) (b)

Figure 5-4 (a) A pencil of rays describes the colors of points visible from a given point.
(b) The light field function describes the colors of all rays starting from any point.

Levoy and Hanrahan [1996] define the light field as the radiance leaving a point in a given

direction. For our purposes, it is more convenient to define the light field as the radiance

arriving at a point from a given direction (see Fig. 5-4).

More precisely, we define a ray to be a directed half-line originating from a 3D base-

point. We may therefore represent a ray as an ordered pair (x, n̂) � IR3 � S2, where x is the

ray’s basepoint, n̂ is its direction, and S2 denotes the unit sphere. The light field is then a

function

f : IR3 � S2 
 IR3,

which assigns to each ray (x, n̂) an RGB color f (x, n̂), as shown in Fig. 5-4(b). Note that

our rays start from the observer and are directed toward the object, while light propagates

in the opposite direction. Thus, f (x, n̂) measures the radiance at x in the direction �n̂. The

collection of rays starting from a point is called a pencil. If we had complete knowledge of

the light field function, we could render any view from any location x by associating each

pixel of a virtual camera with a ray (or an average of rays) from the pencil based at x.
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The complete light field function is only needed

to render entire environments. If we are content to

render an individual object, it suffices to know the

light field function for the subset of IR3 � S2 of “in-

ward” rays originating from points on a convex sur-

face M that encloses the object. Following Gortler

et al. [1996], we call this simpler function a lu-

migraph. We call the surface M that encloses the

object the lumigraph surface. Figure 5-5 shows a

schematic of the lumigraph domain for the case of Figure 5-5: A spherical lumigraph surface.

a spherical lumigraph surface.

The lumigraph contains all the information needed to synthesize an image from any

viewpoint outside the convex hull of the object being modeled. Each pixel in the image

corresponds to a ray that intersects the lumigraph surface M at a point, say x. If n̂ is the

direction of that ray, then the RGB color value assigned to the pixel is f (x, n̂).

5.2.1 Distance measures for rays

In practice we will never be able to acquire the full 5D light field function or even a complete

4D lumigraph. Instead we will have a discrete set of images of the scene, taken at some

finite resolution. In other words, we have the values of the function for a sample of rays (or

more precisely, for local averages of the light field function). To render the scene from a

new viewpoint, we need to estimate the values of the function for a set of query rays from

its values for the sample rays. Thus, image-based rendering is an interpolation problem.

In a generic interpolation problem, one is given the values of a function at a discrete set

of sample points. The function value at a new query point is estimated by a weighted aver-

age of function values at the sample points, with weights concentrating on samples that are

close to the query point. The performance of any interpolation method is critically depen-
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dent on the definition of “closeness.”

In image-based rendering, the aim is to paint pixels on the image plane of a virtual cam-

era, and therefore we look for rays close to the one associated with some particular pixel.

In the next three subsections we examine factors that should be taken into account when

interpolating the query ray value from existing rays. It is clear that we should concentrate

on sample rays that intersect the object surface close to where the query ray does. However,

as we will show, merely considering distance between intersection points of rays with the

object surface is only justified for a flat Lambertian surface; in general ray direction should

also be considered. The third factor is the sampling density of the surface color.

Ray-surface intersection

Figure 5-6 shows a piece of a lumigraph with several pencils of rays. If we have no infor-

mation about the object’s surface geometry, as in Fig. 5-6, we have to concentrate on pencils

that are close to the query ray, and interpolate between rays that are parallel to the query ray.

The denser the pencils are on the lumigraph surface M, and the more rays in each pencil,

the more similar rays to the query ray we can expect to find. In other words, the expected

error is directly proportional to the spacing between sample rays (or inversely proportional

to density).

The lumigraph representation has a lot of redundancy, at least if the surface is approx-

imately a Lambertian reflector: there are many rays that see the same point on the object

surface. Suppose we don’t know the precise object geometry, but we have a rough estimate

of the object surface, or at least an average distance from the lumigraph surface to the ob-

ject surface. In this case, illustrated in Fig. 5-6(b), we let x0 denote the intersection of the

query ray (x, n̂) with the surface approximation and choose rays in the lumigraph samples

that point at x0. The expected error in our estimate of f (x, n̂) should now be less than in case

(a). Or, we can achieve the same error using far fewer sample rays (i.e., input images).

Figure 5-6(c) illustrates the case where we have accurate information about the object

geometry. To estimate f (x, n̂), we can locate the sample rays that intersect the object surface
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(a)                                             (b)                                           (c)

Figure 5-6 The query ray is dotted; sample rays are solid. (a) Choose similar rays. (b)
Choose rays pointing to where the query ray seems to meet surface. (c) Choose rays inter-
secting the surface where the query ray does.

at the same location as the query ray. With an accurate surface description, it is possible to

find all the stored rays that intersect the surface where the query ray does, and even detect

rays that are directed toward that point but really intersect some other part of the surface

first. Naturally, the expected error with a given collection of rays is now the least.

Ray direction

The estimate of the light field function can be improved by weighting more heavily sam-

ple rays whose directions are near that of the query ray. There are three justifications for

this claim. First, few surfaces reflect incoming light uniformly in every direction. A typical

example of this is a specular reflection from a shiny surface, but the appearance of many ma-

terials (velvet and hair, for example) varies significantly with viewing direction. In model-

based rendering, this angular dependence is captured by the bidirectional reflectance dis-

tribution function (BRDF); in image-based rendering it suggests that we favor rays with

similar directions.

