
Graphics Hardware (2008)
David Luebke and John D. Owens (Editors)

Tracy: A Debugger and System Analyzer for Cross-Platform
Graphics Development

Sami Kyöstilä† 1 Kari J. Kangas‡ 1 Kari Pulli§ 2

1Nokia
2Nokia Research Center

Abstract

We describe Tracy, an offline graphics debugging and system analysistoolkit for cross-platform system and appli-
cation development in mobile graphics. Tracy operates by recording graphics function calls and argument data
of unmodified applications into a trace file for offline playback, debugging,and performance analysis. In addi-
tion, traces can be edited and converted into platform-independent C files.We pay special attention to real-time
performance; our trace compression mechanism allows interactive use of applications even when tracing long,
multi-thousand-frame traces in real mobile hardware. We describe the use of the toolkit through real-world use
cases such as debugging a visual error or a performance problem in an application, analyzing the application
quality, and benchmarking a graphics engine.

Categories and Subject Descriptors(according to ACM CCS): I.3.4 [Computer Graphics]: Graphics Utilities, Soft-
ware Support; D.2.5 [Software Engineering]: Testing and Debugging, Debugging Aids

1. Introduction

Mobile graphics is a quickly developing area of computer
graphics. New 3D APIs such as OpenGL ES and M3G
[PAM∗07] bring the best features of desktop APIs in a more
compact form to handheld devices. Also new 2D vector
graphics APIs such as OpenVG and JSR 226 [Khr07,JCP06]
are available for user interfaces, animations, and presenta-
tion graphics. With the help of these APIs, handheld devices
are using increasingly visual user interfaces, they have be-
come viable gaming platforms, and navigation services and
maps grow in popularity.

Although tools exist for interactively debugging graphics
applications on mature systems such as PCs or game con-
soles, many of such tools cannot be used efficiently when the
target system is in an immature development phase or when

† e-mail:sami.kyostila@nokia.com
‡ e-mail:kari.j.kangas@nokia.com
§ e-mail:kari.pulli@nokia.com

the development work is distributed among different plat-
forms. In the handheld space the development environment
is usually in a constant flux and inherently cross-platform: a
game developer may be developing a game, a graphics ven-
dor develops the engine hardware and drivers, and a hand-
set vendor develops the system software and does the sys-
tem integration. All this work often happens concurrently
on different hardware environments and operating systems.
When the game does not work as expected, it is important
to quickly pinpoint where the bug is. The source code for all
the components may not be available to any of the parties,
and even if it is available, digging into the source is a time
consuming tedious task. Therefore, tools are needed that al-
low quick isolation of the bug to a minimal code sequence
that can replicate the bug for any of the parties, preferably
on the platform that they primarily work on.

Moreover, in handheld space resources are scarce, giving
rise to various performance problems. Such problems may
show up as an uneven frame rate or unnecessary use of re-
sources, emptying batteries sooner. Tools are needed to flag
out suspect graphics engine usage patterns and to suggest

c© The Eurographics Association 2008.



S. Kyöstilä & K. Kangas & K. Pulli / Tracy: A Debugger and System Analyzer for Cross-Platform Graphics Development

better ones, and to provide a detailed view into the graph-
ics workload to give insights where the bottlenecks are. The
strict resource limitations apply also to the tools that are run
on the mobile hardware.

To address these issues we have created Tracy, a toolkit
for tracing graphics applications to facilitate graphics engine
development, application debugging, and application qual-
ity estimation in a multi-platform development environment.
Our system is based on intercepting graphics commands,
i.e., graphics function calls and associated argument data,
to a trace file, which is then analyzed with a dedicated tool
in a workstation environment, surpassing the limitations of
embedded hardware. In particular, Tracy offers several key
advantages over current solutions.

• Tracy shows the value of traces in the mobile graphics
through real use cases. Tracing is optimized for the low
performance, low bandwidth environments. While trac-
ing, the traces are compressed in real time which allows
creation of long traces of interactive applications in real
mobile hardware.

• Tracy uses data-driven design to support multiple plat-
forms and APIs. We currently support several operat-
ing systems (Windows, Linux, and Symbian) and several
APIs (OpenGL ES, OpenVG, EGL, and APIs built on top
of them such as M3G and JSR 226).

• Tracy allows debugging applications without requiring
access or modifications to the source code. It converts
the traces to platform-independent C source which can
be used easily in different systems (OS, HW). Running
the compiled C source yields more accurate performance
characteristics for profiling and benchmarking than inter-
preting trace files with a player.

• Tracy allows for extracting subsequences such as single
frames from longer trace files while maintaining matching
rendering output. In this process, redundant graphics com-
mands are culled through accurate state tracking, greatly
reducing the resulting trace file size.

We begin with a discussion of related work (Section 2)
and then describe the various components of the Tracy
toolkit (Section 3). We present the key use cases in Section 4.
We finish the paper with a discussion (Section 5) and con-
clusions including future work (Section 6).

2. Related work

The basic idea oftracing graphics commands used by a
graphics application was introduced by Dunwoody and Lin-
ton [DL90]. They transcoded the graphics commands into an
intermediate API-independent representation. Our approach
is to instead save all graphics commands into an API-specific
trace file without losing information, allowing the trace to
match application behavior at the graphics engine level as
closely as possible.

GLTrace and GLSim [Pro01] were among the first pub-

licly available trace utilities, concentrating on tracing and
analyzing OpenGL. The flexible data-driven design of our
system supports several graphics APIs and provides real-
time trace compression. We also highlight the use of trace
utilities in various real-world use cases.

