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ABSTRACT

Progress in mobile graphics technology during the last five years has been swift, and it has followed a similar
path as on PCs: early proprietary software engines running on integer hardware paved the way to standards that
provide a roadmap for graphics hardware acceleration. In this overview we cover five recent standards for 3D and
2D vector graphics for mobile devices. OpenGL ES is a low-level API for 3D graphics, meant for applications
written in C or C++. M3G (JSR 184) is a high-level 3D API for mobile Java that can be implemented on top
of OpenGL ES. Collada is a content interchange format and API that allows combining digital content creation
tools and exporting the results to different run-time systems, including OpenGL ES and M3G. Two new 2D
vector graphics APIs reflect the relations of OpenGL ES and M3G: OpenVG is a low-level API for C/C++ that
can be used as a building block for a high-level mobile Java API JSR 226.
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1. INTRODUCTION

Few years ago, at the turn of the millennium, interactive mobile graphics sounded like a contradiction in terms.
Mobile devices, such as cellular phones, had very small monochrome displays, slow CPUs, and little memory.
Today, several APIs exist both for 2D and 3D graphics, there are hardware designs to accelerate their execution,
and the features of mobile graphics engines begin to rival those of desktop systems. The change has been very
quick.

There are several reasons why mobile devices have more limited resources than are available on desktop. The
most fundamental reason is that mobile devices have to obtain the power from batteries. As the amount of power
is limited, also the performance of the system must be limited lest the battery runs out too quickly. Also, the
small size of the devices limits how much power can be consumed, even if better batteries were available. Liquid
cooling or fans are not practical, so great care must be taken in thermal design to avoid hot spots that might
burn the whole chip. Finally, most mobile devices are mass-market consumer products, for which customers are
typically not ready to pay as much as they might for a high-performance engineering or even home entertainment
workstation.

Yet the resources have improved. The CPU development has followed Moore’s law1 yielding smaller and
higher performance CPUs. Similarly, the amount of available memory has increased. Perhaps the most important
enabler for graphics, however, has been the fast improvement of displays. That development was first fueled
by the demand from digital cameras, though now the greatest demand probably comes from mobile phones. A
typical mobile phone around year 2000 had a 84× 48-pixel 1-bit monochrome display, refreshed a few times per
second, but today 16-bit RGB displays are becoming the norm, with a typical display resolution around 320×240
pixels, refreshed 30 times per second.

The application that drives the graphics technology development on mobile devices most seems to be the
same one as on PCs: interactive entertainment, especially gaming. According to some reports the worldwide
mobile gaming market was worth two billion dollars in 2005 and it is still rapidly growing. Other entertainment
applications include virtual pets and animated screen savers. Some uses do not require a 3D API, 2D vector
graphics is often sufficient for animations and presentations. Both 2D and 3D graphics can be used to spice up
the user interface, as well as to display mapping information.

Lots of traditional 2D graphics is bitmap graphics where the main primitive is a raster image that is directly
pasted on a screen, while 3D graphics is based on vectorized shapes that are first projected to a virtual camera
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before displaying on the screen. Bitmap graphics works efficiently for static content at constant resolution.
However, for animated bitmap graphics the storage requirements grow rapidly since each frame of animation
must be stored as a separate bitmap. Also, if the same content is displayed on screens of different resolutions,
the images have to be filtered, which blurs sharp patterns such as text when the image is minified and creates
blocking artifacts when the image is magnified. Since mobile devices usually do not have hard drives, and the
screen sizes and even orientations vary a lot, vector graphics has several advantages over bitmap graphics on
mobile devices.

This article is a survey of recent open standards for mobile vector graphics. We cover OpenGL ES and M3G,
two 3D APIs; Collada which is an interchange format and API for 3D graphics content; and two 2D APIs,
OpenVG and JSR 226.

