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Abstract

Obtaining a good baseline between different video
frames is one of the key elements in vision-based monoc-
ular SLAM systems. However, if the video frames contain
only a few 2D feature correspondences with a good base-
line, or the camera only rotates without sufficient transla-
tion in the beginning, tracking and mapping becomes un-
stable. We introduce a real-time visual SLAM system that
incrementally tracks individual 2D features, and estimates
camera pose by using matched 2D features, regardless of
the length of the baseline. Triangulating 2D features into
3D points is deferred until keyframes with sufficient base-
line for the features are available. Our method can also
deal with pure rotational motions, and fuse the two types of
measurements in a bundle adjustment step. Adaptive crite-
ria for keyframe selection are also introduced for efficient
optimization and dealing with multiple maps. We demon-
strate that our SLAM system improves camera pose esti-
mates and robustness, even with purely rotational motions.

1. Introduction
Modeling an environment, and tracking the camera mo-

tion with respect to the environment, is a key component
of many mobile vision and augmented reality (AR) appli-
cations, and it has been referred to as SLAM (simultaneous
localization and mapping [7, 19, 13, 27]) and TAM (track-
ing and mapping [14, 20]). We introduce a system that ex-
tends previous TAM algorithms, making them more robust,
removing restrictions on camera motions, and allowing for
online merging of disconnected map regions.

SLAM systems can use different kinds of cameras, in-
cluding monocular [7], stereo [19], and depth-RGB cam-
eras [13, 27]. Having depth at each frame simplifies ini-
tialization and pose estimation, but since depth cameras
are not as widely available as traditional cameras, monoc-
ular TAM and SLAM remain important research areas.
Moreover, the depth cameras are often limited by measure-
ment range, ambient outdoor illumination, and material re-
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Figure 1. A global view of the structure and estimated camera
poses. Triangulated 3D points are shown in blue, 2D features are
green (projected onto a unit sphere around the keyframe). A vir-
tual cube is overlaid to simulate an AR application. The features
and cube are reprojected on the input video (top-right).

flectance [18, 24].
Many TAM systems rely on sparse feature matching and

tracking. The point correspondences allow simultaneous
estimation of the camera pose and 3D location of the fea-
ture points (as in, e.g., PTAM [14]). The availability of
source code, its efficiency, and sufficient accuracy have
made PTAM popular [6, 2]. Dense SLAM methods [20]
require too much computing to be feasible for mobile real-
time applications. A client-server solution where much of
the computation is shifted to a server [3] could help, but
requires high-bandwidth and low-latency connectivity, and
uses more energy for wireless data transfer.

Most SLAM systems represent all the model points in
3D. When the baseline between the keyframes is small, the
depth ambiguity is high, and the erroneous 3D points cor-
rupt the map and ruin tracking, causing the system to fail.
To cope, the systems avoid adding points when the camera
is only rotating, but this choice throws away useful informa-
tion. Another solution is to restart tracking and mapping,
but since pure rotations do not constrain the scale of the
map, different parts of the map may have different scales.

We provide a new framework that tracks and maps both
triangulated (3D) and non-triangulated (2D) features. All
tracked features contribute to estimating the pose and build-
ing the map. Triangulation of a 2D feature into a 3D point is
deferred until enough parallax is observed from at least two
keyframes. Our key contributions are: (a) a unified frame-
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work to estimate pose from 2D and 3D features, and in-
crementally triangulate the points (deferred triangulation),
(b) a keyframe selection criterion that ensures all new key
frames contribute meaningful information, (c) a system that
handles the inherent problem of undefined scale from opti-
cal reconstruction by creating multiple sub-maps and merg-
ing them when links are discovered, and (d) a real-time scal-
able implementation released as an open source project.

2. Related Work
Our work concentrates on keyframe-based visual

SLAM [26] that works in real time and is suitable for AR
applications, as demonstrated by Klein and Murray’s PTAM
[14] and its extensions [2, 8]. In particular, we do not ad-
dress completing large structures for navigation [1, 17] or
high-quality off-line reconstructions [28]. We focus on im-
proving incremental triangulation with both wide and nar-
row keyframe baselines, and on better classification of 2D
features for efficient sparse scene reconstruction.