The Chromium system [HHN∗02] captures and filters an
OpenGL graphics command stream and passes it for exam-
ple to a cluster of graphics workstations to parallelize and
speed up the rendering. In addition, Chromium has been
used for example to capture and modify the graphics com-
mand stream to apply stylized drawing techniques. Instead
of implementing the tracer by hand as in Chromium, we use
a data-driven design which helps us to easily create a tracer
for any C-based API.

A concept closely related to graphics command tracing is
state tracking. Buck et al. [BHH00] describe how they track
OpenGL state in a system used to render tiles of the frame
buffer correctly on a graphics workstation cluster, and re-
duce the communication with lazy updates of graphics state.
We opted to build our own state tracking solution to easily
support APIs other than just OpenGL. Like Buck et al., we
use a hierarchical representation of the graphics API state.
A significant difference is that we retrieve the exact func-
tion call sequence used to set up a particular graphics API
state to guarantee that the meaning of the trace is not inad-
vertently modified through editing operations such as frame
extraction. We also use state tracking to analyze the quality
of graphics applications and log unnecessary state changes.
Finally, state tracking enables us to serialize vertex array
and texture map data given through an unbounded array in
OpenGL ES and path coordinate data in OpenVG.

Several tools have been created forinteractive graphical
debuggingin desktop PCs and game consoles. For exam-
ple, PerfHUD [NVI07] from NVIDIA is a proprietary anal-
ysis tool for Direct3D in Windows. It shows many statistics
from rendering pipeline stages and allows pausing an ap-
plication and replaying the graphics commands for a frame.
Another such tool is gDEBugger [gra07] from graphicREM-
EDY which also allows visual debugging and strives to en-
able quick pinpointing of errors and performance issues in
OpenGL and OpenGL ES applications. It also shows con-
tent statistics obtained from the graphics hardware. A system
by Duca et al. [DNB∗05] allows debugging of OpenGL pro-
grams by storing information about graphics commands into
a relational database. In contrast to above systems, we focus
entirely on offline debugging, which is usually the most vi-
able way to debug mobile graphics engines and applications
while they are being developed, especially in immature sys-
tems. During debugging, we work with trace files rather than
live applications, as a trace file contains the graphics com-
mands causing a graphics error in a more easily usable for-
mat compared to the original application. All complex data
extraction and analysis is done as a post-process.

Microsoft PIX [Mic06] is another graphics debugger for

c© The Eurographics Association 2008.



S. Kyöstilä & K. Kangas & K. Pulli / Tracy: A Debugger and System Analyzer for Cross-Platform Graphics Development

Figure 1: Tracer intercepts graphics commands going from the application to the graphics engine and saves them into a trace
file. The trace file is analyzed offline in the trace analyzer for purposes such as debugging graphics engines or applications.

Direct3D in Windows. It allows saving graphics commands
into a trace file from which they can then be analyzed offline.
In comparison to PIX, our system adds support for multiple
graphics APIs and engines through flexible API grammar
definition and a statistics collection mechanism which is in-
dependent of the used graphics engine. We also support edit-
ing trace files to produce synthesized graphics content and
converting trace files into other formats such as platform-
independent C source code.

Finally, workload characterizationcollects statistics on
the graphics content to allow, for example, rendering time
estimation [WW03, MC99] and characterization of typical
graphics content features [CL97]. The workload characteris-
tics gathered by trace files provide an important input for the
design of graphics engine architectures [SLS04, RMG∗06].
Our system provides access to commonly used 3D (OpenGL
ES) graphics content statistics, while also defining similar
content features for 2D (OpenVG) graphics.

3. Tracy Architecture

In this section we first describe the overall architecture of
Tracy toolkit, followed by the most relevant implementation
details. For more details, see the M.Sc. thesis based on this
work [Kyö08].

The main components of Tracy are shown in Figure 1.
Tracy works by intercepting all graphics commands exe-
cuted by an unmodified application using atracer. The
graphics commands are saved into atrace file, which can
be replayed in atrace player or passed to atrace analyzer
running in a workstation environment. The trace analyzer al-
lows editing of trace files and extracting raw data, such as
OpenGL ES textures, from the trace file. It can also extract
content statistics from the trace file by running it in a trace
player with aninstrumented graphics engine. The trace
analyzer provides a Python-based scripting interface which

makes it easy to implement tools for specific trace process-
ing needs. The tracer, trace player, and trace analyzer are not
hard-coded to use a specific graphics API, but can be easily
configured for different APIs with a data-driven design.

3.1. Tracer

The purpose of the tracer is to capture application’s graph-
ics commands into a trace file. Similar to the related work
such as Chromium [HHN∗02], our tracer is implemented as
a dynamic link library (DLL), which provides an identical
interface to the system graphics engine. This allows for trac-
ing existing graphics applications without any source code
modifications or recompilation.

3.1.1. API Structure Definition

We specify the grammar and the behavior of an API us-
ing an API structure definition. A code generator produces
the tracer and the trace player from the structure definition.
We favored this approach over hand-written tracer and trace
player code, since it is less error-prone and allows for sup-
porting different APIs with ease.

The most significant part of the API structure definition is
the C header file defining the API functions, argument data
types, and enumerants. We mark a subset of these functions
as rendering, frame swapping, or API termination functions.
This information is used by the tracer and the trace analyzer
to choose functions which contribute to content statistics, to
segment trace files into frames, and to shut down the tracer
when the application terminates the API.

An essential section of the API structure definition is the
set of rules for calculating the sizes of array parameters in
API functions. For instance, when saving the texture data
passed to theglTexImage2D OpenGL ES function, the
amount of data to be saved must be calculated from the
texture resolution and format. The API structure definition

c© The Eurographics Association 2008.



