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ABSTRACT

We present a novel approach to HDR (high-dynamic-range) image
fusion that copes with image blur degradation often present in long-
exposed images. The proposed approach can deal with both camera
and object motion blur in a computationally efficient manner suit-
able for implementation on a mobile device. The main idea is to
exploit the differences between the image degradations that affect
images captured for HDR fusion. Short-exposed images are mainly
affected by sensor noise and less affected by motion blur, whereas
longer exposed images are less noisy but potentially blurry due to
motion during their exposure. Our approach consists of two steps.
First we calculate an HDR representation of the scene by applying
a typical HDR fusion approach. This representation could be blurry
if some of the input images with long exposure time are blurry. We
then fuse the HDR result with a photometrically modified version of
the image with the shortest exposure time, which allows us to retain
the sharpness of the short-exposed image and the noise-free charac-
teristics of the HDR-fused image. The method does not assume an
invariant blur PSF over any of the input images, and hence it can
solve both for local and global blur, due to object or camera mo-
tion, respectively. We demonstrate the algorithm through a series of
experiments and comparisons on natural images.

Index Terms— high dynamic range, motion blur, photometric
calibration, multi-resolution fusion, exposure fusion

1. INTRODUCTION

Cameras have a limited dynamic range, much smaller than that of
most scenes, or even the human eye. This means low-dynamic-range
(LDR) images captured by cameras may lose detail in the very dark
or bright areas of the scene. Several hardware and software tech-
niques have been developed in order to capture the entire visual in-
formation present in a high-dynamic-range (HDR) scene [1]. The
most common approach consists of fusing a set of differently ex-
posed LDR images, that capture different regions of the dynamic
range, into a single HDR representation of the scene radiance-map.
The input LDR images can be captured by bracketing the exposure
time: short-exposed LDR images capture the details in the bright ar-
eas, whereas long-exposed LDR images provide the visual informa-
tion in the darker scene areas. Earlier approaches, such as Debevec
and Malik [2], use two steps. First they build an HDR representation
of the scene radiance by fusing multiple LDR images. Then the HDR
radiance-map is tone-mapped back to an LDR representation to fit
the dynamic range of the display or printer [1]. Another category of
techniques consists of directly providing a tone-mapped LDR rep-
resentation of the scene without an intermediate step of radiance-
map creation. For instance, the ”Exposure Fusion” (EF) approach
by Mertens et al. [3] provides directly a tone-mapped LDR image
from a bracketed exposure sequence, by applying a multi-resolution
image fusion technique.

The main limitation of the HDR techniques based on fusing a
bracketed exposure sequence consists of their inability to deal with
image blur caused by either camera shake or objects moving during
the long-exposure captures. Consequently, most HDR fusion meth-
ods have limited applicability in mobile consumer photography.

Some HDR fusion techniques can cope with ghosting artifacts
due to objects motion [4, 5]. However, these approaches assume
that all input images are sharp and only the objects in the scene
may have changed their positions between different images. Con-
sequently, these approaches cannot cope with motion blur inside in-
dividual frames due either to camera or object motion. The only
HDR image fusion approach aiming to correct the motion blur ar-
tifacts was recently introduced by Lu et al. [6]. They use iterative
multi-frame de-convolution that assumes a spatially invariant model
for the blur, and cannot cope with blur caused by moving objects, or
with ghosting artifacts. Moreover, due to the use of de-convolution
in an iterative framework, the approach has a high computational
complexity that may limit its applicability in mobile devices.

In this paper we build on noisy and blurred image fusion [7]
and develop an algorithm for blur-free HDR imaging. The proposed
method consists of two steps. First, the input LDR images are fused
to create a pair of ”blurred” and ”noisy” HDR image representations.
Second, the blurred and noisy images are fused to preserve the de-
sired visual qualities of both, i.e., low noise from the blurred image,
and edge sharpness from the noisy image. In our experiments we use
the EF technique [3] for HDR image fusion.

We start by briefly reviewing the exposure fusion algorithm
(Sec. 2). We then present our approach (Sec. 3) and experimental
evaluation (Sec. 4), and finally conclude and summarize the paper.

2. EXPOSURE FUSION

We first briefly review the main principles of the exposure fusion
technique [3]. The approach comprises two main operations: pixel
weight calculation and multi-resolution image fusion.