Second, undetected self-occlusions may cause us to incorrectly conclude that two sam-

ple rays intersect the object surface at the same point, giving us a poor estimate of the light

field function. If the occlusion is due to a large-scale object feature and we have enough
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(a) (b) (c)

Figure 5-7 (a) Detailed surface geometry can cause occlusions that make the surface ap-
pear different from different directions. (b) Thin features can cause a discrepancy between
surface distance and spatial distance of intersection points. (c) The more parallel the rays
the less damaging an error in an estimate of surface distance.

information about the surface geometry, we can discover the self-occlusion and cull away

occluded rays, as in Fig. 5-6(c). However, if the occlusion is due to small-scale surface ge-

ometry and we only have an approximation of the surface geometry, the occlusion is much

harder to detect, as shown in Fig. 5-7(a). Moreover, if the object has thin features, as illus-

trated in Figure 5-7(b), then rays may approach the object surface from opposite directions

and intersect it at points that are nearby spatially, yet far apart along the surface. We can

decrease the likelihood of such errors by more heavily weighting sample rays whose direc-

tions are near the direction of the query ray.

Third, as shown in Fig. 5-7(c), when the angle between the query ray and the sample

ray is large, small errors in the surface geometry can lead to large errors in the estimate of

distance between the intersection points with the object surface. We get more robust results

by favoring rays almost parallel to the query ray.

Surface color sampling

The pixels in a camera image do not sample the surface uniformly. As illustrated in Fig. 5-8,

the surface is sampled much more densely in areas that are close to perpendicular to the

viewing direction, while tilted surfaces are sampled sparsely. The surface area visible to a

pixel increases by a factor of 1� cos �, where � is the angle between the local surface normal
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Figure 5-8 The quality of surface color sampling depends on the relative surface orienta-
tion with respect to the scanner.

and the direction to the camera. Thus not only is the sampling sparser on tilted surfaces, but

also each sample is an average of the color over a larger surface area. A similar situation

arises if the input images are taken at different distances from the object surface. Images

taken from far away sample the surface more sparsely, and each pixel integrates the colors

over a larger area. Therefore surface sampling density should be taken into account when

interpolating between input rays. We should assign lower weights to input rays that sample

the surface at coarser resolutions than the query ray, and we should apply a low-pass filter

to those that sample at finer resolutions.

5.3 View-dependent texturing of complete surfaces

We have implemented the ideas described in the previous section within a viewer that can

display objects from arbitrary directions. Although our models are represented as trian-

gle meshes that were created from range scans using the methods presented in the previ-

ous chapters, our rendering method can be applied to any surface representation (NURBS

patches or subdivision surfaces, for instance).
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In the following sections we first describe how we choose which input images are used to

texture the surface. Then we explain how we find pixels in the input images that correspond

to the object surface location visible to a particular pixel in the viewer. We describe our

averaging scheme for combining those rays, and we finally discuss the preprocessing steps

that allow the implementation of our texturing method to execute at interactive speeds.

5.3.1 Choosing views

In principle, any camera view that sees the same surface point as the viewer could con-

tribute to the color of the corresponding pixel. However, as we pointed out in Section 5.2.1,

views with viewing directions1 far away from that of the virtual camera should not be used

if closer views are available. Otherwise, self-occlusions become much more frequent, so

only a small portion, if any, of the surface is likely to be visible both to the viewer and to

the distant view. Additionally, small errors in registration, camera calibration, and surface

reconstruction lead to larger errors in backprojecting surface points to the color images. In

our implementation we only search for compatible rays from three input images that have

been taken from nearby viewing directions.

To facilitate the selection of suitable views, the views are organized as illustrated in

Fig. 5-9(a). We place vertices corresponding to each of the viewing directions of the in-

put images on a unit sphere, and then compute a Delaunay triangulation of the sphere using

those vertices. We use an incremental Delaunay triangulation algorithm and the data struc-

tures proposed by Guibas and Stolfi [1985]. That algorithm was designed for triangulating

vertices that lie in a plane; some modifications were required to perform the triangulation

on a sphere.

When we start rendering a frame we determine the viewing direction of the viewer and

place a corresponding vertex on the unit sphere as shown in Fig. 5-9(a). The triangle con-

taining that vertex determines the three views within which we will search for candidate

1 With a viewing direction of a camera we mean the orientation of the camera’s optical axis.
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viewing direction
of the virtual camera

views surrounding
the virtual camera

(a)                                                                                            (b)
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Figure 5-9 (a) A Delaunay triangulation of the unit sphere is computed for the vertices
corresponding to the viewing directions of the input images. The triangle (i, j, k) contain-
ing the viewing direction of the virtual camera determines the three views used to search
for candidate rays. (b) Though view l is closer to the current viewing direction, view k is
a better choice.

rays for the surface points visible to the viewer. Note that these views are not always the

three closest views, though the closest one is guaranteed to be among the three. For exam-

ple, in Fig. 5-9(b) view l is closer to the current view direction than view k. However, we

prefer to use view k because i, j, and l all lie to one side of the current view. If there is some

part of the surface visible to the viewer but occluded in views i and j, that location is more

likely to be visible in view k than in view l.

5.3.2 Finding compatible rays

When we aim our viewer at an object, the first task in determining the color of a particu-

lar pixel is to locate the point on the object surface that is visible through that pixel. Fig-

ure 5-10(a) illustrates this problem by showing a ray through one of the viewer’s pixels end-

ing at its first intersection with the object surface. We obtain candidate rays that might see

the same surface point by projecting the intersection point back to the input images. For

example, the viewer pixel marked by the arrow in Fig. 5-10(b) corresponds to a point on
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Viewer

Camera 1

Camera 2

(a)                                                                (b)                               (c)

Figure 5-10 (a) A ray from the viewers center is cast through a pixel, intersecting the ob-
ject surface. The intersection point is projected back to color images, producing candidate
pixels for coloring the pixel of the original ray in the viewer. (b) A false color rendering
of the surface geometry uses hardware to find the surface point visible through each pixel.
Red, blue, and green channels encode x, y, and z coordinates, respectively. (c) The 3D
point corresponding to the pixel pointed to in (b) is projected into three color images (the
red dot on the nose).

the dog’s snout, which projects back to the red dots in the three images in Fig. 5-10(c).