S. Kyöstilä & K. Kangas & K. Pulli / Tracy: A Debugger and System Analyzer for Cross-Platform Graphics Development

glLightfv:

{

light: "root.light"

pname: "root.light.parameter"

params:

{

state: "root.light.parameter.value"

metatype(class = "array", size = "4"):

[

size(condition = "pname",

value = "GL_SPOT_DIRECTION",

result = "3")

size(condition = "pname",

value = "GL_SPOT_EXPONENT",

result = "1")

size(condition = "pname",

value = "GL_SPOT_CUTOFF",

result = "1")

...

]

}

}

Figure 2: API configuration directives for theglLight-
fv OpenGL ES function. The rules specify how the function
parameters affect the API state and how they should be se-
rialized to the trace file. Most notably, thepname parameter
is used to determine the size of theparams array.

provides a compact representation for specifying these ar-
ray size equations. An example is shown in Figure2. More
complicated cases, such as deriving the number of path co-
ordinates to save in thevgAppendPathData OpenVG
function, are handled by writing custom serialization C code
for the specific functions in the API structure definition. In
practice, we found that hand-written serialization code was
needed for only few OpenGL ES and OpenVG functions.

Graphics APIs commonly define a mechanism for extend-
ing the API. Some extensions simply define new parameter
values for the existing functions in the original API. Trac-
ing such extensions does not warrant any special consider-
ation, unless the extension defines new parameter formats,
in which case the API structure definition needs to be ex-
tended to incorporate the serialization rules or C code. How-
ever, some extensions define completely new functions. Both
OpenGL ES and OpenVG use EGL to retrieve pointers to the
extension functions. For the tracer to capture calls to these
functions, it must intercept the function pointer queries and
return a pointer to a corresponding tracer function. These ex-
tension functions are defined through the API structure defi-
nition. Our extension mechanism works also when EGL and
the graphics APIs reside in different DLLs.

The API structure definition also includes a hierarchical
state model and a mapping from function parameters into
it. Our aim was to create a generic state modeling solu-
tion which is not limited to either OpenGL ES or OpenVG,
and with enough flexibility to support foreseeable C-based
graphics APIs such as OpenGL ES 2.0. Instead of explic-

Figure 3: A state tree for storing the filtering mode for an
OpenGL ES texture object, with the type nodes drawn as
rounded and the value nodes as angled rectangles. The tree
on the left only shows the specific elements used to store the
filtering mode, while the tree on the right also shows some
alternate options for traversal.

itly specifying the complete API state, the emphasis was set
on modeling the dependencies between various API func-
tions. Our state modeling mechanism is based on a hierarchi-
cal data structure called astate tree. It is a directed acyclic
graph, in which vertices represent the elements of a state
structure and edges dependencies between them.

As an example, let us examine the task of choosing the
filtering mode of a texture in OpenGL ES.

glBindTexture(GL_TEXTURE_2D, 3);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

GL_LINEAR);

A corresponding state tree for this example is shown in Fig-
ure3. There are two different kinds of elements in the tree:
types and values. The types may have a set of concrete state
values, one of which is marked as current.

The dependencies between commands are modeled by
mapping each parameter of state-modifying API function to
a type or a value in the state tree using the format shown in
Figure2. For example, theparam parameter of thegl-
TexParameteri OpenGL ES function is mapped to the
following state path.

Root → Texture target → Texture name → Texture parameter

This state path approach can be used to describe the ef-
fects of nearly all commands in the OpenGL ES, OpenVG,
and EGL APIs. The state effects of cumulative commands
such as thevgAppendPathData OpenVG function are
handled with custom code defined in the API structure defi-
nition.

The hierarchical state model is used for graphics API
state tracking which is needed for two main purposes. First,
we want to enable the tracer to save, for example, the ver-

c© The Eurographics Association 2008.



S. Kyöstilä & K. Kangas & K. Pulli / Tracy: A Debugger and System Analyzer for Cross-Platform Graphics Development

tex array data in OpenGL ES. While the vertex data is de-
fined by passing an array pointer to the graphics engine,
the actual data used from the array is defined by the subse-
quent draw commands. State tracking allows us to determine
which parts of the array are actually used by each draw com-
mand and thus to know which data to serialize into a trace
file.

The second use of state tracking is to model the relative
dependencies of the API functions and their parameters in
the trace analyzer. This makes it possible to extract a set of
frames from a longer trace and to perform in-depth analysis
of the call trace.

3.1.2. Performance Considerations

Maintaining an acceptable level of performance while trac-
ing applications is greatly dependent on the ability for the
tracer to write out data crossing the API boundary to the
trace file at a sufficient rate. Our initial approach of using
synchronous write operations yielded unacceptable perfor-
mance in most cases. Implementing write buffering in which
the tracer gathered a large amount of data and wrote the
whole buffer at once brought performance on average to an
acceptable level. However, the synchronous buffer flushing
caused a long pause whenever the buffer became full. We
finally implementedfully asynchronous write buffering, in
which a dedicated worker thread collects data into a buffer
array in a round-robin fashion and flushes the filled buffers
into the output file. With this, the tracer is able to sustain suf-
ficient write performance as long as the average data band-
width does not exceed the capabilities of the storage device.

While the actual tracing performance depends greatly on
the amount of graphics data submitted by the application, we
found that a triple-buffered configuration with 512 kilobytes
per buffer works well for medium to complex OpenGL ES
applications. Finally, to deal with crashing applications we
still support fully synchronous writing, which, albeit slow,
guarantees that each API call is serialized to the trace file at
the time of its execution. The type of buffering and the buffer
size can be defined in a run-time tracer configuration file.