2. OPENGL ES

OpenGL ES2 is based on OpenGL,3–5 probably the most widely adopted 3D graphics API ever. OpenGL is the
main 3D API on MacOS, Linux, most Unixes, and it as also available on Windows. Similarly, OpenGL ES has
now been adopted as the main 3D API for Symbian OS. OpenGL itself is based on an earlier IRIS GL API4 and
has been the basis of several high-level APIs such as Open Inventor,6 VRML,7 and Java 3D.8 OpenGL is a
low-level API which abstracts the graphics rendering process into a graphics pipeline that closely matches many
hardware implementations.

OpenGL has a sound basic architecture which potentially keeps the API compact. All features are orthogonal,
meaning that it is quite easy to predict the effects of enabling or disabling a feature, and orthogonality keeps
both HW and SW implementations modular. However, OpenGL was not designed to minimize the size of the
API and its memory footprint, and it has evolved through several iterations. Also, it has features meant for 2D
graphics such as user interfaces and presentation graphics, yet it doesn’t provide a full feature set for high-quality
2D presentations. This means that in some cases the same end result could be obtained through several ways,
and not all functionality has found widespread use.

The Khronos Group (www.khronos.org) took OpenGL as a starting point for a leaner version targeted for
Embedded Systems, OpenGL ES.9 The main design goals were minimizing the use of resources that are scarce
on mobile devices. The API’s footprint (size of the implementation) should be minimized, and expensive but
rarely used functionality, as well as redundancy, should be eliminated. A detailed study on the design of OpenGL
ES is available by Pulli et al.10

2.1. OpenGL ES 1.0

The first version of OpenGL ES aimed to create an API that enables a compact and efficient implementation on
mobile devices such as cellular phones that have only HW support for integer arithmetics. The standardization
work begun in 2002 and the specification was released in summer 2003.

OpenGL ES 1.0 pipeline begins with vertex arrays that define vertex positions, normal vectors, texture
coordinates, and colors and materials. The vertices are transformed using modelview and projection matrices
and lighted using the Phong lighting model. The vertices are combined into point, line, or triangle-based
primitives, which are rasterized, that is vertex data is interpolated for each pixel within the primitive. A color
from texture map can be combined with the triangle color, several tests such as depth, alpha, stencil, and scissor
tests can eliminate the pixel, and finally the pixel color can be blended with the earlier color on that pixel.

The first design target, compactness, was mostly achieved by eliminating features from OpenGL 1.3.3 How-
ever, some features are more basic than others, and more difficult to emulate using the remaining features or
application code than others. Features in the back end of the graphics pipeline belong to such category, especially
on systems with HW rasterization support that provide no direct access to the frame buffer. Therefore OpenGL
ES retained all the fragment operations such as blending modes and logic operations. Texture mapping API was
slightly simplified without sacrificing its expressive power. 1D and 3D textures were eliminated, but 2D textures
(that can trivially emulate 1D textures) were retained. Desktop OpenGL had different ways to define texture
coordinates for single and multitexturing, OpenGL ES unified the entry points and kept only the multitexturing
version, though implementations do not have to provide more than one texture unit.



On the other hand, features that are in the front end of the pipeline can be easily emulated in application
code. Such functionality includes the GL Utility library, spline evaluators, feedback and selection modes, display
lists, automated texture coordinate generation, and user clip planes. Also queries of the dynamic state of the
API were eliminated as an application can keep track of the state itself.

Removing redundancy makes the API more compact. All of OpenGL’s 2D operations can be emulated through
the remaining 3D functionality, hence most of them were removed. For example line stippling and drawpixels
(pasting a 2D pixel rectangle on screen) can be emulated through texture mapping. The original OpenGL 1.0
way of defining the primitives to be drawn consisted of a begin-statement that starts the primitive, followed
by an arbitrary sequence of changes to the current value of a vertex position, normal, texture coordinates, or
color, possibly mixed with application code, followed by an end-statement. This makes a quite complicated
state machine. OpenGL 1.1 introduced vertex arrays, which combined all the vertex information into a few
arrays which can be passed to the graphics API in a single function call. As this enables both a simpler and
faster implementation, vertex arrays became the only way of defining primitives in OpenGL ES. Also the set
of primitives was simplified. Only point, line, and triangle-based primitives were kept, while quadrangles and
general polygons were eliminated. Quads and polygons are typically internally split into triangles for rendering
in any case, and in case of non-planar polygons, are not uniquely defined.