There are two straightforward ways we can use graphics hardware to determine the sur-

face point visible through a given pixel. The method we have chosen to implement (and

the one taken by Gortler et al. [1996]) is illustrated in Fig. 5-10(b). First, we calculate the

axis-aligned bounding box for the triangle mesh representing the object. We then scale and

translate the coordinates of each vertex so that the bounding box is transformed to a cube

with unit-length sides. Now we can encode the x, y, and z coordinates of each vertex in the

red, green, and blue components of its color, so that when the mesh is rendered in the viewer,

we get an image like the one in Fig. 5-10(b). Within each triangle, the graphics hardware

uses Gouraud shading to interpolate the color, end therefore also the encoded surface lo-

cation. The surface location visible through a pixel is then given by the pixel’s color, after

scaling by the dimensions of the original bounding box and translating to the position of the

minimum corner of the bounding box.
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Figure 5-11 The virtual camera sees two points a and b, and they can be reliably projected
back to camera 2. However, a and b project back to pixels of camera 1 that actually see
points c and d, due to self-occlusion (c) and errors in registration, calibration, or surface
reconstruction (d).

The method described above can only be applied directly to polygonal surface represen-

tations. For a more general technique, we could read in the depth buffer after rendering the

untextured surface, and convert each depth value to the corresponding 3D point using the

known projection and viewing transformations. However, that approach requires over four

times as many basic operations (multiplications, divisions, and additions) as the false-color

rendering approach.

Once we have determined the surface point corresponding to a viewer pixel, we obtain

candidate rays by projecting that point back to the input images as shown in Fig. 5-10(c). To

perform these projections, we need to know each camera’s internal and external parameters.

In our case, the camera calibration procedure used for obtaining depth from stereo (Chapter

2) determines the internal parameters of the camera; the external parameters for each view

are obtained by registering the range maps into a common coordinate system (Chapter 3).

As Fig. 5-11 illustrates, not all the candidate rays obtained through backprojection should

be accepted. The virtual camera of the viewer sees two surface points, a and b, and those

points are also clearly visible to camera 2, which can produce reliable candidate rays for

coloring the corresponding pixels. However, point a is not visible to camera 1 due to self-
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occlusion; the ray from camera 1 pointing at a sees point c instead. Point b, on the other

hand, is visible to camera 1, though just barely, but in this case minute errors in camera cal-

ibration or registration lead point b to project to a pixel that really sees d instead. We can

detect these problems easily if we retain the original range maps for each camera. For ex-

ample, we can calculate the distance from point a to camera 1 and compare it to the range

map value for the pixel a projects to. If these distances differ significantly (as they do in

this case), then we reject the ray.

5.3.3 Combining rays

The colors of the compatible rays are averaged together via a weighting scheme that uses

three different weights: directional weight, sampling quality weight, and feathering weight.

The task of the directional weight is to favor rays originating from views whose viewing

direction is close to that of the virtual camera. Not only should a view’s weight increase as

the current viewing direction moves closer, but the other views’ weights should decrease,

leaving only the closest view when the viewpoints coincide. Because we use three input

views forming a triangle containing the current view, it is natural to choose as weights the

barycentric coordinates of the current view with respect to the others. For four points lying

in a plane, the fourth point can be expressed as a unique weighted sum of the other three

points. The barycentric coordinates are those weights; they sum to one and if the fourth

point is within the triangle formed by the other three, they are all nonnegative; and they lin-

early interpolate the three points to produce the fourth. In our case the four points lie on

a sphere rather than a plane but we can still compute barycentric coordinates. We radially

project the vertex of the current view direction onto the planar triangle formed by the sur-

rounding three views (i.e., the triangle is intersected by a line passing through the point and

the center of the sphere). The directional weight of each of the three input views is given

by the corresponding barycentric coordinate of the projected point.

The sampling quality weight directly reflects how well a ray samples the surface. We

assign to each ray/pixel of each input image a weight that is defined as the cosine of the angle
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(a)                                                    (b)                                                    (c)

Figure 5-12 (a) A view of a toy dog. (b) The sampling quality weight. (c) The feathering weight.

between the local surface normal and the direction from the surface point to the sensor. This

weight is illustrated in Fig. 5-12(b) for a view of the toy dog. Notice the uniform dark gray

close to the ears and one cheek. The scanner didn’t provide any range data for those pixels,

so we arbitrarily assign a relatively low weight corresponding to about 65 degrees surface

orientation with respect to the sensor.

The feathering weight is used mostly to hide artifacts due to differences in lighting among

the input images. Without the feathering weight, the boundaries of the input views become

noticeable because a view contributes to pixel colors on one side of a silhouette edge but

not on the other. The feathering weight is calculated for each original 2D color image, and

it remains constant. As illustrated in Fig. 5-12(c), the feathering weight is zero outside of

the object, and it grows linearly to a maximum value of one within the object.

5.3.4 Precomputation for run-time efficiency

The directional weight changes every time the viewer moves with respect to the object, so

we have to recompute it again for each frame. However, the sampling quality and feathering

weights remain constant, so we can determine them in advance and store them in a lookup

table. We preprocess each pixel of each image by calculating these two weights and storing

their product in the alpha channel of a pixel, where it is readily accessible.

