View-based Rendering: Visualizing Real
Objects from Scanned Range and Color Data

Kari Pulli* Michael Coheh Tom Duchamp
Hugues Hoppe Linda Shapir® Werner Stuetzle

*University of Washington, Seattle, WA
TMicrosoft Research, Redmond, WA

Abstract

Modeling arbitrary real objects is difficult and renderimgtured models typi-
cally does not result in realistic images. We describe a nethad for displaying
scanned real objects, callegw-based renderingrhe method takes as input a col-
lection of colored range images covering the object andesemcollection of par-
tial object models. These partial models are rendered agghpusing traditional
graphics hardware and blended together using various teagla soft z-buffering.
We demonstrate interactive viewing of real, non-triviajesits that would be diffi-
cult to model using traditional methods.

1 Introduction

In traditionalmodel-based rendering geometric model of a scene, together with sur-
face reflectance properties and lighting parameters, @ tasgenerate an image of the
scene from a desired viewpoint. In contrastirmage-based rendering set of images
of a scene are taken from (possibly) known viewpoints and tsereate new images.
Image-based rendering has been an area of active resedhetpast few years because
it can be used to address two problems:

Efficient rendering of complicated scenes.Some applications of rendering, such as
walk-throughs of complex environments, require genenatfamages at interac-
tive rates. One way to achieve this is to render the scene dreuitably chosen
set of viewpoints. Images required during walk-through then synthesized
from the images computed during the pre-processing steig.idéa is based on
the premise that interpolation between images is fastermfradering the scene.

Three-dimensional display of real-world objects. Suppose we wish to capture the
appearance of a 3D object in a way that allows the viewer tatsieem any
chosen viewpoint. An obvious solution is to create a modehefobject cap-
turing its shape and surface reflectance properties. Howg®eerating realistic
models of complex 3D objects is a nontrivial problem that vileferther discuss
below. Alternatively, we can capture images of the objeatrfra collection of
viewpoints, and then use those to synthesize new images.

The motivation for our work is realistic display of real obfe. We present a method,
view-based renderinghat lies in between purely model-based and purely imaxged
methods.

The construction of a full 3D model needed for model-basedeeng requires a
number of steps: 1) acquisition of range and color data framaraber of viewpoints
chosen to get complete coverage of the object, 2) regsirafithese data into a single
coordinate system, 3) representation of all the data byfaseimodel that agrees with
all the images, 4) computation of a surface reflection motiehah point of this sur-
face using the colors observed in the various images. Despient advances [4, 16],
automatically creating accurate surface models of compuibgacts (step 3) is still a dif-
ficult task, while the computation of accurate reflection eledqstep 4) has hardly been
addressed. In addition, the rendered images of such modelstdook quite as realis-
tic as photographs that can capture intricate geometriartexand global illumination
effects with ease.

Our idea is to forgo construction of a full 3D object model. tika, we create in-
dependent models for the depth maps observed from each oiletyp much simpler
task. Instead of having to gather and manipulate a set of esmdgnse enough for
purely image-based rendering, we make do with a much spsesef images, but use
geometric information to more accurately interpolate lestwthem. A request for an
image of the object from a specified viewpoint is satisfiedigi¢he color and geometry
in the stored views. This paper describes our new view-basedering algorithm and
shows results on non-trivial real objects.

The paper is organized as follows. Section 2 casts imagedb@ndering as an in-
terpolation problem, where samples of the light field fumetare interpolated to create
new images. Section 3 describes our view-based renderprgagh. Section 4 presents
details of our implementation, including data acquisitiew-based model generation,
and use of graphics hardware for efficient implementatiod,sbome results. Section 5
covers related work. Section 6 discusses hardware actieteamd concludes the paper.