OpenGL uses heavily floating-point numbers, but a typical hand-held device does not have hardware support,
and emulating IEEE floats11 on integer-only hardware can be quite slow. This problem was tackled with several
approaches. For example, all double precision floats were eliminated from the API and replaced with single
precision floats. Additionally, a new data type was created, glFixed, which is a 32-bit fixed-point number
consisting of a signed 16-bit integer part followed by a 16-bit decimal part. For every function with floating-
point arguments, a variant was created that takes in fixed-point arguments. The main profile, called Common
Profile, retains all OpenGL accuracy requirements for matrix operations, hence makes the profile easy to use. For
very limited systems, the Common-Lite Profile eliminates all floating-point functions from the API and relaxes
the range and accuracy requirements of matrix operations, making the profile even more compact, but also more
difficult to use since the matrix operations can quite easily overflow.

There is also a third profile, called Safety Critical Profile. Since that is meant for environments such as car
and aviation displays and medical devices, where expensive safety certification is required but more hardware
resources are typically available, the profile is fairly different from the “mobile” Common Profile and is not
described here.

2.2. OpenGL ES 1.1

OpenGL ES 1.1 was completed one year after the first version. Whereas 1.0 was as minimalist an API as possible,
1.1 targets systems that have a bit more resources, including possibly specialized graphics hardware.

Seven new features were introduced, five of them mandatory and two optional. Possibly the one making
the biggest difference in visual quality is better support for texture mapping. Now it is required that the
implementations support at least two texturing units, making multitexturing possible. Also dot3 texture mapping
is available, allowing rendering objects consisting of relatively few polygons, yet appearing as if they had very
detailed geometry.

Texture maps were encapsulated in texture objects already in 1.0, allowing caching texture data on the graph-
ics engine, providing faster execution and lower power consumption. In 1.1 also vertex data can be encapsulated
in a vertex buffer object, providing similar performance benefits.

Point sprites allow defining a texture map that can be projected with a single vertex (as opposed to using two
triangles and four vertices), rendered as a screen-aligned rectangle, and attenuated in size based on the distance
from the camera. This provides efficient support for particle effects such as fire, smoke, or rain. A user clip plane
is now available, useful for example for portal culling, and dynamic state can be queried, which makes it easier
to create reusable software components that can store the API state, perform its own rendering, and restore the
state, without the application having to explicitly keep track of the global state.

The two optional extensions are draw texture, which allows using the texturing machinery to copy screen-
aligned rectangles to the frame buffer, and matrix palette, which supports linear blend skinning useful in ani-
mating articulated objects such as human characters.



Figure 1. Example of OpenGL ES 1.1 content.

2.3. OpenGL ES 2.0

In OpenGL ES 1.x, the graphics pipeline has fixed functionality. That is, the algorithm of each pipeline stage is
fixed, though most stages can be parameterized (e.g., choosing the blending mode) or be disabled so the data just
by-passes that stage unprocessed. OpenGL 2.0 defines the OpenGL Shading Language,12 which allows two parts
of the graphics pipeline run a program called a shader. The vertex shader replaces the vertex transformation
(both modeling and projection) and lighting stages of the fixed-functionality pipeline. Each vertex is processed
separately, and the triangle connectivity cannot be changed, but by associating other data such as the positions
of the neighboring vertices arbitrary, even non-linear combinations and transformations can be applied to the
vertex. Also, an arbitrary lighting model can be applied that may either more closely approximate physical
light-matter interaction than the Phong lighting model used in OpenGL and OpenGL ES 1.x does, or produce
non-photorealistic shading models such as cartoon rendering. The vertex shader is followed by a stage that
interpolates data associated with vertices, and for each fragment (a sample of a pixel) within a triangle (or line
or point) a fragment shader is executed. For example, for high-quality lighting the lighting calculations can be
performed separately for each pixel rather than at vertices. The fragment shader can access interpolated vertex
data, as well as previous values written into that fragment, but cannot access the values of neighboring fragments
(though rendering to texture and multipass algorithms can overcome even that limitation). Before the values are
committed to the frame buffer, a few additional fixed-functionality stages are applied to the fragment (various
tests, color buffer blend, and dithering).