Pixel weight calculation: The importance of each pixel of an
input image can be weighted based on criteria such as exposure, lo-
cal contrast, color purity, etc., [3, 8]. For instance, by analyzing pixel
exposure, one would assign less weight to pixels that are either over-
exposed or under-exposed and larger weight to pixels whose inten-
sities are close to the middle of the intensity range. Another criteria
could be the level of color saturation. By combining all these cri-
teria one can build a weight map for each input image, where the
weight corresponding to a pixel reflects the importance assigned to
that pixel [3].

Multi-resolution fusion: The fusion process described in [3] is
carried on in the transform domain, as inspired by Burt and Adelson
[9]. Thus, each of the K input images Ik, k ∈ {1, 2, . . . ,K}, is
decomposed into a Laplacian pyramid L(Ik), and the corresponding
weight map Wk is decomposed into a Gaussian pyramid G(Wk).
Next the Laplacian pyramid of the output image L(I) is determined



Fig. 1. The block diagram of the proposed method.

as the weighted average of the input Laplacian pyramids, where the
weights are given by the Gaussian pyramids of the weight maps. For-
mally, this operation can be expressed as L(I) =

∑
k L(Ik)G(Mk),

where the weighted sum is calculated for each transform coefficient
independently. Finally the fused output image can be reconstructed
from its Laplacian pyramid by inverse transform.

3. THE PROPOSED ALGORITHM

Figure 1 shows the diagram of the proposed algorithm. The input
images are first registered. Next, the aligned images are submitted
to three processes: photo-calibration, pixel weight computation, and
multi-resolution fusion. In the photo-calibration step, the shortest-
exposed image is successively calibrated with respect to all other
input images, resulting in a set of increasingly brighter but noisier
versions of the darkest image. The pixel weight calculation and the
multi-resolution fusion operations are the same as in the exposure
fusion techniques described above. In contrast to exposure fusion
technique, we use the weight maps not only to fuse the original im-
ages, but also to fuse the photometrically calibrated images. At the
end of these two multi-resolution fusion processes we obtain a noisy
image and a potentially blurry image that are finally submitted to a
blurred and noisy fusion operation.

3.1. Image registration

In the registration step, one image is chosen as reference (often the
middle-exposed image), and all the other images are aligned with
respect to it. The registration parameters that align two images are
first estimated at coarse resolution, and are then progressively re-
fined by matching corners at finer resolutions. At every resolution
level we identify the best match for each reference corner feature in-
side the other image. Next, spurious corner correspondences due to
noise, or moving objects in the scene, are eliminated by RANSAC
based on an assumed motion model between the two images (we
used affine motion model). Due to their different exposures, the in-
put images exhibit significantly different brightness levels, therefore
we use normalized cross-correlation as the similarity metric for cor-
ner matching.

3.2. Photometric calibration

Since the shortest-exposed image is usually the least affected by mo-
tion blur, we use this image as a sharpness reference to improve the
result of the EF algorithm. In order to combine the visual informa-
tion between the two images, we first need to photometrically cal-
ibrate one image with respect to another to match their brightness
levels and color balances.

In this work we estimate a discrete brightness transfer function
(BTF) between two images by analyzing a weighted version of their
joint histogram. Given two images I1 and I2, the weighted joint
histogram between them (C) is

C(i, j) =
∑
x

w(i)w(j)δ[I1(x)− i]δ[I2(x)− j] (1)

where δ stands for Dirac delta function; x denotes image pixel coor-
dinates; C is an L×Lmatrix (usually L = 256); i and j correspond
to brightness levels in I1 and I2 respectively; and the weight func-
tion w emphasizes the brightness levels that are closer to the middle
of the range [0, L]. For instance, in this work we used a Gaussian
weight function w of mean L/2 and standard deviation 0.4L.

The brightness transfer function (BTF), assignes to each bright-
ness level i from one image the most probable brightness level j =
BTF (i) from the other image. We start by constraining the BTF to
pass through the highest entry (i0, j0) of C, i.e., BTF (i0) = j0.
Next, the remaining values of the BTF are calculated separately for
i > i0, and for i < i0 by solving in each case the optimization
problem maxBTF

∑
i C(i, BTF (i)). These two problems can be

solved efficiently using Dynamic Programming and imposing the
monotonically increasing condition on BTF function.