2 Image-based rendering as an interpolation problem
The basic problem in image-based render-

ing is to compute an image of a scene %%%
seen from some target viewpoint, usin

set of input images, their correspondi %%%
camera poses, and possibly additional

sociated information. A useful abstrac- %%%
t?on in this context is théight_field fqnc- & o

tion (also known as thplenopth funCtIOD} Figure 1: (a) A pencil of rays describes the colors of
Levoy and Hanrahan [12] define the lighisible points from a given point. (b) The light field
field as the radiance at a poiimt a given function describes the colors of all rays starting from
direction. For our purposes, it is more cof?y Point.

venient to define the light field as the radiance at a pfvorh a given direction (see
Figure 1).

More precisely, we define @y to be a directed half-line originating from a 3iase-
point We may therefore represent a ray as an ordered xpdij € R3 x &, wherex is

its basepointi is its direction, and’ denotes the unit sphere. The light field is then a

functionf : R®x & — R®which assigns to each ray,f) an RGB-coloif (x, fi). Thus,
f(x, i) measures the radiancexain the direction—A. The collection of rays starting

from a pointis called @encil If we had complete knowledge of the light field function,
we could render any view from any locatiarby associating a ray (or an average of
rays) in the pencil based =atto each pixel of a virtual camera.

The full light field function is only needed to render entirevegonments from an
arbitrary viewpoint. If we are content with rendering inidival objects from some
standoff distance, it suffices to know the light field funatior the subset of ?Qx &g
of “inward” rays originating from points on a convex surfade
that encloses the object. Following Gortégral. [9], we call this
simpler function dumigraph We call the surfaci that encloses;
the object thdumigraph surface Figure 2 shows a schematic &
the lumigraph domain for the case where the lumigraph serfegs,
isa sphere

from any viewpoint exterior to the convex hull of the objeetrig Figure 2: A spherical
modeled. Each pixel in the image defines a ray that intergeet4M9raph surface.
lumigraph surfacé at a point, say. If A is the direction of that ray, then the RGB-
color value assigned to the pixelfig, fi).
2.1 Distance measures for rays
In practice we will never be able to acquire the full 5D lighgldi function or even a
complete 4D lumigraph. Instead we will have a discrete séimafges of the scene,
taken at some finite resolution. In other words, we have thgegeof the function for
a sample of rays (really for local averages of the light fielddtion). To render the
scene from a new viewpoint, we need to estimate the valudsedfuinction for a set
of query rays from its values for the sample rays. Thogge-based rendering is an
interpolation problem

In a generic interpolation problem, one is given the valdesfonction at a discrete
set of sample points. The function value at a new query psiesiimated by a weighted
average of function values at the sample points, with wsighhcentrating on samples
that are close to the query point. The performance of anypntation method is criti-
cally dependent on the definition of “closeness”.

In image-based rendering, the aim is to paint pixels on thegerplane of a virtual
camera, and therefore the renderer looks for rays closestorth associated with some
particular pixel. In the next two sections we examine tweeltess measures.

2.1.1 Ray-surface intersection

Figure 3 shows a piece of a lumigraph with several pencilags$.rin Fig. 3(a) there is
no information about the object surface geometry. In thaka@e have to concentrate
on pencils whose origins are close to the query ray and iolatg between rays that
are parallel to the query ray. The denser the pencils aresothehlumigraph surfadd,
and the more rays in each pencil, the better the match we gaeteto find.

Assuming that the object is a Lambertian reflector, the luaph representation has
a high degree of redundancy: there are many rays that ictefse object surface at
the same point. Figure 3(b) shows a case where the precisetagometry is not
known, but there is an estimate of the average distance batthe object surface and
the lumigraph surface. We can estimate where the query tassicts the object surface
and choose rays from nearby pencils that point to the intéosepoint. The expected

Figure 3 The query ray is dotted; sample rays are solid. (a) Choose sim
lar rays. (b) Choose rays pointing to where the query ray sne@tface. (c)
Choose rays intersecting the surface where the query ras/ doe

error in our estimate off(x, N) should now be less than in case (a). Or, to obtain the
same error, we need far fewer sample rays (i.e. images).
Figure 3(c) illustrates the case where there is accuratenrdtion about the object

geometry. To estimati(x,), we can locate the sample rays that intersect the object

surface at the same location as the query ray. With an aecsuaface description it
is possible to find all the rays directed towards that locasiod even remove rays that
really intersect some other part of the surface first. Ndljuthe expected error with a
given collection of rays is minimized.