OpenGL ES 2.0 adopted the OpenGL shading language with few modifications. However, while desktop
OpenGL decided to keep all the old fixed-functionality entry points, OpenGL ES simplified the design by elim-
inating all the functionality that shaders replace (all matrix and lighting operations for vertex shader, texture
mapping, color sum, and fog for fragment shader). Additionally the pipeline was simplified by eliminating user
clip planes and logic operations. Removing the redundant fixed functionality enables a more compact implemen-
tation of the API, as well as makes it simpler to use. Though the 2.0 API is not backwards compatible with
1.x, the API was designed so that hardware manufacturers can provide both 1.x and 2.0 drivers for the same
hardware, allowing 1.x application to be executed on the same device.

2.4. EGL

EGL2 is an API originally designed to support and standardize the integration of OpenGL ES to the software
platform or operating system. It is similar to GLX13, 14 and abstracts handling of resources such as frame buffers
and window. EGL can provide OpenGL ES with three types of rendering surfaces: windows (on-screen rendering



Figure 2. M3G has extensive animation support, including mesh blending that allows interpolation and exaggeration
based on a few target meshes.

to graphics memory), pbuffers (off-screen rendering to user memory), and pixmaps (off-screen rendering to OS
native images). Also the rendering context (the abstract OpenGL ES state machine) is allocated through EGL,
and different rendering contexts may share data such as texture or vertex buffer objects.

Also OpenVG (see Section 5) has adopted EGL, and EGL has been amended so that image data can be shared
between OpenGL ES and OpenVG contexts. It is possible that EGL evolves into a generic system integration
API that can be adopted by other Khronos APIs, such as OpenMAX that deals with imaging and video.

3. M3G

OpenGL ES is a low-level API aimed for C or C++. Even though there are some mobile platforms such as
Symbian OS and embedded Linux that allow end users to install new C/C++ applications, and the number of
such devices is growing, that number is still small compared to devices that support mobile Java (or J2ME, Java
2 Micro Edition). Therefore a 3D API for J2ME is needed as well.

One option would be to create a thin wrapper that gives the programmer almost a direct access to OpenGL
ES, and such a wrapper is being defined in JSR 239 (JSR = Java Standardization Request). However, that
standard is not complete yet, and it is unclear how widely it will be adopted.

M3G, or Mobile 3D Graphics API for Java (JSR 184), is a high-level API. The key reason for choosing a
high-level API over a low-level one is that mobile Java is much, up to 10-20 times slower than carefully written
C or assembly code.10 A typical application needs to do many other tasks than rendering, for example object
and camera transformations, object database or scene graph traversal, keyframe animation, and mesh morphing
and skinning. If the 3D rendering is a relatively small portion of the total workload, hardware-accelerating the
rendering portion will not significantly accelerate the complete application. However, if a high-level API includes
many of the other common tasks described above, the API can be implemented in fast C or assembly code,
leaving only the control logic to Java.

One possible approach in defining M3G would have been to do as was done with OpenGL ES: take an existing
API and make a more compact version of it. A natural candidate was Java 3D.8 However, a simple subset of the
API was not feasible, changes and extensions would have been needed. Instead, a completely new API, which
borrowed many design principles from Java 3D, was created