A large part of the viewer’s processing time is spent projecting object surface points onto
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input images. To correct for radial distortion of the images we have to solve for the roots of

a cubic polynomial. We can avoid this calculation by preprocessing the input images (along

with associated information such as the weights and range data) to remove the distortions

beforehand.

Once we have undistorted input images we can further optimize our viewer by collaps-

ing each view’s registration and projection transformations into a single 3 � 4 matrix that

transforms a homogeneous 3D point into a homogeneous 2D image point.

Figure 5-13 An interactive viewer. On the left is a rendering of the geometry in which
color encodes the 3D coordinates of the surface point visible through each pixel. In the
middle are the three views that have been chosen as inputs. The bar next to each view
shows that view’s directional weight. The final image is on the right.

5.3.5 Results

We have implemented an interactive viewer for displaying view-dependently textured ob-

jects (see Fig. 5-13). Our approach does not require hardware texture mapping, yet we can
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display complex textured models at interactive rates (5 to 6 frames per second on an SGI

O2). The only part of the algorithm that uses hardware graphics acceleration is the render-

ing of z-buffered Gouraud-shaded polygons to determine which points on the object surface

are visible in each frame. The algorithm can be easily modified to work with arbitrary sur-

face descriptions by finding the visible surface points using the z-buffer instead of rendering

triangles colored by location.

Figure 5-14 A set of views close to the current viewing direction are chosen (top left), their
textured geometries are rendered from the viewpoint of the virtual camera (lower left), and
the images are composited into the final result (right).

5.4 View-based rendering

The method described in the previous section follows a traditional approach to displaying

scanned objects with colors: first integrate the range scans into a single model, and then

paste the color images onto the surface. In this section we propose an alternative to that

approach: instead of integrating the range maps into a single model, we model each range

map separately. Each of these view-based models is textured with the color image from its

associated view, and the different models are integrated in image space during rendering.

Figure 5-14 gives an overview of this method, which we refer to as view-based rendering.
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Figure 5-15 A sequence of scans obtains a color image and a range map from each view-
point around an object. The viewpoints are registered with respect to the object by aligning
the range maps. Each range map is approximated by a triangular mesh, which is then tex-
tured using the associated color image.

The rest of this section describes in more detail the steps involved in view-based ren-

dering and concludes with the results of our implementation.

5.4.1 View-based modeling

Figure 5-15 summarizes the creation of view-based models. The first steps are the same

as in creating a single surface model: object color and geometry are scanned from a set of

viewpoints around the object, and the scans are registered with respect to an object-centered

coordinate system. However, instead of integrating the range data into a single model, the

views are modeled individually, and each model is statically textured using the color image

of the corresponding scan.

The attraction of view-based modeling is clear: it is much easier than modeling com-

plete surfaces. We can completely avoid the difficult task of determining the topology and

connectivity of the object we are trying to display. In view-based modeling the surface

model is implicit: it is a single-valued height field, and modeling becomes merely function
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approximation.

We have divided the creation of view-based models into the following subtasks:

� Classify each pixel in the scans as belonging to either object or background.

� Approximate the object silhouette by a polygon.

� Create a constrained triangulation that includes the four corners of the range map as

well as the silhouette polygon’s vertices and edges.

� Modify the 2D triangulation by adding, deleting, and moving vertices, and retriangu-

lating until the mesh projects to pixels marked as object but not to those marked as

background. At the same the depth coordinates of the vertices are optimized so that

the distance from the range data to the triangulation is minimized.

As a postprocessing step, we remove triangles that are close to perpendicular to the

viewing direction, as they are likely to be step edges due to self-occlusion.

5.4.2 Integration in image space

In the method described in Section 5.2, we found the rays pointing at the surface point visi-

ble through a pixel by projecting that point back to input images. In view-based rendering,

we can take advantage of texture-mapping hardware and view-based models to project the

input images to the image plane of the virtual camera. First, we choose three views around

the current viewing direction using the method described in Section 5.3.1. We then render

each of the textured triangle meshes of the selected views atop one another from the view-

point of the virtual camera.

Figure 5-16(a) shows the result of this simple approach. In terms of ray interpolation,

the graphics hardware interpolates the rays within each view, finding for each pixel a ray that

intersects the surface approximately where the pixel’s query ray would. However, there is

no interpolation between the views: z-buffering essentially chooses the ray from the mesh
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(a) (b)

Figure 5-16 (a) The result of combining three views by rendering each of the view-based
meshes from the viewpoint of the virtual camera. (b) Using the three weights and soft z-
buffering produces a much better result.

that happens to be closest to the camera at each pixel, discarding the others. Because the

geometry and registration of the meshes are only approximate, we get a lot of visible arti-

facts.

We can improve this technique by interpolating rays between different views using the

weights introduced in Section 5.3.3 and by dealing correctly with self-occlusions. These

improvements, which are demonstrated in in Fig. 5-16(b), are discussed below.

Weights

The three weights used in view-based rendering are exactly the same as those described

in Section 5.3.3: directional weight, sampling quality weight, and feathering weight. The

directional weight is calculated once for each frame using the barycentric coordinates as

discussed previously. We compute a sampling quality weight for each triangle in a mesh by

taking the cosine of the angle between the triangle normal and the vector from the triangle

centroid to the sensor. This weight is used as the alpha value of the triangle at rendering time.

The feathering weight is based on the distance of a pixel from the object silhouette in the

input image, and it is applied directly in the alpha channel of the image used to texture map

the mesh. The rendering hardware combines the weights by multiplying the alpha value of

each triangle with the alpha channel of the texture map.
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Self-occlusions

Most self-occlusions are handled during rendering of individual views using back-face cull-

ing and z-buffering. When combining renderings of view-based models, part of one view’s

model may occlude part of another view’s model. Unless the surfaces are relatively close

to each other, we need to prevent the occluded pixel from contributing to the pixel color.