The approach of photo-calibration presented above does not
work directly in calibrating the short-exposed image with respect to
the EF result. This is because the EF result is no longer a uniformly
exposed image, but it is rather a combination of differently exposed
images. Consequently the optimal BTF function would no longer
be spatially invariant, i.e., two pixels that have the same value in
the shortest-exposed image may not necessarily map into the same
value after calibration. In order to cope with this problem we build
a photometrically calibrated version of the short-exposed image as a
combination of multiple images. Denoting the shortest exposed im-
age by I1, and the remaining longer exposed images by I2, . . . , IK ,
we first construct a set of photometrically calibrated versions of I1
with respect to each one of the remaining images, i.e., I(k)1 the image
obtained after calibrating I1 with respect to Ik, for k = 2, . . . ,K.
Next, we fuse the photometrically calibrated images I(k)1 using the
multi-resolution fusion technique with the weight maps estimated in
the exposure fusion process.

3.3. Blurry-Noisy image fusion

The blurry-noisy image fusion procedure is applied to combine the
photometrically calibrated short-exposed image (In) and the result
of the exposure fusion algorithm (Ib). The first one is affected by
noise due to short exposure but it retains a sharp representation of
the scene, whereas the result of the exposure fusion may be affected
by camera and object motion blur. In order to retain the sharpness
of In and the color representation of Ib we adopt different fusion
procedures for the intensity and color components of the two images.
For this we represent the two images in the YUV color space (similar
results have been obtained also by using the CIE-Lab color space).
Intensity fusion: The intensity channels of the two images are fused
in the wavelet domain extending our previous approach [7]. Thus,



Fig. 2. Example with object motion blur. Upper row: the input
images. Bottom row: the exposure fusion result, the photometrically
calibrated shortest exposure (i.e., noisy image), and our final result.

considering an orthogonal wavelet decomposition of the two inten-
sity channels Ỹb and Ỹn, and denoting their difference by D̃ =
Ỹb − Ỹn, we calculate the wavelet decomposition of the combined
intensity channel Ỹ as a weighted average

Ỹ (s, o,x) = Ỹn(s, o,x) + ws,o,xD̃(s, o,x), (2)

where the subscripts s and o stand for scale and orientation of a
certain wavelet sub-band, inside which a coefficient is specified by
its coordinates x = (x, y), and ws,o,x is a positive weight (≤ 1).

As shown in [7] the MMSE (Minimum Mean Squared Error)
estimate of the weight is given by ws,o,x = σ2

n(x)/E[D̃2(s, o,x)],
where E[·] stands for the expectation operator, and σ2

n(x) stands for
the noise variance in the calibrated image at pixel x.

We extend this approach by iteratively improving the weight
ws,o,x used in the previous estimate. Dropping the indices to sim-
plify the notation, we can rewrite the weight as w = σ2

n/(E[(Ỹb −
Ỹ (k))2]+σ2

n), where Ỹ (k) denotes the estimate of the output wavelet
coefficients in the kth iteration. In order to reduce the computational
load we restrict the number of iterations to 5, as additional iterations
do not seem to bring significant improvement.

The noise variance σ2
n(x) needed in the fusion process is es-

timated based on the digital gain applied at each pixel of Yn with
respect to the un-calibrated intensity channel Y1 of the shortest-
exposed image. Thus we have σn(x) = σ1 [Yn(x)/(Y1(x) + ε)],
where ε is a small value used to avoid division by zero, and σ1 is the
noise level estimated in Y1 as in Donoho and Johnstone [10].
Color fusion: Colors are captured better in the blurry image, ex-
cept where they are affected either by significant blur or by ghosting
artifacts caused by moving objects in the scene. Consequently we
should take the colors from the blurry image in all pixels except the
blurry image pixels. In this work we introduce an approach to iden-
tify the image areas affected by blur or ghosting artifacts based on
analyzing the difference between the result of the intensity fusion
Y (x) and the intensity component of the blurry image Yb(x). In
the non-blurred areas (i.e., apart of image edges and locally blurred
objects) this difference is mainly caused by a residual noise that we
model as zero-mean normally distributed with variance σ2. Assum-
ing that the image edges and locally blurred areas only occupy a frac-
tion of the entire image, the sample median of the absolute difference
between the two images is mainly determined by the residual noise.
Consequently, in accordance to the theoretical relation between the
standard deviation and the absolute value of a zero-mean normal dis-
tribution, we can estimate the residual noise standard deviation as
σ = 1.4826 · median{D(x)}, where D(x) = |Y (x) − Yb(x)|.