Gauglitz et al. [10] suggested a visual SLAM system that
can handle both parallax-inducing and rotation-only mo-
tions. The approach switches between two modes (rotation-
only and translation) and creates either 2D panoramas by
linking keyframes with homographies, or 3D maps with
rigid 3D transformations. However, the tracking module
is disconnected from the map: each frame is tracked and
registered to the previous frame only. Thus, although the
map has triangulated 3D features, only the 2D positions in
the previous frames are used by the tracking module. As
the authors point out, this compromises tracking robustness,
because no global camera tracking or relocalization can be
done. An extension [11] uses 3D feature information and
estimate an absolute position, but does not use 2D features
to improve this absolute position estimate.

Pirchheim et al. [22] introduced a Hybrid SLAM system
that gives a 3D position to all features, regardless of whether
the feature has been triangulated or not. Features that have
not been triangulated are assigned an infinite depth. Infinite
3D points correctly constrain only the rotation-component
of the pose. However, because the depth is assumed to be
known (though infinite), the computed error is incorrectly
calculated as the distance between the reprojection and the
observation, penalizing parallax between the observations.

As an alternative to classifying a feature as 2D or 3D, it
is possible to model the depth uncertainty. This fits well into
a filter-based SLAM frameworks because their design natu-
rally includes uncertainty. An inverse depth parametrization
produces a measurement equation with improved Gaussian-
ity and thus improves linearity and robustness [5]. However,
this parametrization doubles the size of the state vector for
each feature, further increasing the already high computa-
tional cost of filtering-based methods. The inverse depth
parametrization has been used in the context of keyframe-

Figure 2. Overview of our system.

based SLAM to initialize new features [25]. This improves
the convergence of feature triangulation. Yet, new features
are not used for pose estimation until after initialization. Al-
though our approach could benefit from modeling the depth
uncertainty, we focus on using all features for pose estima-
tion without the overhead of modeling the uncertainty.

3. Approach
Our system consists of three parallel threads: tracking,

mapping, and bundle adjustment (see Fig. 2).
The tracker attempts to match features in the map to the

current image. It assumes that the motion between frames
is small so it can use the previous pose estimate to aid in
the matching process. The key novelty is the use of both 3D
and 2D features in a unified framework. Both are matched
by the tracker and both contribute to the pose estimate.

The mapper checks two criteria to determine whether a
new keyframe will add meaningful information to the map.
It searches for all possible matches from the map. If a 2D
feature is observed in the new frame with sufficiently large
baseline, it is triangulated. Finally, the mapper refines the
pose of the new keyframe and the position of the observed
features simultaneously using a 1-frame bundle adjustment.

The bundle adjustment thread constantly runs in the
background and simultaneously optimizes all keyframe and
feature positions. Bundle adjustment also takes both 2D and
3D features into account using the same unified framework.

To simplify notations we define a function to normalize
a vector ν(x) = x/|x|. The notation x̃ = [x,1]> augments a
vector to homogeneous coordinates and ν̃(x̃) converts back
by dividing by the last element and discarding it.

3.1. Camera model

A camera with a very wide field of view can greatly
improve the stability of a SLAM system. However, most
available webcams have a narrow field of view, and exhibit
different types of distortion. We keep our framework in-
dependent of the camera model by defining the normalized
camera space, a 3D space restricted to the 2D manifold of
the unit sphere around the camera. Optical rays (i.e., pixels)
can be easily represented as points on this sphere, regardless
of how wide the field of view is. Epipolar geometry will be
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Figure 3. Left: the epipolar segment goes from the projection of
the point with minimum depth to that of the point with infinite
depth. Right: the distance measure has three areas: distance to
the line, distance to the minimum depth projection, and distance
to the infinite depth projection.

considered in this space because camera distortion causes
epipolar lines to become curves in image space.