In addition to improving write performance, we alsocom-
press the trace on the flyby detecting repeating data struc-
tures in function arguments. In our first trials, a two-minute
OpenGL ES animation with roughly 30 000 rasterized trian-
gles per frame generated a 250 megabyte trace file, which
was considered too much for most embedded systems. Fur-
thermore, due to the large amount of data being written to the
trace file, the performance of the animation was reduced to
less than one frame per second. However, animated graphics
often exhibits a high level of frame coherence, and we found
that a very high percentage of the trace file data consisted of
repetitive instances of identical array data. For example in
OpenGL ES, the most significant source for this duplication
comes from vertex and index arrays; textures are commonly
specified only once.

To reduce the trace file size, we first tried to find out
whether an array had been already stored into a trace file
by calculating a message digest value for the array contents
and comparing that to the previous value. Unfortunately a
simple CRC32 message digest algorithm was prone to colli-
sions, in which the same digest value was assigned to differ-
ent array data, and led to situations where modifications to
arrays were not caught and written to the file. This resulted
for example in visual artifacts in the subsequent trace play-
back. On the other hand, a more complex MD5 algorithm
was computationally too intensive. A more complete array
tracking algorithm would make internal copies of each en-
countered array in order to later check whether the array had
been modified, although at the expense of increased memory
consumption.

We implemented a compromise where we only track
changes to arrays that have been encountered at least twice.
During the first encounter, an array is stored into a trace file
and marked as seen based on the array memory address. Dur-
ing the second encounter, the array is again stored in the
trace file, but a copy is also kept in RAM if available memory
permits. After this point the copy is used to check whether
or not the array contents have changed. In practice replicat-
ing the same array a maximum of two times into the trace
file yields a good compression with acceptable processing
overhead. Using this approach, the 250 megabyte OpenGL
ES trace file was reduced to less than 10 megabytes and the
performance of the traced animation run in a modern smart-
phone was improved from less than one frame per second to
more than 10 frames per second, compared to the 25 frames
per second without tracing. The array tracker commonly
uses roughly the same amount of memory as the amount of
vertex, index and path data used by the application. Texture
and image data is not tracked in this manner, since duplicate
textures and images are usually not reissued by applications.

3.2. Trace Analyzer

The trace analyzer is used to examine and process the trace
files. It provides a Python-based scripting interface with sup-
port for accessing and manipulating trace data such as in-
dividual graphics commands, vertex data, OpenGL ES tex-
tures, and OpenVG images. The interface also provides ex-
tensive trace manipulation primitives such as extracting and
joining trace subsequences. It is also possible to inspect and
modify the API state at the graphics command granularity
and to access content statistics extracted from the trace file
by running it in a trace player with an instrumented graph-
ics engine. Finally, for report generation and for producing
diagrams, the interface uses HTML, matplotlib and Python
Imaging Library.

The scripting interface makes it easy to implement tools
for various trace processing needs. An example of such a
tool is the performance checklist which is an automated ex-
pert system that looks for known performance deficiencies

c© The Eurographics Association 2008.



S. Kyöstilä & K. Kangas & K. Pulli / Tracy: A Debugger and System Analyzer for Cross-Platform Graphics Development

Figure 4: A single frame is extracted from a trace file. The
trace analyzer uses state tracking to determine which pre-
ceding graphics commands are needed for the extracted
frame to be identical to the same frame in the full trace.
These commands are assembled into a state setup sequence.

in a trace file. Another tool converts a trace file, or a part of
it, into equivalent ANSI C source code. Finally, the content
statistics can be condensed into summary reports providing
a quick overview of the graphics content.

3.2.1. Frame Extraction

Trace files commonly encompass all the graphics commands
made by an application while it is running, and thus they typ-
ically contain tens of thousands of graphics commands and
megabytes of data. Though long traces produce more reli-
able statistics, only a small part of this data is often necessary
when tracking down a bug or preparing a benchmark, mak-
ing the bulk of the trace file largely superfluous. To make it
easier to focus on a particular part of a long trace file, the
trace analyzer can be used to extract a subsequence of com-
mands from a trace to form a new smaller trace.

However, simply extracting the selected graphics com-
mands is often not enough, since the objective usually is to
preserve the original rendering output of those commands.
For instance, the application might have loaded a number of
textures during its initialization phase, and that texture data
will also need to be resident when the extracted set of graph-
ics commands is played back.

Extracting a single frame along with the associated state
setup sequence is illustrated in Figure4. When a sequence
of events comprising a frame is extracted from a trace file,
the analyzer calculates the effective state at the start of the
frame, and the graphics commands that have been used to
prepare the state are prepended to the frame. This ensures
that the rendering output of the extracted frame will be cor-
rect. Note that the graphics commands that influence the
state may appear anywhere in the preceding trace section.

The trace subsequence extraction algorithm builds on the
state modeling system described in Section3.1.1. The algo-
rithm is based on the observation that a graphics command
is a prerequisite for a second graphics command if the state
path associated with the first command is a prefix for any of
the paths associated with the second call. Based on this, the
algorithm can discern between commands that are necessary

Common statistics
API calls Time stamp, duration, call histogram,

array data traffic, frame duration, EGL
configuration attributes

Buffer snapshots Color buffer, depth buffer, stencil buffer

OpenGL ES
General Matrix operations, render calls, texture

uploads
Primitives Submitted, degenerate, frustum culled,

backface culled, clipped, discarded, ras-
terized

Vertices Submitted, transformed, viewport trans-
formed, lit, cache accesses, cache hits

Rasterization Fragment count, texture fetches, average
triangle size, discarded fragments, esti-
mated overdraw

OpenVG
General Matrix operations, render calls, image

uploads, property reads/writes
Objects Creations, attribute reads/writes
Paths Segment count, coordinate count, tessel-

lated polygon edges, accepted polygon
edges

Rasterization Fragment count, estimated overdraw

Table 1: Content statistics provided by the trace analyzer
and the instrumented engines.

for setting up a required state and those that are made redun-
dant by other commands. For example, an application might
have set the current clear color multiple times before the ex-
tracted command sequence. As each color setting command
completely overrides the previous one, only the last one is
needed to reproduce the effective state.