This is done by performing “soft” z-buffering, in software. For each pixel, we first consult

the z-buffer information of each separately rendered view and search for the smallest value.

Views with z-values within a fixed threshold from the closest are included in the composi-

tion; others are excluded. The threshold is chosen to slightly exceed an upper estimate of

the combination of the sampling, registration, and polygonal approximation errors.

Figure 5-17 illustrates a potential problem. The view-based surface approximation of

the rightmost camera has failed to notice a step edge due to self-occlusion in the data,

and has incorrectly connected two surface regions. When we perform soft z-buffering for

the pixel corresponding to the dashed line, the incorrectly con-

nected step edge is so much closer than the other view’s mesh

that we throw away the correct sample. Fortunately, we can

avoid this problem by treating the weights as confidence mea-

sures while we perform soft z-buffering. If a pixel with a very

low confidence value covers a pixel with a high confidence

value, we can ignore the low-confidence pixel altogether.

Figure 5-17: Problems with

undetected step edges.

Pixel composition algorithm

Figure 5-18 gives the pseudocode for the view composition algorithm. The function

min reliable z�� returns the minimum z for a given pixel, unless the closest pixel is a

low-confidence point that would occlude a high-confidence point, in which case the z value

of the closest high-confidence point is returned.

It is also possible to apply the directional weight using graphics hardware. After we
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FOR EACH pixel

z�min �� min�reliable�z� pixel �

pixel�color �� �������

pixel�weight �� �

FOR EACH view

IF z�min �� z	view�pixel
 �� z�min�thr�soft�z THEN

weight �� alpha	view�pixel
 � dir�weight	view


pixel�color �� weight � color	view�pixel


pixel�weight �� weight

ENDIF

END

color	pixel
 �� pixel�color  pixel�weight

END

Figure 5-18 Pseudocode for the pixel composition algorithm.

render each view, we have to read the information from the frame buffer. OpenGL allows

us to scale each pixel while reading the frame buffer into memory. If we scale the alpha

channel by the directional weight, the resulting alpha values contain the final weights.

5.4.3 Results

We have implemented view-based rendering on an SGI Maximum Impact with a 250 MHz

MIPS 4400 processor. We first obtain a polygonal approximation consisting of 100–250

triangles for each view. The user is free to rotate, zoom, and pan the object in front of

the virtual camera. For each frame, three nearby views are chosen. The texture-mapped

polygonal approximations of the views are rendered from the current viewpoint into sepa-

rate 256� 256 windows. The images are combined pixel-by-pixel into a composite image.

For the two models that we built, a toy husky and a flower basket, we obtained frame rates

of 6–8 frames per second.
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Figure 5-19 Our viewer shows the three view-based models rendered from the viewpoint
of the virtual camera. The final image is on the bottom right.

5.5 Discussion

5.5.1 Related work

Most of the work related to this chapter deals with image-based rendering. The following

four works inspired us to think about view-based texturing in terms of finding and blending

rays. Chen [1995] and McMillan and Bishop [1995] modeled environments by storing the

light field function around a point. The rays visible from a point are mapped to a cylinder

around that point, and new horizontal views are created by warping a portion of the cylin-

der to the image plane. Both systems allow rotations about the vertical axis, but they do not

support continuous translation of the viewpoint. Levoy and Hanrahan [1996] and Gortler

et al. [1996] developed image synthesis systems that use a lumigraph and that support con-

tinuous translation and rotation of the view point. In fact, the term “lumigraph” that we use

to describe the 4D slice of the light field is borrowed from Gortler et al. Both systems use

a cube surrounding the object as the lumigraph surface. To create a lumigraph from digi-

tized images of a real object, Levoy and Hanrahan moved the camera in a regular pattern
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into a known set of positions, and projected the camera images back to the lumigraph cube.

Gortler et al. moved a hand-held video camera around an object placed on a capture stage.

The capture stage is patterned with a set of concentric circles, allowing the camera pose to

be estimated for each image. The rays from the images are projected to the lumigraph sur-

face, and the lumigraph is interpolated from these samples and stored as a grid of 2D im-

ages. In both systems, new images are synthesized from a stored grid of 2D images by an

interpolation procedure, but Gortler et al. use additional geometric information to improve

on ray interpolation. One advantage of the lumigraph methods over surface reconstruction

techniques is that they can capture the appearance of any object regardless of the complex-

ity of its surface. The main disadvantage of the lumigraph is the difficulty of storing and

accessing its enormous representation.

The “algebraic” approach to image-based render-

ing using pairs of images and pixel correspondences

was introduced by Laveau and Faugeras [1994]. It

has since been used in several other systems [McMil-

lan & Bishop 95, Werner et al. 95, Evgeniou 96].

Given correct dense pixel correspondences, one can

calculate the 3D coordinates of surface points visible

1 2

v

r1

e1

e2
r2

Figure 5-20: Two matching rays corre-

spond to the pixel of the virtual camera

where the projections of the rays intersect.

in both images, and then project these to the image plane of the virtual camera. However,

the projection can also be calculated directly without 3D reconstruction. This is illustrated

in Fig. 5-20, which shows the stored images 1 and 2, and the image plane of the virtual cam-

era v. Since the pixel marked in image 1 corresponds to the one marked in image 2, their

associated rays r1 and r2 are assumed to intersect at the same location on the object surface.

That point projects to the image v at the intersection of the epipolar lines e1 and e2, which

are the projections of r1 and r2 onto image v. The color of the destination pixel would be a

combination of the colors of the input pixels. The pixel correspondence mapping between

the input images is not easy to do reliably, especially within regions of homogeneous color.