The camera model defines a function φ : R3 → R2 that
projects from normalized space to image coordinates (e.g.,
for the pinhole model φ(x) = ν̃(Kx)). Conversely, φ−1 :
R2 → R3 back-projects onto the unit sphere. Finally, the
projection of a 3D point x to 2D image coordinates p of a
camera with pose [R|t] is p = φ(Rx+ t).

3.2. The epipolar segment

Our most important contribution is the addition of non-
triangulated features to the map. Say a feature is observed
in frame 0 at position m0 and in frame k at position mk. We
wish to utilize all constraints imposed by this match. The
traditional formulation of the epipolar equation constrains
the matches to lie on a line. Given the relative pose R and t
between the two frames, we can construct the epipolar line
` in normalized space coordinates for frame k:

`> = ν([t]×Rφ
−1(m0)). (1)

The epipolar lines get warped into complex curves due to
camera distortion. Note that in normalized space the epipo-
lar line can be viewed as a plane through the origin with
normal `. To avoid distortion, we calculate the displace-
ment vector to the line in normalized space:

d` = (`φ
−1(mk))`. (2)

We use the first-order Taylor approximation of φ to trans-
form this displacement to pixel units. With Jφ(x) for the
2× 3 Jacobian of φ evaluated at x, the squared distance to
the epipolar line is

Eline = ‖Jφ(mk)d`‖2. (3)

As Chum et al. [4] mention, Eq. (3) does not exploit all
the constraints because it permits points behind the cameras.
They propose an oriented epipolar constraint that turns the
epipolar line into a half-line. We take this notion further
and show that a better constraint is an epipolar segment. We
then apply this epipolar segment constraint to our matching,
pose estimation, and bundle adjustment stages.

A point on an image implicitly defines an optical ray that
leaves from the camera center and extends to infinity. Given
that we know the relative pose between two cameras, we
project any point along the ray on the second image, see
Fig. 3. The center of the reference camera (i.e., a point with
zero depth) projects to the epipole. There is also a pro-
jection on the epipolar line corresponding to infinite depth.
These two points define the epipolar segment. Any point be-
hind the epipole or farther than the infinite projection along
the epipolar line should be penalized.

We also notice that most of the epipolar segment corre-
sponds to points very close to the camera, especially when
the distance between the cameras is small. We can option-
ally set a minimum depth for all points in the scene zmin.
This may remove a large part of the epipolar segment, im-
proving matching performance and increasing robustness,
with no meaningful impact on the system’s flexibility.

When applying this constraint during pose estimation
and bundle adjustment, it is important to have a smooth dis-
tance measure. Marking points that fail the oriented epipo-
lar constraint, as suggested in [4], makes the system unsta-
ble when points are close to the epipole and may bias the
system. We propose a smooth distance measure that de-
pends on the distance along the epipolar line, λ :

mmin = φ(R(zminφ
−1(m0))+ t) (4)

m∞ = φ(R(φ−1(m0))) (5)

E2D =


||mmin−m||2 λ ≤ λmin
||m∞−m||2 λ ≥ λ∞

||Jφ(mk)d`||2 else,
(6)

where mmin and m∞ are the minimum and the infinite pro-
jections. If the match is between the endpoints of the epipo-
lar segment we use the distance to the line, otherwise we
use the distance to the closest endpoint, see Fig. 3.

The formulation of Eq. (6) is very important. It allows
the observation to drift along the epipolar line without pe-
nalizing it and permits the feature to remain an inlier as it
smoothly transitions from 2D to 3D and shows more and
more parallax. It also penalizes points with negative depth
but remains continuous and smooth, which makes it suitable
for an iterative minimizer.

3.3. Image-based similarity estimation

We assume the frame rate to be high enough so that
the change of pose between frames is not arbitrarily large.
Thus, we expect successive images to be fairly similar.
When a new frame arrives, the tracker performs an image-
based registration like Klein and Murray [15]. However,
instead of trying to estimate a 3D rotation, we estimate only
a 2D similarity S. This gives us a mapping from the current
frame to the previous frame, which we can use to make an
initial guess of feature positions in the current frame, given
that we know the pose of the previous frame.