3.2.2. Content Statistics

The trace analyzer provides both high-level and in-depth
content statistics from a trace file. High-level statistics, such
as the number of rendered frames per second, are calculated
directly based on the graphics commands in the trace file,
while in-depth statistics require the use of an instrumented
engine. The detailed content statistics for both OpenGL ES
and OpenVG provided by our implementation are listed in
Table1.

3.2.3. Performance Checklist

The performance checklist is an automated API-specific ex-
pert system in the vein of Dr. PIX in PIX [Mic06]. It ver-
ifies a trace file against a set of predefined conditions that
test for known performance deficiencies and other unwanted
call patterns, and automatically provides a rough quality es-
timate of the traced application. Some of the checklist items
apply to all graphics engines, while others are specific to the
characteristics of a certain implementation. For example, the

c© The Eurographics Association 2008.



S. Kyöstilä & K. Kangas & K. Pulli / Tracy: A Debugger and System Analyzer for Cross-Platform Graphics Development

Mipmap usage Mipmap filtering reduces memory ac-
cesses and improves image quality, bi-
linear filtering is a cheap way to improve
image quality on hardware engines.

Synchronous func-
tions

Functions that cause the CPU to wait for
the GPU may have a dramatic negative
effect on performance.

Depth buffer clear-
ing

Failing to clear the depth buffer may
have a significant performance penalty
on some architectures.

Vertex buffer ob-
ject usage

Using vertex buffer objects reduces
memory bus bandwidth utilization on
some architectures.

Renderer version
string differentia-
tion

Test whether the OpenGL ES renderer
version and extension strings are being
examined for the presence of extensions
providing better performance. For a soft-
ware renderer, the complexity of graph-
ics content should be scaled down.

Existing texture
data modification

Modifying existing texture data is an ex-
pensive operation on most renderers.

Loading texture
data during frame
rendering

Generally texture data should be pre-
loaded during the startup phase and only
if needed during runtime.

Texture data com-
pression

When supported by the hardware, tex-
ture data compression decreases mem-
ory usage and improves rendering per-
formance.

Triangle strip ge-
ometry

Using triangle strips reduces the need to
process the same vertices more than once
and improve rendering performance for
complex meshes.

Multisample usage On hardware engines, multisampling im-
proves image quality with only a small
performance cost.

Table 2: OpenGL ES performance checklist items.

tests included in the OpenGL ES checklist are listed in Ta-
ble 2. Should any of these checks fail, the analyzer provides
the user with a list of the offending commands that triggered
the failure along with a textual description of the detected
quality problem. The performance checklist is easy to extend
using the Python scripting interface and it also facilitates ar-
bitrarily complex offline analysis.

3.3. Trace Playback

Tracy provides two different ways to execute the commands
stored into a trace file: by using the trace player or by con-
verting the trace to equivalent ANSI C code.

3.3.1. Trace Player

The trace player reads a trace file and reproduces the exact
graphics command sequence stored therein. The used graph-
ics engine or platform does not need to be the same which

was used during tracing as the trace file contains a platform-
independent representation of certain objects, such as win-
dows and bitmaps, which are commonly strongly tied to the
underlying platform. The trace player uses this information
to create a suitable equivalent object for the targeted plat-
form.

3.3.2. C Source Export

Although the trace player can be used to reproduce any
needed graphics call sequence stored in a trace file, it does
have a number of limitations. First, the player must be sepa-
rately ported to every operating system it is used on. Fur-
thermore, it may have higher memory and storage space
requirements than the original application, as the graphics
commands need to be read and decoded from the trace file.
Finally, a trace file is of no use to a third party, unless the
player is also delivered. These issues limit the utility of the
trace player, especially in special environments such as pro-
totype hardware and as a part of automated testing systems.

The trace analyzer provides a way to overcome these limi-
tations by converting a trace file to equivalent ANSI C source
code in which each graphics operation in the trace file is con-
verted to a corresponding function call. When compiled and
executed, the generated code reproduces the original trace
sequence with minimal overhead. As the code uses only
standard ANSI C constructs and the relevant graphics API
functions, it can be run on a wide variety of platforms with
a minimal porting effort.

Part of this porting effort may relate to compiler limita-
tions. As it is not uncommon for a trace file to contain tens of
thousands of graphics commands, the code size may exceed
limits allowed for a single function. We worked around this
limitation by splitting up each frame of the graphics trace
to a separate function, but some extremely large trace files
still failed to compile even with this modification due to the
large amount of array data. One solution was to provide an
option to direct the array data into a separate assembly lan-
guage source file, which can then be linked together with the
generated C code. So far, the large amount of array data has
not posed difficulty to assembly language compilers. In ad-
dition, using assembler code also speeds up the compilation
of traces substantially.

4. Use Cases

In this section we cover three concrete use cases for the
Tracy toolkit:
• debugging visual errors in applications,
• debugging application performance problems, and
• benchmarking graphics engine performance.

These use cases are a generalization of the actual work
done in a system-level graphics integration team at Nokia.
The team is responsible for delivering graphics technology
to other organizational units within the company in the form

c© The Eurographics Association 2008.