Fortunately, though, the regions where such pixels project have almost constant color, so a
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projection error of a few pixels typically does not cause visible artifacts.

There is not much published work for view-dependent texturing of complete models.

Debevec et al. [Debevec et al. 96, Debevec 96] developed a system that fits user-generated

geometric models of buildings to digitized images by interactively associating image fea-

tures with model features and adjusting model parameters to fit the images. The basic geo-

metric models are quite simple, but they can be improved by model-based stereo from sev-

eral input images. View-dependent textures are applied to the buildings by projecting the

color images onto the geometric model. If more than one image projects to the same lo-

cation, images taken from view directions close to that of the virtual camera are weighted

more heavily, but the exact weighting function is not described. A blending weight is used

close to the boundaries in the input data; our feathering weight performs the same function.

Although Debevec et al. mention the importance of taking image resolution or sampling

quality into account, they leave that for future work.

There are a number of articles related to our work that do not focus on the display of

scanned objects, but rather on rapid rendering of complex environments. The idea is to trade

unbounded scene complexity for bounded image complexity. Chen and Williams [1993]

render a large number of views of a complicated scene and obtain accurate pixel correspon-

dences from the depth values stored along with the pixel colors. The missing views needed

for a walk-through of the virtual environment are interpolated from the stored ones. Max

and Ohsaki [1995] used similar techniques for rendering trees from precomputed z-buffer

views. However, instead of morphing between the precomputed images, their method re-

projects the images pixel-by-pixel. Shade et al. [1996] partition the geometric primitives

in the scene, render images of each group of primitives, and texture map the images onto

quadrilaterals, instead of displaying the actual geometry. Mark et al. [1997] investigate the

use of image-based rendering to increase the frame rate for remotely viewing virtual worlds.

Their proposed system would remotely render images from geometric models at 5 frames

per second and send them to a local computer that warps and interpolates between two con-
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secutive frames at about 60 frames per second. The 3D warp is the same as the one described

by Chen and Williams: a dense triangle mesh is constructed from the z-values of each of

the two views being interpolated is performed. Normal vectors and z-values at each pixel

are used to locate false connections across step edges between occluding and occluded sur-

faces. Their logic for discarding unreliable pixels on triangles spanning step edges is similar

to ours, but independently derived.

Darsa et al. [1997] describe another approach for rapidly displaying complicated envi-

ronments. The virtual environment is divided into cubes. From the center of each cube, six

views (one for each face of the cube) are rendered. The geometry of each view is tessellated

(using the z-buffer) into a sparse triangle mesh, which is texture mapped using the rendered

color image. A viewer at the center of a cube can simply view the textured polygon meshes

stored at the cube walls. If the viewer moves, parts of the scene previously hidden become

visible. The textured meshes from other cubes can be used to fill the holes. The authors

discuss different weighting schemes for merging meshes from several cubes. Their quality

weight is based on the relative orientation of a triangle in the mesh with respect to the cen-

ter of the camera that created the view, and is essentially the same as our sampling quality

weight. They also use another weight related to the distance from the current position to the

cube centers, which is different from but analogous to our directional weight.

5.5.2 Contributions

The contributions of this chapter are:

� We have provided an analysis of image-based rendering methods in terms of apparent

colors visible along rays, demonstrating that knowledge of surface geometry allows

us to use fewer input images. We have also shown the importance of the direction of

rays in reducing expected errors when the geometry is known only approximately.

� The preprocessing of the input view directions into a Delaunay triangulation over a

sphere provides a practical way of quickly selecting a small set of views that are likely
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to contain the data required to texture map the object from the current viewpoint. We

also get natural interpolating directional weights from the barycentric coordinates of

the current viewpoint with respect to the selected views.

� Our first method for view-dependent texturing (using complete models) does not re-

quire hardware-supported texture mapping and generalizes to any surface represen-

tation, without any problems in texture parametrization over the surface.

� Our second method demonstrates that it is possible to integrate the scan data at render-

ing time in image space, allowing display of difficult objects that do not allow reliable

surface reconstruction.

� Both approaches for view-dependent texturing work for surfaces of arbitrary topol-

ogy.



Chapter 6

Summary and future work

In this dissertation, we have presented a complete system that begins with scanning both

the geometry and color of real objects and finally displays realistic images of those objects

from arbitrary viewpoints at interactive speeds. In the following sections we summarize our

data acquisition system, registration methods, surface reconstruction methods, and view-

dependent texturing methods. After each summary, we discuss possible related future work.

6.1 Data acquisition

The surface reconstruction process begins with scanning both the geometry and the color

of an object. For this purpose we have built a stereo camera system. A great advantage of

using the same sensor to scan both geometry and color is that these complementary data are

automatically registered together. That is, we automatically know which pixel in the color

data corresponds to which sampled 3D point on the object surface.

A stereo camera system works by finding pixels in at least two cameras images such that

the pixels correspond to the same point on the object surface. Once the correspondence is

established, the 3D coordinates of the surface point can be easily determined using optical

triangulation. However, determining the pixel correspondences is not a trivial task, and it

can be close to impossible if the visible surfaces exhibit uniform observed color. To make

the correspondence problem tractable, we use active lighting, i.e., we project a light pattern

onto the surface that is used to aid in establishing pixel correspondences. In order to make

the task as unambiguous as possible, we use only a single vertical stripe of light, enabling us

to reliably match illuminated pixels in the images. All pixels can be matched by repeatedly
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moving the light stripe slightly and matching the illuminated pixels.