3.4. Feature matching

Our matching procedure is similar to Klein and Mur-
ray [14], but we extend it to use 2D features for tracking.
Matching of a feature consists of two stages: selecting the
candidate locations and comparing patches. Each frame has
a collection of FAST keypoints [23]. The first stage de-
cides which of these keypoints will be compared to the ref-
erence patch. The second stage compares the selected loca-
tions and decides which are matches. The comparison stage
remains mostly unchanged from [14]. We apply an affine
warp to the original feature and compare it to a rectangular
patch in the current image using zero-mean sum of squared
differences (ZSSD). We perform a sub-pixel refinement of
the match position to minimize the ZSSD score s. Denoting
the best score by ŝ, a given candidate is considered a match
if s < min(τs,τŝ ŝ), where τs and τŝ are constant thresholds.

To select the candidate locations we first transform all
keypoint positions qk from the current frame into the pre-
vious frame’s image coordinates using the similarity S ob-
tained in Sec. 3.3 (i.e., qk−1 = Sq̃k). We then calculate the
distance from the transformed keypoint to the expected fea-
ture position. We do this on the previous frame’s image
coordinates because we know its pose, and we can project
a 3D feature directly from the map to a single position p
on the previous frame. The distance is then |p−qk−1|. For
a 2D feature the distance to the epipolar segment is calcu-
lated using Eq. (6). Keypoints with a distance below τd are
considered as candidate locations for this feature.

To speed up matching, all features that were matched
in the previous frame use this matched position as the pro-
jected position p regardless of the feature type. This allows
very efficient tracking of matched 2D features.

Note that features can potentially match many locations,
especially in the case of 2D features with repetitive texture.
Sometimes the rigid-scene constraint and the estimated mo-
tion will discard some of these matches as outliers. Oc-
casionally, more than one match position agrees with the
camera motion and scene structure. We do not discard or
ignore these matches, but keep them and use them through-
out the system. For example, each match location that has
been marked as an inlier during pose estimation contributes
another p for matching, and candidates are selected from
around all the matched positions.

3.5. Choosing a motion model

The system can estimate three types of camera poses:
pure rotation, essential matrix, and full 6 DoF pose. The
type selected depends on the features matched and motion
observed. If enough 3D features are observed, a full pose
can be estimated (rotation, translation direction, and scale).
If only 2D features are observed and they show enough
parallax, an essential matrix can be estimated. This corre-
sponds to a pose with known rotation and translation direc-

tion but arbitrary scale. If no parallax is observed in the 2D
features, the translation direction cannot be estimated, and
we assume a pure rotation with unchanged camera center.

Note that a pure 3D rotation is more restrictive than a ho-
mography as used by Gauglitz et al. [10], and this is why we
can still localize these frames in the current map. Moreover,
since the system does not penalize drift of 2D features along
the epipolar geometry regardless of the motion model, we
are able to smoothly transition from one model to the other.
Thus, the model selection is not as crucial as in [10] and
we can simply set a threshold on the outlier count to decide
between an essential matrix or a pure rotation.

3.6. Pose estimation

Pose estimation begins with a RANSAC stage. The
hypothesis generation depends on the motion model. A
full pose model uses a 4+1 method based on [9], where 4
matches are used to estimate the pose and 1 is used to ver-
ify it. To obtain an essential matrix we use the 5-point algo-
rithm [21] plus 1 match to verify the model. Finally, a pure
rotation is easily estimated from 2 points by solving for the
absolute orientation of the matches in normalized space.

We refine the pose by minimizing over rotation and
translation a cost function built from the observed 2D and
3D features. In case of a pure rotation model, the camera
center is fixed. The error for a feature with 3D position x
is the squared distance between its projection and the ob-
served position mk:

E3D = ||φ([Rk|tk]x̃)−mk||2. (7)

The error for a 2D feature observed in the image at mk
depends on the relative pose between the current frame k
and the original frame where the 2D feature was created:

R0→k = RkR>0 , (8)
t0→k = tk−R0→kt0. (9)

Using this relative pose we can construct the epipolar plane
in normalized space coordinates using Eq. (1), and the dis-
tance between its projection and the observed position is
calculated using Eq. (6).