S. Kyöstilä & K. Kangas & K. Pulli / Tracy: A Debugger and System Analyzer for Cross-Platform Graphics Development

Figure 5: a) An OpenGL ES application is showing a visual
error. b) The trace produces a correct output on a reference
graphics engine, indicating an error in the first engine.

of graphics engines, performance testing, and general graph-
ics support. The team uses Tracy actively in its daily work.

4.1. Debugging Visual Errors in Applications

The most obvious use case for the Tracy toolkit is to debug
visual errors or crashes encountered in graphics applications.
In this use case we demonstrate how Tracy can be used to
identify and isolate the error with minimal effort. Error iso-
lation here means reproducing the error with the minimum
number of needed graphics commands. Once properly iso-
lated, finding the root cause of the error in the application or
in the graphics engine usually becomes easy.

First step in the use case is to trace the problematic ap-
plication and bring the trace file into the trace analyzer. We
then isolate the error into a new trace file by using the trace
manipulation functionality, and play it in the original sys-
tem to verify that the error still appears. If the error does not
reappear, a different command sequence is selected from the
original trace until it does. However, finding a correct com-
mand sequence is usually quite easy as the trace analyzer
allows us, for example, to show the visual output of every
drawing command in a trace file, making it easy to spot the
ones with visual errors.

Once the error is isolated into a minimal set of graphics
commands, we can inspect the commands directly to spot
any obvious reasons for the error. Alternatively, we can run
the resulting trace on a reference engine to further determine
whether the bug is in the application or in the engine. If the
reference engine renders the trace correctly, the original en-
gine is the probable culprit. In this case the isolated trace
or the C source code based on the trace is given to the en-
gine team or to the engine vendor so that they can debug
the hardware and drivers, and use it possibly also for regres-
sion testing. It is also possible that the application program-
mer is relying on unspecified graphics API behavior, leading
into different results in the two engines. Such cases can be
detected by inspecting the isolated commands or by using
multiple reference engines to produce a more reliable esti-
mate of the correct rendering output.

Figure5 shows an example where an OpenGL ES appli-

Figure 6: An OpenVG-based SVG-Tiny player application
transfers a large amount of image data to the graphics en-
gine in most of the frames, leading to poor performance.

cation displayed invalid graphics with missing triangles and
generally distorted geometry. Tracy was first used to replay
the trace file from the application on a reference engine. This
produced a correct visual output, indicating that the error
was caused by the graphics engine. Through error isolation,
the root cause of the error was soon identified as a flaw inside
the primitive assembly pipeline.

In the case where the error is visible also in the reference
engine(s), the error must be in the application. The graphics
commands in the original and isolated trace file help us to
pinpoint the incorrect use of the graphics API.

4.2. Debugging Application Performance Problems

Finding the causes for poor graphics performance is often
harder than isolating and fixing obvious bugs, most likely
because poor performance is usually caused by issues such
as too high content complexity and the use of inefficient API
features, or by a combination of such issues. In this use case
we demonstrate how Tracy can be used to identify the main
reasons for the poor application performance. Such identi-
fication helps us to direct the application performance opti-
mization work into the most promising direction.

Using Tracy we canprofile a graphics application. The
trace analyzer is able to produce a number of reports and
statistics concerning the graphics content from the trace file.
From these, we can easily categorize the performance prob-
lems as being caused by inefficient API use patterns, too
complex graphics content, insufficient engine performance,
or a factor unrelated to graphics. These categories help in
communicating the performance problems.

In high-level content analysis, the trace analyzer calcu-
lates content statistics directly from the trace file. These
statistics include the amount of OpenGL ES texture or
OpenVG image data uploaded per frame. An example of a
performance issue we have identified with this method was
in an OpenVG-based SVG-Tiny animation player (see Fig-
ure6). Analyzing the trace showed that the application trans-
ferred a large amount of bitmap image data to the graphics

c© The Eurographics Association 2008.



S. Kyöstilä & K. Kangas & K. Pulli / Tracy: A Debugger and System Analyzer for Cross-Platform Graphics Development

Trace file size 1.7 MB
Total graphics commands 28 276

Frames 162
Total render calls 1 581

min max mean
Graphics commands 19 830 173

Render calls 1 51 9.7

Matrix operations 0 68 16

Created objects 0 15 3.0
(paths, paints, images)

Rasterized pixels 0 800 136
(% of surface size)

Path size 0.5 38 903 1 476

Path segments 0 335 74

Tessellated edges 0 111 23.9
per path
Pixel uploads 0 0 0

Gradient stop colors 0 44 9.1

Table 3: OpenVG statistics from an SVG-Tiny image loader.

engine in each frame. This observation lead us to a closer
investigation of the SVG-Tiny player, which uncovered a
flaw in image caching logic: the player kept unnecessarily
redefining the same small set of static bitmap images.

In addition to the high-level profiling information pre-
sented above we can also performin-depth content anal-
ysis. We have instrumented OpenGL ES and OpenVG en-
gines to calculate and extract detailed statistics, shown in
Table1, that allow the developers to gain understanding of
the content-related bottlenecks in their application. We can
inspect these statistics in combination with benchmark re-
sults to see if the statistics indicate too complex content for
the particular graphics engine. Such statistics of existing ap-
plications can also help in designing and balancing a future
graphics system.

An example of data we have extracted with this process is
shown in Table3. Here an OpenVG-based SVG-Tiny image
loader was used to load several application icons: each con-
secutive frame corresponds to a different SVG-Tiny file. The
statistics begin with general information about the recorded
trace file. This is followed by a frame-level breakdown of
various content features. For each feature, the minimum,
maximum and mean values of that feature are listed along
with a histogram showing the value distribution.