2.1.2 Ray direction

To improve the estimate of the lighting function we can taki® iaccount the direc-
tion and more heavily weight sample rays whose directionerrihat of the query
ray. There are three justifications for this. First, few aoefs reflect the incoming light
uniformly in every direction. A typical example of this isesgular reflections on shiny
surfaces, but the appearance of many materials such ag eelbair varies signifi-
cantly with viewing direction. In image-based rendering tbuggests favoring rays
with similar directions.

Second, undetected self-occlusions may cause us to ictigroonclude that two
sample rays intersect the object surface at the same palriéad us to incorrectly es-
timate the light field function. If the occlusion is due to ege-scale object feature, and
we have enough information about the surface geometry, webmable to notice the
self-occlusion and cull away occluded rays (see Fig. 3ttywever, if the occlusion is
due to small scale surface geometry, and we have only appat&iinformation of the
surface geometry, the occlusion is much harder to detesh@sn in Fig. 4(a). More-
over, if the object has thin features, as illustrated in Bigp), then rays may approach
the object surface from opposite directions and intergeat points that are spatially
near, yet far apart with respect to distance as measured thensurface. The likeli-
hood of such errors decreases by more heavily weighting learays whose directions
are near the direction of the query ray.

Third, as shown in Fig. 4(c), when the angle between the qusrand the sample
ray is large, small errors in the surface geometry can ledar @ errors in the estimate
of distance between the intersection points with the olgedace. We get more robust
results by favoring rays with similar direction to that oétQuery ray.

(a) (b)

Figure 4 (a) Detailed surface geometry can cause occlusions thag tinak
surface appear different from different directions. (b)rirfeatures can cause
a discrepancy between surface distance and spatial distanintersection
points. (c) The more parallel the rays the less damaging r@m &r an esti-
mate of surface distance.

3 View-based rendering

The preprocessing of the input data is described in morél det8ection 4, but for
clarity we summarize it here. The input to our view-basediegimg system is a set
of views, i.e., colored range images of an object. Registetine range maps into a
common coordinate system gives us the camera locationg@mdagions of the colored
images with respect to the object. We replace each dense naayg by a sparse triangle
mesh that closely approximates it. We then texture map e&uigte mesh using the
associated colored image. To synthesize an image of thetdlgen a fixed viewpoint
we individually render the meshes constructed from thresecliewpoints and blend
them together with a pixel-based weighting algorithm trssusoft z-buffering.

3.1 A simple approach

To better understand the virtues of our approach, it is étpfcontrast it with a simpler
algorithm. If we want to view the object from any of the stowéglvpoints, we can place
a virtual camera at one of them and render the associatad¢extnesh. We can move
the virtual camera around by rendering the mesh from the riewpoint. But as the
viewpoint changes, parts of the surface not seen from thygnaili viewpoint become
visible, opening holes in the rendered image. If, howebernissing surface parts are
seen from one or more other stored viewpoints, we can fill tlesiby simultaneously
rendering the textured meshes associated with the adalitiewpoints. The resulting
image is a collage of several individual images.

The results are displayed in Fig. 10(a). In terms of ray jpuéation, the graphics
hardware interpolates the rays within each view, findingydfoaeach pixel that inter-
sects the surface approximately where the query ray of tted does. However, there
is no interpolation between the views, only the ray from thesimthat happens to be
closest to the camera at the pixel is chosen. With imperfeohtetrical information
and registration, we get a lot of visible artifacts.

We can improve on this by interpolating rays between difiengews. The next
section describes how we use various weights that accousufth factors as view-
ing directions and surface sampling densities and how weddlays correctly even in
presence of partial self-occlusions. The results of theebéiterpolation are shown in
Fig. 10(b).

viewing direction
of the virtual camera

iews surroundins
the virtual camera

Figure 5 (a) The weightsvs assigned to the views at the vertiées andk of
the Delaunay triangles containing the current view are dtytentric coordi-
nates. (b) The weighw, is the cosine of the anglg between the normal and
the ray to the sensor.