The API defines a set of nodes that represent components such as Camera, Light, and renderable objects
such as Sprite3D and Mesh. The renderable objects have an associated Appearance object, which again can have
components such as Material (colors for shading), CompositingMode (defines blending, depth buffering, alpha
testing, and color masking), PolygonMode (polygon culling and winding, shading type, perspective correction



hint), Fog (fades colors based on distance), and Texture2D (texture blending and filtering modes, texture trans-
formation, and Image2D containing the texture map). Sprite3D is a 2D image with a position in 3D space and
can be used for billboards, labels, or icons, while Mesh represents 3D objects. A Mesh consists of a VertexBuffer
defining positions, normals, colors, and texture coordinates, and a set of IndexBuffers which connect the vertices
to triangle strips. Each IndexBuffer also has a matching Appearance object. There are also two special types
of Meshes. A SkinnedMesh can be used to animate an articulated object, such as a human character, that has
a continuous “skin”. Vertices can be associated with a set of bones, and a weighted combination of bone trans-
formations is applied to animate the vertex locations. A MorphingMesh is useful for animating unarticulated
objects, and is often used for facial animation. It takes in a collection of target meshes with the same connectiv-
ity, and the output is a linear combination of the target meshes, allowing both interpolation and extrapolation
of the targets.

The nodes can be connected to a scene graph, rooted by a World node. A Group node facilitates hierarchical
modeling, and each node has a 3D transformation as an inherent component. Each node must have a unique
parent, which means that the same object cannot appear twice in the scene graph. However, the actual data,
such as vertex or index buffers can be shared, enabling memory savings through instantiation. Other scene graph
functionality includes finding objects with a matching UserID tag and finding the closest object that intersects
a given 3D ray.

Animation is a key part of interactive 3D content, and M3G has extensive support for animation. In addition
to the SkinnedMesh and MorphingMesh classes, just about every property can be keyframe animated, and there
are several ways of interpolating the keyframes. The API also includes a file format that allows all static API
structures be encoded into binary files and loaded up. The existence of a file format facilitates separation of the
graphics content from application logic, allowing the artists and programmers to work separately but making it
easy to combine their work. The combination of a scene graph, animation support, and file loader makes it also
possible to create a simple animation player in about ten lines of code.

The API allows the programmer to render the whole scene graph at once (retained mode) as well as rendering
a branch or individual node at a time (immediate mode). The scene graph rendering does not create side effects
such as animation, the user has to explicitly call for animate to update the scene graph animations, and align
that applies auto-alignments, e.g., for billboards, before calling render to draw the scene graph.

The rendering model is the same as in OpenGL ES. The two standards were defined concurrently, partly by
the same people. It would be feasible that a single mobile device would support both APIs, and the same basic
graphics engine, especially if hardware accelerated, should be able to support both APIs. In fact, a recommended
way to implement M3G is to implement it on top of OpenGL ES.

4. COLLADA

The APIs enable the execution of interactive 3D content, but creating such content can be a complicated and
expensive task. Creating interesting content merely through programming is usually feasible only for toy examples
and technology demonstrations. Design of interesting 3D scenes, attractive objects and characters within scenes,
and their interaction requires specialized tools. A large collection of commercial tools exists for creating the
geometry of models, their appearance including material properties and texture maps, and their animations.
Another set of tools organize that data and massage it into a format suitable for interactive rendering through
APIs such as OpenGL ES or M3G. Finally, tools called effects or FX are used to control the rendering, especially
in case of multipass rendering techniques. The problem is that these tool chains are very restrictive. For example,
editing data with one set of tools probably makes it impossible to modify aspects of the model with another tool
and then continue editing with the first tool. Importing data to other tools not included in the highly tailored
tool chain may be impossible. Also, most tools exist only for APIs available for desktop or game consoles, and
creating a new suite of tools for the new mobile APIs is an expensive and slow undertaking.

Collada is a set of documents (which can be stored as files, or in a database) and an API that addresses these
issues. It is an interchange format for 3D assets that retains all information of the object. It is glue that binds
together various content creation tools and allows applications to talk with each other using the same language.
It also allows exporting the data in a format that is suitable for different environments, making it possible to



Figure 3.

Collada facilitates creation of interactive content with digital content creation tools and exporting it to a variety of
systems, in this case to an M3G file displayed on a mobile phone.

create mobile content with tools originally created for desktop of consoles, as well as supporting creation of
content that should run on multiple types of devices. Collada started as an open source project but has now
been included into the Khronos standard family.