The accuracy of optical triangulation depends on the accuracy of locating the center of

the light stripe in the camera images. This can be done reliably using traditional methods

only when the scanned object consists of a single planar surface; more complicated geome-

tries may bias the results. For scanners that sweep the light stripe at a constant rate across

an object, it is possible to accurately track the motion of the stripe and infer location more

reliably from the estimated motion. The incorportation of spacetime analysis [Curless &

Levoy 95] significantly improved the quality of our range data.

6.1.1 Future work

Continuous surface digitization

Rather than discretely finding for each pixel the corresponding pixel on the other images,

even if that could be done in subpixel accuracy, one could try to fit a piecewise continuous

surface to the timespace data of each camera. This surface is a height field over the image,

where the “height” is the time. The center of the beam in the ith image would then be the

piecewise continuous intersection curve of that surface and a plane that is the constant i over

the whole image. One could then imagine to take such curves from two cameras, extend the

curves in the camera images into surfaces in 3D using the camera calibration data, and in-

tersect the 3D surfaces. The intersection curve lies on the object surface. This way, instead

of digitizing discrete surface points, we could digitize piecewise continuous curves on the

surface. However, we could further extend this approach to digitize piecewise continuous

surfaces. We could project the isocontour curves into 3D continuously in time, intersect the

projection surfaces, and create a piecewise continuous surface in 3D parameterized by the

image rows of one of the cameras and the time.
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6.2 Registration

With a scanner based on optical triangulation we can only scan one side of an object at

a time. In order to scan more of the surface, we have to reorient the object (or the scan-

ner), perform the scan, and repeat until all of the surface has been scanned. Unfortunately,

each scan represents the range data in the scanner coordinate system, and the data has to

be aligned before surfaces can be reconstructed. Provided there is enough overlap with the

scans, we can register, or express the range data in a single object-centered coordinate sys-

tem by aligning both the geometric and color data. Alternatively, we can think of registra-

tion as recovering the scanner pose with respect to the object for each scan by aligning the

data.

Most registration methods assume an approximate initial registration which is then re-

fined. The registration is an iterative process that improves the registration until the process

converges. Typically scanned points in one view are paired with points in another view, us-

ing various heuristics so that the paired points would correspond to the same surface points.

Using those pairs the surfaces can be moved closer together, and the hope is that the point

pairing becomes easier and more reliable. We have developed a better point pairing method

that simultaneously establishes all the correspondences between the two scans by project-

ing the colored geometry onto the scanner image plane, aligning the resulting color images

(2D image registration is a much simpler problem), and pairing surface points projecting

to the same point on the image plane. The range data is then moved closer using a robust

statistical regression method. This approach pairs most points with their true corresponding

points in the other view, and typically converges in only a few iterations, while traditional

methods take much longer and may even produce inferior results.

When simultaneously registering a large collection of views, the correspondence prob-

lem becomes even more severe. Our solution begins with registering each view with several

neighboring views in a pairwise fashion. After a view has been registered with respect to

another view, it is easy to find corresponding points simply using spatial proximity. The
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established pairings are stored, and finally the registration transformations for all the views

are found simultaneously using the stored point pairs.

6.2.1 Future work

Better 2D image registration

The weak link in our registration method is the 2D registration of an image of a mesh with

another color image. The method works fairly well if the images were taken in similar light-

ing conditions and there is a large overlap. However, when the scans are taken in differing

lighting conditions, the image registration becomes unstable and unreliable as the corre-

sponding surface locations have different colors, so a more robust 2D registration method

would be useful. Registration methods based on Fourier and wavelet analysis aim to align

features in different frequency bands and are less susceptible to slow or constant color dif-

ferences.

6.3 Surface reconstruction

6.3.1 Initial mesh construction

The most difficult part on surface reconstruction is to correctly determine the connectivity

of the surface. If we are first given a rough estimate of the surface with fixed topology, the

problem becomes a much easier function estimation problem. We initially used the Hoppe

et al. [1992] algorithm to create initial meshes, but we noticed that the algorithm is not

very robust if the assumptions of uniform and low-noise surface samplings are not met. We

developed a hierarchical space carving algorithm that is much more robust in the case of

missing and noisy data. While Hoppe et al.’s algorithm works with unstructured data, our

method requires the input to be in the form of range maps. The algorithm partitions space

into an octree and processes it hierarchically. If, based on sensor data, it can detect that an

octree node (a cube) is outside the object, it marks that space as such. On the other hand, if
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it cannot determine that the whole cube is fully inside or outside the object, it subdivides the

node and performs similar investigations on the eight descendent cubes. Finally, it extracts

the boundary between the outside cubes and all the other cubes. The result is an approximate

surface close to the actual surface. The surface is a proper 2D manifold; possible holes due

to missing data are filled with a plausible surface. Our inspiration for this approach was the

system developed by Curless and Levoy [1996]. Our method is much simpler to implement,

processes the space in a hierarchical fashion which leads to savings in execution time and

space, and our approach can better deal with thin surfaces.

Future work

Our method produces a blocky surface as each face can only be parallel or perpendicular to

the neighboring faces. We could post-process the resulting mesh to better conform to the

data by projecting the mesh vertices into the data. We could in fact use the same weighting

scheme that Curless and Levoy used. The difference is that they first estimate the surface

distance function and then extract the surface. In our case the mesh is extracted first, and

now we can better deal with thin surfaces: all we have to do is to make sure that the vertices

are not positioned so that the surface self-intersects. In Curless and Levoy’s method each

range measurement influences the distance function estimate of several cubes; in our case

each mesh vertex is influenced by several range measurements.

6.3.2 Mesh optimization

The initial mesh that we construct using our hierarchical space carving algorithm is pre-

cisely that: a starting point to obtain a mesh that more closely fits the data and is as sparse

as possible while still being able to closely approximate the object. We use the Hoppe et al.