3.2 Three weights and soft z-buffering

We preprocess the viewing directions of the input views dewis. Each viewing
direction corresponds to a point on the unit sphere. Theiwigwdirections thus define
a set of points on the sphere and we compute the Delaunaguitation of this set, as
illustrated in Fig. 5(a).

To synthesize an image of the object from a fixed viewpointfivet select the three
views corresponding to the vertices of the Delaunay triargntaining the current
viewing direction of the virtual camera. The textured meéleach selected view is
individually rendered from this viewpoint to obtain thresparate images. The images
are blended into a single image by the following weightingesne. Consider a single
pixel. We sefc = Ziszl wici/ziszl w; whereg; is the color value associated with that
pixel in thei™ image andw; is a weight designed to overcome the difficulties encoun-
tered in the naive implementation mentioned above. The lwe&igis the product of
three weightsnv = wg; - Wy - W, i, whose definition is illustrated in Figs. 5 and 9.
Self-occlusions are handled by using soft z-buffering tmbimme the images pixel by
pixel.

The first weightwg, measures the proximity of a chosen view to the current view-
point, and therefore changes dynamically as the virtualetarmoves. We first calcu-
late the barycentric coordinateof the current viewpoint with respect to the Delaunay
triangle containing it (see Fig. 5(a)y. has three components between 0.0 and 1.0 that
sum to 1.0, each associated with one of the triangle vertidé®e components give
the weights that linearly interpolate the vertices to pamthe current viewpoint. We
define the weighivs of view i to be the component gf associated with that view.

The remaining two weighte/, andw,, are pixel dependent but are independent of
the view direction of the virtual camera. The second wewgfit a measure of surface
sampling density (see Figs. 5(b) and 9(b)) and it is constéthin each triangle in a
mesh. Consider a point on a triangle in the mesh of viesrresponding to a given
pixel. A small region of are& about the point projects to a region of arkaosg on

the “image plane” of thé" sensor, where is the angle between the normal to the
triangle and the ray from the point to the sensor. Wenset cos¢. Darsaet al. [5]
use a similar weight.

The third weightw,, which we call theblend weightis designed to smoothly blend
the meshes at their boundaries. As illustrated by Fig. #fe)blend weightv.,; of view
i linearly increases with distance from the mesh boundarkeébint projecting onto
the pixel. Whereag/s is associated with a view, awd, with the triangles approximat-
ing the geometry of the viewy,, is associated with color texture of the view. A similar
weight was used by Debevetal. [6].

Most self-occlusions are handled during rendering of iitlial views using back-
face culling and z-buffering. When combining the view-lthpartial models, part of
one view’s model may occlude part of another view's modellegs the surfaces are
relatively close to each other, the occluded pixel must lduebed from contributing
to the pixel color. This is done by performing “soft” z-bufiieg, in software. First,
we consult the z-buffer information of each separately ezed view and search for the
smallest value. Views with z-values within a threshold frtma closest are included
in the composition, others are excluded. The thresholdaéseh to slightly exceed an
upper estimate of the combination of the sampling, regdisttaand polygonal approx-

imation errors.
Figure 6 illustrates a potential problem. In the pict ! "

the view-based surface approximation of the rightmost ca ‘

era has failed to notice a step edge due to self-occlusionin - | T
the data, and has incorrectly connected two surface regions A
When performing the soft z-buffering for the pixel corre-
sponding to the dashed line, the wrongly connected step edge '\ >~
would be so much closer than the contribution from the othigure 6: Problems with un-
view that the soft z-buffering would throw away the corretgtected step edges.
sample. However, while doing the soft z-buffering we camtttbe weights as confi-
dence measures. If a pixel with a very low confidence valueisa pixel with a high
confidence value, the low confidence pixel is ignored altogret

Rendering the registered geometry using graphics hardavet@®ur soft z-buffering
finds rays that intersect the surface where the query ray dhaoes. Weightsvg and
w,, are used to favor good rays in the sense discussed in Sectaril2 w,, is used to
hide the effects of inevitable inaccuracies due to the usealfscanned data.