Collada data is stored in structured XML documents. Collada includes a set of libraries for things such as
camera, geometry, and so on, and it is mainly extended by adding new types of library. The data items are
called assets, such as geometry that may include arbitrary associated data in addition to the object shape and
connectivity. Objects can be combined into a scene graph, and there is support for animation and skinning. The
latest version (1.4, the first version since Collada joined Khronos) supports physics for basic rigid body objects
that have joints. It also supports FX, which encode multi-pass rendering effects. FX handles the selection of
appropriate state changes and data needed for each rendering pass, including the selection and linking of shader
programs if the API supports shaders. Finally, version 1.4 includes support for OpenGL ES and M3G content.

5. OPENVG

Original OpenGL is not a pure 3D API, it contains several 2D elements. For example lines have width that is
defined in the screen space instead of in 3D, and the lines can be stippled or dashed and the dashing is defined
in screen space as well. During creation of OpenGL ES 1.0 there was discussion whether OpenGL ES should
either be expanded to have more complete 2D functionality so that OpenGL ES could be used to implement an
SVG (Scalable Vector Graphics) player, but in the end OpenGL ES remained an almost pure 3D API. The new
basic primitive required by SVG, SVG-Tiny, Macromedia Flash, and the like, is an arbitrary polygon made of
smooth Bezier patches and straight line segments. While uniquely defined in 2D, there is no straightforward and
general extension to 3D for a polygon made out of non-planar Bezier segments.

Yet there is a clear need for high-quality 2D vector graphics functionality. Lots of digital content is inherently
2D, such as diagrams and maps (although 3D versions can sometimes be useful). Having a primitive that is
smooth (Bezier) rather than approximating smoothness by combining linear segments (lines, triangles) makes for
a more economical representation and higher quality images, regardless of the level of magnification. A 2D API
makes it easier to incorporate many elements such as dashing, end caps, and line join styles, and other features
that do not necessarily have a natural mapping into 3D.

OpenVG is a new low-level API for high-quality 2D presentation graphics. The structure of the API is quite
similar to OpenGL ES so application developers familiar with OpenGL ES should be able to learn OpenVG



Figure 4. Examples of OpenVG elements. Paints include both linear and radial gradients and patterns in addition to
simple solid colors. Various fill rules can be used to define the inside / outside areas of polygons. Masks can be used to
select a shape out of an image. Images can be transformed using a general planer projective mapping, which enablers
viewing images in apparent perspective. Strokes have several end caps and joints. Paths allow using Bezier curves as
their components.

quickly. The target applications for which the API was developed include SVG viewers, portable mapping
applications, e-book readers, games, scalable user interfaces, and even low-level graphics device interfaces (GDI)
of mobile operating systems. Like in OpenGL ES, the use of system resources is abstracted through the use of
EGL, and OpenVG and OpenGL ES may interact with each other by sharing image data and rendering into the
same drawing surface.

OpenVG can be described using a similar pipeline as is familiar from OpenGL. The OpenVG pipeline consists
of eight main stages. In OpenVG, all the shapes are described using paths consisting of Bezier or line segments.
In the first stage the paths are created. The second stage creates a new path corresponding to the stroke geometry
if the path is to be stroked, that is, if it is to get an outline. The strokes are parameterized by end cap and line
join styles, line width, and dashing, among other things. The third stage transforms the paths using an arbitrary
affine transformation. The fourth stage rasterizes the continuous paths, that is, determines which pixels are
covered by the shapes. If a pixel is only partially covered by a shape, antialiasing can create a partial coverage
value. In the fifth stage the pixels are clipped and masked to remain within drawing surface and application-given
scissor rectangles and alpha masks. The sixth stage creates a paint for the remaining pixels. In addition to a
simple color, the paint can be either a linear or radial gradient, or even an arbitrary pattern of shapes. The
seventh stage is applied if a raster image is being rendered, in which case a planar projection is applied to the
input image, and the image is sampled and combined with paint color and alpha values according to the current
image drawing mode. The final stage combines the resulting color, alpha, and antialiasing information with the
information already in the destination surface according to the current blending rules. Figure 4 illustrates some
OpenVG features.