[1993] algorithm for the mesh optimization. The method iterates between modifying mesh

vertex locations to better fit the mesh to the data and stochastically simplifying the mesh.
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Future work

There are many possible improvements to the mesh optimization method that we used [Hoppe

et al. 93], some of which appear in Hoppe’s later work [Hoppe 96, Popović & Hoppe 97]

dealing with geometry simplification and progressive transmission of geometric models.

Hoppe’s 1996 algorithm places each of the possible edge collapses in a priority queue based

on how much the energy would change after the collapse. Edges are then collapsed in suc-

cession until the desired size of the mesh is achieved. With this approach there is no need

for the representation penalty crep. However, it is possible for a good mesh configuration to

remain undetected because the edge collapse is the only mesh transformation that is used.

Other possible improvements include using our volumetric information to penalize op-

erations that bring the mesh into free space. It is also possible to try other optimization

schedules. For example, Hansen et al. [1996] showed that by alternating between periods

of vertex insertions and periods of vertex removals, they were able to obtain much better

fits to the data than would be possible by just simplifying a dense mesh or refining a sparse

mesh.

6.4 View-dependent texturing

The visual appearance of an object is determined not only by its geometry, but also by the

surface color and texture. The less uniform the color, the more important role it typically

plays. We have two reasons to use view-dependent texturing, where the texture used to de-

termine the color changes depending on the viewing direction, rather than static texturing

where each surface element has exactly the same colors independent of the viewing direc-

tion. The first reason is that the scan data is view-dependent: the accuracy and sampling

density of both geometric and color data depend on the relative orientations of the surface

and scanning direction. The second and more important reason is that we can use view-

dependent texturing to compress geometry. The original surface may contain fine detailed

geometry and thus appears different when viewed from different directions. Even if our
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approximation does not directly capture that fine geometry, we can capture its appearance

using view-dependent texturing.

We have developed two approaches for view-dependent texturing of reconstructed sur-

faces using color images. The first method in essence projects a few color images onto an

approximate surface model. In practice, the projection starts from the virtual viewer where

a ray is projected from the viewpoint through a pixel. The ray is intersected with the sur-

face model, and the intersection point is projected back to the color images, producing a

candidate color from each image to the original pixel in the viewer. The candidate colors

are blended using weights that depend on how closely the viewing direction of a color im-

age matches that of the virtual viewer, how well the candidate pixel samples the surface,

and how close the candidate pixel is to the object silhouette.

In the second method the range scans are modeled individually; there is no single com-

plete surface model. The view-based models are textured with the associated color images,

and the virtual viewer separately renders several of these models from the current view-

point. Colors from the same pixel of the separate partial images are combined using the

same weights as in the first method.

While the first method integrates the geometric data in 3D and then projects color data

onto the image using the geometric model, the second method combines color and geometry

for each scan and integrates the data of several scans in run-time and in screen space.

6.4.1 Future work

Better automatic mesh construction

Currently we build the view-based models interactively. The user first interactively sepa-

rates the object from the background. Then the user adds vertices until he or she is satisfied

with the polygonal approximation. While the user decides the pixel locations of new ver-

tices, the program optimizes the depths of the vertices (using the conjugate gradients method

[Press et al. 92]) to keep the mesh close to the data. In the end, the user selects the trian-
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gles that should be kept, and the program discards the triangles that project to background

or cross step edges.

Building view-based models is not a central part of our work; instead, our main goal in

view-based rendering is to demonstrate the feasibility of the idea. However, for a work-

ing modeling system it is clearly desirable to automate this task. Garland and Heckbert

have recently developed a fast mesh simplification method that seems like a good candi-

date [Garland & Heckbert 97].

An alternative approach

As previously mentioned, our first approach can be used with any kind of surface represen-

tation, not just with triangle meshes. With triangle meshes, we are able to use texture map-

ping hardware to speed up rendering. Rather than painting a pixel at a time, this approach

would texture map the object a triangle at a time.

The preprocessing consists of projecting the vertices of the mesh into each input image

and determining the visibility of the triangle in that view using the triangle’s orientation

and the view’s range data. With each triangle we store pointers to the images in which it

is visible, along with texture coordinates for the vertices and an average sampling quality

weight. At run-time the program chooses for each triangle that is visible from the viewer

a few (e.g., 1–3) views whose viewing directions do not differ much from the current di-

rection, calculates a directional weight for each selected view, multiplies it by the sampling

quality weight, and scales the resulting weights of the selected texture patches so that they

add to one. Then the selected textures can each be rendered to the same triangle using the

scaled weight as a blending factor.

Relighting

Our view-based texturing approach can only be used to view objects in the lighting condi-

tions that prevailed when the color images were obtained. It is possible to extend our method
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to allow relighting of the object in different illumination conditions. The idea is to store a

reflectance distribution function in place of a color for each pixel of each input image.

A practical setup would require arranging several light sources at various known po-

sitions around the working volume of the scanner. First, the object geometry is scanned

once. Then, without moving the object or the cameras, several color images are taken, each

in different known lighting conditions. From this information, we can estimate a unidirec-

tional reflectance distribution function for each pixel. The distribution gives the observed

radiance as a function of wavelength and the direction of the incoming light. Some results

using synthetic models and lighting are reported by Wong et al. [1997].

In our current method, the color value of a contributing image ray is determined by look-

ing up a stored RGB value. The only difference in the proposed method would be to change

that lookup to an evaluation of the reflectance function associated with the ray. Notice that

this approach would automatically encode many lighting effects, such as self-shadowing,

diffuse inter-object reflections, and to a certain degree, even specular highlights, without

the need to model them explicitly.
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