4 Implementation

4.1 View acquisition

Data acquisition. We obtain the range data from a stereo camera system that uses
active light. Both cameras have been calibrated, and arlibreted light source sweeps

a beam (a vertical light plane) past the object in discregpsst For each pixel on the
beam, we project its epipolar line to the right camera’s immpane. The intersection

of the epipolar line and the bright line gives a pixel thatssthee same surface point as
the original pixel from the left camera. We obtain the 3D ahioates of that point by
triangulating the corresponding pixels. After the view hagn scanned, we turn the
lights on and take a color picture of the object. The objethén repositioned so we

can scan it from a different viewpoint.

View registration. Registering the views using the range data aligns the raragesm
around the object. A transformation applied to the ranga d&to moves the sensor
with respect to an object centered coordinate system, giugithe relative camera
positions and orientations. We perform the initial registn interactively by marking
identifiable object features in the color images. This ahitegistration is refined using
Chen and Medioni's registration method [3] modified to de@hwnultiple data sets
simultaneously.

Triangle mesh creation. We currently create the triangle meshes interactively. The
user marks the boundaries of the object by inserting pamdsthe color image, while
the software incrementally updates a Delaunay trianguiatf the vertices. The system
optimizes the z-coordinates of all the vertices so thate¢hstisquares error of the range
data approximation is minimized. Triangles that are alnpastllel to the viewing
direction are discarded, since they are likely to be steggdmpt a good approximation
of the object surface. Triangles outside of the object eseatded as well.

We have begun to automate the mesh creation phase. Firstlaae @ blue cloth
to the background and scan the empty scene. Points whosesigand color match
the data scanned from the empty scene are classified as baokigrThe adding of
vertices is easily automated. For example, Garland and tbztk8] add vertices to
image coordinates where the current approximation is woféte drawback of this
approach is that if the data contains step edges due toaglisions, the mesh is likely
to become unnecessarily dense before a good approximatachieved. To prevent
this we perform a mesh simplification step using the meshropétion methods by
Hoppeet al. [10].

4.2 Rendering
We have built an interactive viewer for viewing the reconsted images (see Fig-
ure 11). For each frame, we find three views whose view dastsurround the current
view direction on a unit sphere. The three views are thenamttseparately from the
viewpoint of the virtual camera as textured triangle meses weighted using the
barycentric coordinates of the current view direction wihpect to the chosen views.
Two of the weightsw,, andw,, are static for each view, as they do not depend on
the viewing direction of the virtual camera. We apply bothhase weights offline and
code them into the alpha channels of the mesh color and ther¢éemap. w, is the
weight used to decrease the importance of triangles thatlame with respect to the
scanner. It is applied by assigning the RGBA color (1, W),to each trianglew, is
the weight used to hide artifacts at the mesh boundary ofva \ids directly applied
to the alpha channel of the texture map that stores the atlemnation. We calculate
the weights for each pixel by first projecting the trianglesimento the color image and
painting it white on a black background. We then calculagedistancel for each white
pixel to the closest black pixel. The pixels with distanckatdeastn get alpha value 1;
all other pixels get the valu%.

; ; FOR EACH pi xel
Figure 7 gives the pseudo™ 7 -~

code for the view composition pi xel _col or
pi xel _wei ght

mn_reliable_z(pixel)
(0,0,0)
0

algorithm. The function FOR EACH view _
mi_n._reliable_z() returnsthe | F\Aérng?;- z[vi EV\{, EI)\;\Zl*]vx;_*z\/\n; n+thrsoft_z THEN
minimum z for a given pixel, pi xel _color += weight * col or [vi ew, pi xel]

. . i xel _wei ght += wei ght
unless the closest pixel is a low ENDF T ’

confidence (Weight) pOint that EglIDor [pixel] := pixel_color / pixel_weight
would occlude a high confi- END
dence point, in which case the Figure 7: Pseudo code for color blending.
z for the minimum high confidence point is returned.