The pose is obtained as a minimization of the errors of
all matched features

argmin
Rk,tk

∑
i

ρ(E3D,i)+∑
j

ρ(E2D, j), (10)

where ρ(c) = τc log(1+ c/τc) is a robust function inspired
by the Cauchy distribution that reduces the impact of out-
liers (measurements with an error larger than τc).

Note that for 2D features observed during a pure rotation
mmin and m∞ project to the same point. Thus Eq. (6) re-
duces to a single point distance ||φ(R0→kφ−1(m0))−mk||2.
We detect this and simplify the computation.



3.7. Map regions

As Gauglitz et al. [10] point out, the problem of arbi-
trary scale prevents us from creating one unified global map.
However, since our tracker can use information from the
current 3D map, there is no need to create “homography
groups” as they do. Instead, we recognize that all frames
must have a Euclidean pose (rotation and translation) in the
map. This is similar to [22], but instead of having groups
of panoramas, we only fix the translation component of the
frames that do not exhibit enough parallax with any view,
there is otherwise no distinction for this frame in the map.
Moreover, we are able to detect when a translation of the
camera would create scale inconsistencies, i.e., when the
camera translates while observing only 2D features. We
then create a new separate region so that information can
continue to be collected.

The system will try to find new matches between
keyframes in the background. If enough matches are found
between keyframes of different regions they can be merged.
If enough matches are found between unrelated keyframes
in the same region, a loop is detected.

3.8. Adding new keyframes

The system evaluates incoming frames in the back-
ground to determine whether they should be added as a
keyframe. Because the map also contains non-triangulated
features, we now have much better criteria for adding a
keyframe. By matching the 2D features we are able to de-
termine which areas of the new image are already covered
by features in the map. When a new frame is being consid-
ered as a keyframe, we attempt to match features from the
map until one of the following conditions happens or there
are no more features to match:

• A given number of new 2D features (τn) can be created
from areas not covered by the map.

• A given number of 2D features (τt ) can be triangulated.

• A given number of 3D features (τt ) have been observed
from a significantly different angle.

If any of these criteria is fulfilled, we add the frame to the
map. This ensures that a new keyframe will always con-
tribute meaningful information to the map and reduces un-
necessary and redundant information.

3.9. Deferred triangulation of 2D features to 3D

When a new 2D feature is added to the map, the position
p on the source image is stored, which along with the cam-
era pose T describes the optical ray along which the feature
must be located in 3D. We defer triangulating a 2D feature
until we observe another keyframe with sufficient parallax.

When a new keyframe containing a measurement of the fea-
ture is added to the map, the angle between the optical rays
is evaluated. If the angle is above a given threshold τα , the
feature is considered to have enough baseline to be accu-
rately triangulated. This allows the system to flexibly de-
termine which points should be triangulated and which not.
The 3D position x is calculated as the closest point to both
optical rays, and the feature becomes a 3D feature.

3.10. Bundle adjustment

Bundle adjustment of the entire map runs in the back-
ground. It minimizes a cost similar to Eq. (10), but over
all camera poses and point positions (with R = {R0...RK},
T = {t0...tK}, and X = {x0...xN}):

argmin
R,T ,X

∑
k→K

(
∑

i→M
ρ(E3D,k,i)+ ∑

j→N
ρ(E2D,k, j)

)
. (11)

Each sub-map will be adjusted independently. Frames that
observed only 2D features with no parallax have their cam-
era centers fixed to that of the reference keyframe.

4. Results and Evaluation
We provide a quantitative evaluation by testing our sys-

tem with videos from the City of Sights [12], a digital ur-
ban scene developed for AR research. This dataset provides
ground truth camera trajectories captured by moving a cam-
era using a robot arm. We also provide a qualitative com-
parison to previous work by testing with the raw video from
Pirchheim et al. [22] and our own captured scenes.