Fig. 3. Example with ghosting artifacts in addition to blur caused by
camera shake blur: exposure fusion (second row left), and our result
(second row right). Both results have been obtained by fusing the
three images (top).

Fig. 4. Detail from input images (first row), exposure fusion result
(second row left), and our result (second row right).

Next, we can classify a pixel x as a blurry (or ghosted) pixel if
D(x) > τσ, where τ is a constant that determines the extent of
the confidence interval for the image difference in the non-blurred
areas (in our experiments we used τ = 3). In order to avoid artifacts
due to few pixel misclassifications, we transform this decision into a
fuzzy decision by assigning to each pixel a weight w(x) that reflects
its membership to the blurry pixel set. We use the weight function
w(x) = 1/[1 + exp(|D(x) − τσ|/σ)]. Finally, denoting by Cn

a color channel from the noisy image (i.e., one of Un, or Vn), and
similarly byCb a color channel from the blurred image, we calculate
the corresponding color channel in the pixel x of the output image
as C(x) = Cn(x) + w(x)(Cb(x)− Cn(x)).

4. EXPERIMENTAL RESULTS

We tested our approach on several natural images. One such ex-
ample is shown in Fig. 2. We note that the second and third input
images are highly affected by local blur, which is reflected also in
the exposure fusion result shown on second row left. The photomet-
rically calibrated short-exposed image which is the noisy version of
our result (second row center) eliminates the blur but it is signifi-
cantly affected by noise. Our final result is shown on second row
right, and it clearly reduces both the blur and noise content in the



Fig. 5. Example of color selection weights. Dark areas correspond to
blurry pixels and their colors are mainly taken from the noisy image.

Fig. 6. Solving under-exposed areas in shortest exposed image.
From left to right: two input images, the exposure fusion result, the
photometrically calibrated shortest exposure (i.e., noisy image), and
our result.

images.
A second example affected by both camera motion blur and

ghosting artifacts is shown in Fig. 3. We note the effectiveness of our
approach to reduce the blur artifacts present in the longer-exposed
images, as well as the ghosting artifacts caused by people and objects
moving during the image capture. A fragment from this result shown
in Fig. 4 reveals that in addition to ghosting artifacts, long-exposed
images are also affected by motion blur due to camera shake.

The proposed color fusion approach has been applied on both
examples described before. The blurry image color weight maps for
the two examples are shown in Fig. 5. We note that our approach
detects the regions that are affected by blur or ghost artifacts and
weights them less (darker in the image) than the other regions.

Fig. 6 exemplifies the way the algorithm behaves in areas where
the shortest exposed image is significantly under-exposed. Thus, the
under-exposed regions, which are lost in the noisy image, are recon-
structed in the final result based on the visual information available
in the blurry image. This illustrates the fact that the fusion between
the two images is necessary since a single image de-noising method
applied only onto the short-exposed image could not resolve the lost
image areas.

Fig. 7. Comparison: method from [6] (left), and our result (right).

A comparison with the recently proposed HDR fusion approach
of Lu et al. [6] is shown in Fig. 7. Theirs is the only method that
provides a solution to the blur in HDR images, however it cannot
cope with spatially varying blur or with ghosting artifacts. We ran
20 iterations of Lu et al. [6], and we tuned the parameters to provide
the best visual result for this example. In this comparison we used
the tone-mapping approach proposed in [11] in order to display the
result of Lu et al. [6]. Our approach does not need tone-mapping,
however, in order to facilitate the visual comparison, we applied the
same tone mapping procedure to our initial image result (shown in
Fig. 3). We note that besides solving the local motion blur and ghost-
ing artifacts our approach provides a sharper and less noisy result.

5. CONCLUSIONS

We have introduced a method for capturing extended-dynamic-range
images with a mobile camera. The main problem faced by such an
application is the increased likelihood to have blur degradation in
longer-exposed input images, due to either camera shake or objects
moving in the scene. Our approach eliminates the blur and ghosting
artifacts by fusing the input images in two stages. First, we create
two versions of the final image: one noisy but unaffected by mo-
tion blur, and one potentially blurry but colorful and less affected
by noise. In the second stage we fused the noisy and blurred im-
ages to preserve their desired qualities in the final picture. We tested
our approach on several real images captured with different digital
cameras.
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