6. JSR 226

In the previous section we mentioned SVG players as one of the target applications for OpenVG. SVG (Scalable
Vector Graphics), a W3C recommendation for vector graphics, is a language for describing two-dimensional
graphics and graphical applications in XML. Some new browsers such as Firefox include now SVG support,
whereas for some others a plug-in is required. SVG includes also a DOM (Document Object Model) which allows
efficient vector graphics animation via ECMAScript or SMIL. However, SVG documents are mostly designed
for scripted animations or presentations that can react to events, controlled by the SVG player, rather than
producing complex stand-alone applications. SVG-Tiny is a profile of SVG that is designed to be suitable for
mobile phones.

JSR 226 (Scalable 2D Vector Graphics) is a J2ME API that encapsulates SVG Tiny 1.1 functionality. It
provides support for the XML / SVG Micro-DOM, and the Java programming language replaces the need for



Figure 5.

Examples of content generated using JSR 226. A 2D game, an interactive map with variable levels of detail, an animated
cartoon, the weather forecast for the next six days.

an additional scripting language. JSR 226 provides two different modes. The first mode is a straightforward
playback of SVG animation content, as shown in the third image of Figure 5. The second one gives the full control
to the application, which can selectively build up an SVG description and render and modify it arbitrarily under
Java program control, as demonstrated in the first, second, and fourth images in Figure 5. JSR 226 provides
scalability and easy customization to J2ME applications, for example the game example (first image in Figure 5)
is designed so that it automatically adapts to different screen sizes and shapes, and can change its appearance
through a set of downloadable skins. The API allows creation of programmable, dynamic SVG content that reacts
to user interaction, real-time network data such as traffic or weather information, and updates to location-based
information.

7. CURRENT STATUS

7.1. Hardware Designs

Graphics APIs place great demands for the processing power of mobile devices. Though software implementations
are possible, a dedicated hardware acceleration provides better performance. But there is also another reason
for specialized hardware, namely power consumption. For a given performance level, it is more power-efficient to
use dedicated logic rather than run the algorithm on a general processor. That would, however, assume that the
CPU can idle at least part of the time. Games often use all the available resources, thus trading performance to
power.

On desktop the main concern in graphics hardware design has been usually the performance at the cost of
power consumption, but in mobile designs the priorities are reversed. However, some approaches are useful to
tackle both of these goals at the same time. Hardware implementations use techniques such as tile-based ren-
dering15–17 and texture compression18–20 to eliminate external memory accesses (and hence power consumption)
at the cost of extra on-chip logic. Other work on mobile graphics include Akenine-Möller and Ström’s work
on anti-aliasing, texture filtering, and occlusion culling that are suitable for low-power graphics hardware21 and
Aila et al.’s work on delay streams for hardware-assisted occlusion culling.22 Kameyama et al. describe a very
low-power accelerator for geometry processing and rasterization that has been used in some mobile phones in
Japan.23

There is already a large offering of mobile graphics hardware from even larger number of vendors than on
desktop. Figure 6 shows an overview of such designs from ATI, Bitboys, Falanx, Imagination Technologies,
Mitsubishi, NVidia, Sony, and Toshiba. All of them can support OpenGL ES 1.1 level of functionality, therefore
they also accelerate M3G. Many manufacturers have already announced designs supporting OpenGL ES 2.0 level
programmable shaders. A typical design can rasterize one pixel per clock and support 1-3 million triangles per
second.



Figure 6.

A selection of mobile graphics hardware designs. The performance numbers have been scaled to assume a clock rate of
100 MHz.



7.2. Status Of Each Standard

This section covers a snapshot of the current status of the new standards as of January 2006.

The first mobile phones supporting OpenGL ES shipped in late 2004. Both OpenGL ES 1.0 and 1.1 ship
by now, mostly in software implementations, but several hardware implementations are already shipping. An
open source implementation of OpenGL ES 1.1 exists at http://ogl-es.sourceforge.net/. OpenGL ES 2.0
specification exists, but the final ratification requires two independent implementations that pass conformance
tests, which is unlikely to happen before 2007.