Table 1 shows the average timings for the different com-
ponents of our system. We test the system on a Core i7 run-
ning at 3.5 GHz. The critical component is clearly feature
matching. We note that our code has not been particularly
optimized. PTAM tracks 1000 features in real time, but its
code includes hand-crafted SSE assembly optimizations for
the matching code. Yet, even with only 400 features we
show improved accuracy in the following results. Similar
optimizations as in [16] can be used to run our system on a
mobile platform.

Figure 4 shows a comparison of ground truth camera tra-
jectory against the estimated camera poses from our sys-
tem and PTAM. In each graph, insets show that the esti-
mated pose from our system is more accurate and stable
than PTAM, achieving consistently a lower RMSE.

Figures 5 and 6 show additional qualitative results that
represent how our approach can handle pure rotation even
without stereo initialization, and how we merge the tracks
of 2D features in a 3D structure, which is not possible in
PTAM [14] or Hybrid SLAM [22]. The examples also
demonstrate how our system can handle different submaps
from the same scene, indicating the capability of loop clo-
sure and efficient relocalization.
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Figure 4. Estimated camera pose. (Scenes from the City of Sights [12]). Left: Bird’s eye scene. Center: Street view scene. Right: Top
view scene. Each graph shows the camera trajectory. An inset image in the middle shows the difference between PTAM and our approach.
Note that our estimated pose is closer to the ground truth and shows less drift.

Table 1. Performance numbers for DT-SLAM. Left duration
tracks 400 features, right duration tracks 200 features. Bundle ad-
justment used 30 keyframes and 2300 features.

Thread Component Duration (ms)

Tracking

Similarity 0.17
Feature detection 2.66
Feature matching 22.20 12.03
Pose RANSAC 4.31 3.38
Pose refinement 8.48 6.18
Total 37.82 24.42

New keyframe

Feature matching 41.62
Pose refinement 31.8
1-frame BA 193.00
Total 265.70

Bundle adjustment 666.07

Finally, a qualitative comparison with Pirchheim et al.
[22] is shown in Fig. 7. The sequence contains many pure
rotations. PTAM gets lost at each rotation. Hybrid SLAM
keeps tracking but is unable to use the observed features
during rotation for triangulation. Our system can triangulate
more features by matching features from different rotations.
More results can be found in the supplemental video.

5. Discussion

We have shown that our approach provides more accu-
rate and stable results than PTAM, one of the most popular
tracking and mapping methods, by quantitatively and qual-
itatively evaluating various datasets. Because the source
code for the most relevant previous works [10, 22] is not
available, we are unable to provide a quantitative compar-
ison with them. However, by comparing with the results
shown in Pirchheim et al.’s paper (Fig. 7) we can qualita-
tively show how our approach improves upon theirs.

The results from that video highlight two key differences
between our system and Hybrid SLAM. First, as Pirchheim
et al. mention, their panorama estimates are not first class
citizens of the SLAM map. This means that they cannot
use the information from two panorama maps to triangu-
late features, whereas our system does, resulting in a more
complete map and a more accurate pose estimate. Second,
they force 2D features to have infinite depth which penalizes
stereo displacement. This results in noticeable jitter when
the system assumes a pure rotation and the camera trans-
lates. Our system demonstrated the ability to cope with this
translation by using a flexible 2D error measure (Eq. (6))
and multiple regions.

We consider our system as the logical next step from
the contributions of Gauglitz et al. [10] and Pirchheim et
al. [22]. Those approaches switch the pipeline between
6DOF tracking and panoramic modes [10] or force 2D fea-
tures into 3D [22], whereas our approach generalizes the
use of both rotation-only (3DOF) and general 6DOF cam-
era motion into a unified framework. Our mapping mod-
ule combines the idea of avoiding relocalization by keep-
ing multiple regions and merging them, but is also able to
fuse the information from different 3D rotations into a sin-
gle global coordinate frame. Our tracking module takes ad-
vantage of the optimized map to establish 2D-3D matches
and robustly estimate a 6 DoF pose, yet we do not penal-
ize stereo displacement for non-triangulated features. Our
system is more robust to errors in the motion model selec-
tion because we can smoothly transition between models
while tracking pure rotations in the same Euclidean space.
We also provide more effective keyframe selection criteria
than conventional keyframe-based SLAM, which often add
redundant keyframes. This directly affects the amount of
computation needed for optimization stages. Finally, our



bundle adjustment component takes into account all obser-
vations from both 2D and 3D features to obtain the best
reconstruction possible.