The trace analyzer can also produce alternative visual-
izations of detailed content statistics. Figure7 presents an
example of such a visualization by outlining how the con-
tent complexity of an OpenGL ES -based menu application
varies considerably from time to time, leading to jerky ani-
mation and reduced usability.

Other examples of performance problems that were
solved with Tracy include:

Figure 7: Graphics content statistics from an OpenGL ES
-based menu application indicate that its performance (pur-
ple line) varies greatly over time. The low performance
seems to correlate with the periodic texture data uploads
(gray bars) and increased rendering complexity (green line),
suggesting that the workload presented to the graphics en-
gine during these moments exceeds the capabilities of the
hardware. Note the logarithmic vertical axis.

• An OpenGL ES -based menu application failed to stop
submitting rendering commands even when it was not be-
ing displayed, leading to reduced device usage time.
• Analysis of an OpenGL ES -based navigation software re-
vealed that the application was using an internal proprietary
software engine to render most of its output. This made the
application unable to take advantage of graphics hardware
acceleration.
• An OpenVG application was found to be repeatedly reini-
tializing the graphics engine rendering context for no practi-
cal purpose, causing superfluous processing.

Finally, we can quickly analyze the quality and API usage
patterns using a simplegraphics expert systemusing check
lists such as presented in Table2. Such analysis should be
performed, perhaps as a part of the software quality review,
even if an application is not suffering from an obvious per-
formance problem as the analysis can highlight certain areas
that can be improved to conserve battery, CPU, or memory
usage. For instance, on a particular graphics engine certain
invocations of theglColorMask command are emulated
through a software work-around due to hardware limitations.
By adding detection of such commands into the checklist we
were able to quickly identify and fix applications which were
triggering the slow software emulation code path.

4.3. Graphics Engine Benchmarking

The final use case switches the focus from applications to
graphics engines: a new graphics engine needs to be bench-

c© The Eurographics Association 2008.



S. Kyöstilä & K. Kangas & K. Pulli / Tracy: A Debugger and System Analyzer for Cross-Platform Graphics Development

Figure 8: Performance comparison between the original ap-
plication, the trace player, and C code generated from the
trace. The performance of the C code closely matches that
of the original application.

marked to estimate its fitness for rendering the graphics of a
particular application. By using Tracy, to do this we do not
need to port the application itself to the system with the new
graphics engine. Instead, the trace file, or a selected part of
it, represents the application graphics.

In graphics benchmarking we usually want to concentrate
solely on the graphics performance aspects of the applica-
tion. The trace player can read in the trace file and play back
the graphics commands. However, the player always has a
runtime overhead compared to a hard-coded, compiled ap-
plication as it needs to read and decode the trace file. This
overhead can be significant on platforms with a slow file sys-
tem and when dealing with large trace files.

As an alternative, we can produce an ANSI C code file
that directly runs the graphics commands in the trace. Fig-
ure8 shows a performance comparison between the original
application, our trace player, and generated C code. From
the charts we see that running the new executable based on
the generated code matches the performance of the original
application much more closely than the trace player is able
to do. The applications were selected so that they do little
else than submit graphics commands.

Another important point in favor of code generation is that
there is no need to port the trace player to different develop-
ment environments. Porting of benchmark tools has proven
to be a notable obstacle in cross-platform, cross-company
working environments. The C files can be incorporated into
any platform-specific benchmark application with minimal
platform adaptation work.

The benchmarks created in this manner are executed on
the graphics engine, producing an estimate on how well the
new graphics engine will perform when rendering the chosen
content. These benchmarks can also be used to obtain virtu-

ally zero-overhead profiling information of the time spent in
each graphics engine function.

5. Discussion

Interactive graphical debugging using tools such as PIX,
PerfHUD, or gDEBugger is probably the most efficient ap-
proach when working completely on a single stable plat-
form and in a controlled environment where each devel-
oper is able to work mostly independently with his or her
own source code. However, the benefits of an offline trace
analysis and debugging become apparent when the final sys-
tem, the graphics engine, and applications are being devel-
oped concurrently by different teams in different companies,
all potentially using different hardware and software plat-
forms. In such situations, using trace files and their platform-
independent C code counterparts for representing and com-
municating graphics errors and benchmarks becomes a pow-
erful tool. Especially the C source code has proven useful in
practice due to minimal porting effort and close to zero per-
formance overhead.

In addition, tracing and analyzing applications provides
guidance to graphics engine developers. It also helps to im-
prove application quality. Such analysis can be done conve-
niently and automatically without access to or need to study
application source code.

Our approach to compress trace files is effective for typ-
ical applications that have a stable set of models which are
animated using matrix transformations, but it fails to reduce
the trace data volume for applications that dynamically gen-
erate new geometry for each frame. An example of such an
application is one that renders graphics using dynamic ob-
jects, which only contain the visible set of geometry for each
frame. Since the structure of the compound objects changes
frequently, the tracer must write each encountered variation
to the trace file, leading to poor performance. Fortunately,
we have found very few such applications.

It is possible for an application to use multiple graphics
APIs at the same time. As each graphics engine is com-
monly placed in a separate DLL, multiple concurrent API-
specific tracers are needed in such a case. In Tracy, each
recorded graphics command is annotated with a system-wide
sequence identifier, which uniquely identifies the order in
which the graphics commands were issued. This allows for
the API-specific trace files to be merged by the trace analyzer
into one coherent trace file which contains all the graph-
ics commands executed by the application. The same trace
player and C source file can support multiple APIs.