M3G has proved a very popular API and can be already found in most new Java-enabled handsets. The first
implementations shipped in late 2004, and by now over 100 handset models has M3G support. Especially in the
Far East several operators used to provide a proprietary 3D API for mobile Java, but now it seems M3G has
for the most part replaced them. In 2005 a minor update, M3G 1.1 was completed, it contained a collection of
minor clarifications and bug fixes. Work for M3G 2.0 may begin in 2006, that would probably incorporate some
programmable functionality of OpenGL ES 2.0.

Collada started as an open source project, but joined Khronos group in 2005. The first version that was
approved by Khronos is version 1.4, it was approved in January 2006. The new features include support for
shader effects, physics, and features of OpenGL ES and M3G.

OpenVG has quite similar situation as OpenGL ES 2.0. Both specifications were announced at SIGGRAPH
2005, hardware manufacturers have announced designs with API support, but no commercial implementations
ship so far. The work toward OpenVG 1.1 has begun, it is likely to include better support for high quality
scalable text, among other things.

The specification of JSR 226 was approved in late 2004 and the final version released in early 2005. At least
two manufacturers have announced products (Nokia 6280, 6282; Motorola i870) with JSR 226 support, but none
are available at the time of writing. Both JSR 226 and M3G (JSR 184) are going to be universally available since
they are included as required components in JSR 248, Mobile Service Architecture for CLDC, which consolidates
and aligns API specifications available on mobile devices. The work for the successor of JSR 226, JSR 287, is
just starting, the expert group is being formed. Features that it targets include better support to create and
modify animations, support of SVG Mobile 1.2 features, content streaming, and immediate-mode rendering that
is compatible with OpenVG.

8. CONCLUSIONS

The young field of mobile computer graphics has matured at a very fast speed. The first mobile graphics
engines were available in 2000 and 2001, for a few years proprietary graphics engines reigned, but starting in
2004 standard APIs and engines begun to appear and replace the proprietary engines. The latest APIs such as
OpenGL ES 2.0 and OpenVG already match the graphics features available on desktop.

Until early 1980’s mostly only researchers could access devices that could create interactive computer graphics.
Then graphics workstations made interactive graphics available to thousands of engineers, and home computers
such as Commodore 64 and Amiga did the same for even a larger number of hobbyists. In 1990’s PCs replaced
graphics workstations and made high quality graphics available in most homes. Now interactive graphics is
available on the first truly ubiquitous computing platform, the mobile phone. Ubiquitous visual multimedia is
becoming reality. The next big problem is how to create and distribute content to all these devices, tools such
as Collada should help in that task.

APPENDIX A. LINKS TO SPECIFICATIONS

This article has mentioned many specifications, they are all available online. Table 1 collects the links in one
location.



Table 1. Specifications and their locations on the web.

Collada collada.org/

Java 3D java.sun.com/products/java-media/3D/

JSR 226: Scalable 2D Vector Graphics API www.forum.nokia.com/java/jsr184#jsr226

JSR 248: Mobile Service Architecture for CLDC www.jcp.org/en/jsr/detail?id=248

JSR 287: Scalable 2D Vector Graphics API 2.0 www.jcp.org/en/jsr/detail?id=287

OpenGL, GLX, OpenGL SL www.opengl.org/documentation/spec.html

OpenGL ES, EGL www.khronos.org/opengles/spec.html

OpenVG www.khronos.org/openvg/spec.html

M3G (JSR 184) www.forum.nokia.com/java/jsr184#jsr184

SVG (1.0, 1.1, 1.2) www.w3.org/Graphics/SVG/

SVG-Tiny 1.0 www.w3.org/TR/SVGMobile

SVG-Tiny 1.1 www.w3.org/TR/SVGMobile11

SVG-Tiny 1.2 www.w3.org/TR/SVGMobile12
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