However, because no implementations of [10, 22] are
available, we were only able to directly compare the per-
formance against PTAM. This has also motivated us into
making the source code of our system available to other re-
searchers, both to help them getting started in building a
SLAM system, and for comparing their system against ours.

It is also worth noting a few of limitations in our work.
Because we rely on keypoint-based visual feature tracking,
inherently, our approach would not work properly in tex-
tureless scenes. If a depth camera were available it could be
integrated into our tracking and mapping framework. Sec-
ondly, the matching stage is the weakest link of the system.
It consumes most of the computation time and is not as ro-
bust as modern feature descriptor matching. Finally, dras-
tic rotations may violate our assumption of smooth motion.
Integrating inertial sensors to give an initial guess for the
camera pose would increase robustness.

6. Conclusion
We introduced a new keyframe-based visual SLAM sys-

tem which handles camera motions from both pure rotation
and translation. Even with feature correspondences sepa-
rated only by a narrow baseline, our system tracks the fea-
tures locally and incrementally, and triangulates the features
once they are observed in a new keyframe with sufficient
baseline. Therefore, the proposed system does not require
an explicit stereo initialization, and gradually converges to
stable tracking and pose estimation. The evaluation shows
that our approach provides a more robust and stable pose
estimation than previously reported keyframe-based SLAM
systems. We hope that many computer vision applications
that need efficient camera pose estimation will benefit from
availability of the source code.
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Figure 5. Normal workflow with translational and rotational motion. Top row: DT-SLAM. Bottom row: PTAM. (a) Tracking with
translational motion. (b) Pure rotation begins. No new features can be triangulated. (c) PTAM gets lost due to the lack of triangulated
features. Our system estimates a rotation relative to the previous key frame. (d) A new region is created when enough parallax is observed.
PTAM is still lost. (e) Deferred 2D features are triangulated (blue points in the middle). When the two regions overlap they are merged
into one (See Fig. 6). PTAM attempts to relocalize but fails.

Figure 6. Region merging after a pure rotation. Blue represents 3D features and frames from the first region, purple are from the
second region. Green dots are non-triangulated features (projected on a unit sphere around the keyframe for display only). Left: First
region (keyframes and features) from the starting frame of sequences shown in Fig. 5 to the frame where camera only rotates (Fig. 5(b)(c);
denoted as a dotted red line). Middle: Second region created after pure rotation. Notice the scale difference between the regions. Right:
After region merge all keyframes and features are in the same Euclidean space with the same scale. Only when an overlapping region has
been triangulated, can both regions be merged into a single coordinate system.
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Figure 7. Qualitative comparison between DT-SLAM (Top row), Hybrid SLAM [22] (Middle row), and PTAM [14] (Bottom row).
We test our approach with the raw video used in [22]. In the top row, triangulated 3D points are blue and 2D features are green, while
in the middle and bottom rows they are red and cyan, respectively. (a) After stereo initialization, most points are triangulated with a
modest amount of translation. (b) Pure rotation begins. Points close to the camera have been triangulated in our approach. PTAM gets
lost due to the lack of triangulated features. (c) When a second rotation motion observes the same area, our system is able to triangulate
points observed in the previous rotation. Hybrid SLAM tracks the rotation but cannot combine 2D features and does not triangulate them.
Features are forced to have infinite depth, resulting in a lot of jitter (see the supplemental video). PTAM simply relocalized and only tracks
the previously triangulated features. (d) The camera moves in a regular motion (rotation and translation). All systems work, ours has
the most model points. (e) Again our system is able to combine two pure rotations to incrementally triangulate features. Hybrid SLAM
switched to pure rotation mode, while PTAM is lost again.