6. Conclusions and Future Work

We have presented Tracy, an offline graphics debugger and
analyzer. The key design target was a toolkit that can be used
on a developing environment that consists of multiple hard-
ware platforms, operating systems, teams potentially located

c© The Eurographics Association 2008.



S. Kyöstilä & K. Kangas & K. Pulli / Tracy: A Debugger and System Analyzer for Cross-Platform Graphics Development

into different companies with no easy access to each oth-
ers’ source code, and multiple graphics APIs. The toolkit
facilitates both extracting bugs and optimizing the execution
speed and use of system resources. The traced application
can be run on a mobile phone at interactive speeds and gen-
erate very long trace sequences of thousands of frames.

A natural continuation for our work is to extend Tracy to
cover OpenGL ES 2.0 and other relevant mobile graphics
APIs. While basic tracing and playback and C source ex-
port of OpenGL ES 2.0 should work directly in our current
system, workload characterization requires more in-depth
statistics extraction from the shader programs.

The automated graphics content checklists produced by
Tracy could be made more reliable by more thorough use of
content statistics. For instance, if Tracy notices that a par-
ticular texture map is always rendered at the same scale, it
could suggest better prefiltering of the texture and turning
mipmapping off, whereas by default mipmapping is always
recommended. The checklist should also be extended to sup-
port graphics engine specific profiles to account for differ-
ences in graphics engine implementations.

The content statistics provided by our system open the
possibility for further research into clustering applications
based on the complexity of their graphics content. Given a
large enough sample set, applications could be classified into
performance classes, providing a way to roughly estimate
performance on new graphics architecture. Clustering could
also allow for creating synthetic benchmarks based on real
applications. While benchmarks created from traces are rep-
resentative of a given application, they are hard to parame-
terize in terms of content complexity. Synthetic benchmarks
derived from trace files could overcome this limitation while
still remaining representative of real-world graphics content.

Acknowledgments

We would like to thank Mika Qvist for helping us throughout
this work, and Tomi Aarnio, Kimmo Roimela, Jani Vaarala,
and Wei-Chao Chen for reading previous versions of this
paper and for suggesting many improvements. Finally, we
would also like to thank the anonymous reviewers for their
helpful suggestions for improving this paper.

References

[BHH00] BUCK I., HUMPHREYS G., HANRAHAN P.:
Tracking graphics state for networked rendering. In2000
SIGGRAPH / Eurographics Workshop on Graphics Hard-
ware(Aug. 2000), pp. 87–96.

[CL97] CHIUEH T., LIN W.: Characterization of static 3D
graphics workloads. In1997 SIGGRAPH / Eurographics
Workshop on Graphics Hardware(1997), pp. 17–24.

[DL90] DUNWOODY J. C., LINTON M. A.: Tracing in-
teractive 3d graphics programs. In1990 Symposium on
Interactive 3D Graphics(Mar. 1990), pp. 155–163.

[DNB∗05] DUCA N., NISKI K., BILODEAU J., BOLITHO

M., CHEN Y., COHEN J.: A relational debugging engine
for the graphics pipeline.ACM Transactions on Graphics
24, 3 (Aug. 2005), 453–463.

[gra07] GRAPHIC REMEDY: gDEBugger – OpenGL
and OpenGL ES debugger and profiler.http://www.
gremedy.com, 2007.

[HHN∗02] HUMPHREYS G., HOUSTON M., NG R.,
FRANK R., AHERN S., KIRCHNER P., KLOSOWSKI J.:
Chromium: A stream-processing framework for interac-
tive rendering on clusters.ACM Transactions on Graphics
21, 3 (July 2002), 693–702.

[JCP06] JCP: JSR 226: Scalable 2D vector API
for J2ME. http://www.jcp.org/en/jsr/detail?id=
226, June 2006.

[Khr07] KHRONOSGROUP: OpenVG 1.0.1 Specification,
Jan. 2007.

[Kyö08] KYÖSTILÄ S.: A mobile vector graphics qual-
ity analysis toolkit. Master’s thesis, University of Oulu,
2008.

[MC99] M ITRA T., CHIUEH T.: Dynamic 3D graphics
workload characterization and the architectural implica-
tions. In ACM/IEEE Int. Symp. on Microarchitecture
(1999), pp. 62–71.

[Mic06] M ICROSOFT: PIX. http://msdn2.microsoft.
com/en-us/library/bb173085(VS.85).aspx, June
2006.

[NVI07] NVIDIA: NVIDIA PerfHUD version 5.1. http:
//developer.nvidia.com/perfhud, June 2007.

[PAM∗07] PULLI K., AARNIO T., MIETTINEN V.,
ROIMELA K., VAARALA J.: Mobile 3D graphics with
OpenGL ES and M3G. Morgan Kaufmann Series in Com-
puter Graphics, 2007.

[Pro01] PROUDFOOT K.: GLTrace. http://graphics.
stanford.edu/courses/cs448a-01-fall/glsim.
html, 2001.

[RMG∗06] ROCA J., MOYA V., GONZALEZ C., SOLIS

C., FERNANDEZ A., ESPASA R.: Workload character-
ization of 3d games.Workload Characterization, 2006
IEEE International Symposium on(Oct. 2006), 17–26.

[SLS04] SHEAFFERJ. W., LUEBKE D., SKADRON K.: A
flexible simulation framework for graphics architectures.
In Graphics Hardware 2004(Aug. 2004), pp. 85–94.

[WW03] WIMMER M., WONKA P.: Rendering time esti-
mation for real-time rendering. InEurographics Sympo-
sium on Rendering: 14th Eurographics Workshop on Ren-
dering(June 2003), pp. 118–129.

c© The Eurographics Association 2008.