When we render a triangle mesh with the described colorsextdre maps, the hard-
ware calculates the correct weights for us. The alpha valeach pixel isvy - w,,. It
is also possible to apply the remaining weighi, using graphics hardware. After we
render the views, we have to read in the information from thene buffer. OpenGL
allows scaling each pixel while reading the frame buffeoimtemory. If we scale the
alpha channel by, the resulting alpha value contains the final weight wy - w,.

4.3 Results

We have implemented our object visualization method on ahN&imum Impact
with a 250 MHz MIPS 4400. We first obtain a polygonal approxioraconsisting of
100-250 triangles for each view. The user is free to rotateng and pan the object
in front of the virtual camera. For each frame, we chooseetiviews. The texture-
mapped polygonal approximations of the views are rendecad the current viewpoint
separately into 256& 256 windows. The images are combined pixel by pixel into a
composite image.

Figure 10 compares the simple approach of Section 3.1 toiewrlased rendering
method that uses three weights and soft z-buffering (Se&i). In Fig. 10(a) three
views have been rendered repeatedly into the same frametfrermiewpoint of the
virtual camera. The mesh boundaries are clearly visiblelaadesult looks like a badly
made mosaic. In Fig. 10(b) the views have been blended shyquel by pixel. Both
the dog and the flower basket are almost free of blendingatsifsuch as background
color showing at mesh boundaries and false surfaces duedigtected step edges in
the triangle meshes.

Our current implementation can deliver about 8 frames peors® The execution
time is roughly divided into the following components. Renidg the three texture
mapped triangle meshes takes 37%, reading the color anffersinto memory takes
13%, building the composite image takes 44%, and displalfiegesult takes 6% of
the total execution time.

4.4 Additional hardware acceleration

The only parts of our algorithm not currently supported bgmics hardware are the
weighted pixel averaging and the soft z-buffering. The \widd averaging would be
easy to implement by allowing more bits for the accumulabaffer, interpreting the
alpha channel value as a weight instead of the opacity vahteproviding a command
that divides the RGB channels by the alpha channel value pnoximate implemen-
tation of the soft z-buffering in hardware would require &dyl replacing, or ignoring

the weighted color and the weight (alpha value) dependingfwether the new pixel's
z value is within, much closer, or much farther from the oldaiue, respectively. For
exact implementation two passes are required: first findrmini reliable z, then blend
using soft threshold based on that minimum z.

5 Related work

Chen [1] and McMillan and Bishop [15] modeled environmenysstoring the light
field function around a point. The rays visible from a poird é&xture mapped to a
cylinder around that point, and any horizontal view can leatad by warping a portion
of the cylinder to the image plane. Both systems allow lichitetations about a vertical
axis, but they do not support continuous translation of iee/goint.

Levoy and Hanrahan [12] and Gortlet al. [9] developed image synthesis systems
that use a lumigraph and that support continuous translatial rotation of the view
point. In fact, the term “lumigraph” that we use to describe 4D slice of the light
field is borrowed from [9]. Both systems use a cube surrountie object as the
lumigraph surface. To create a lumigraph from digitizedgesof a real object, Levoy
and Hanrahan moved the camera in a regular pattern into arkseiof positions, and
projected the camera images back to the lumigraph cubeleGetial. moved a hand-
held video camera around an object placed on the capture.stdw capture stage is
patterned with a set of concentric circles for estimatiregghmera pose for each image.
The rays from the images are projected to the lumigraph waiid the lumigraph is
interpolated from these samples and stored as a grid of 2Bdaman both systems, new
images are synthesized from a stored grid of 2D images bytarpimiation procedure,
but Gortleret al. use additional geometric information to improve on ray iptdation.
They create a rough model from the visual hull of the objeche @dvantage of the
lumigraph methods is that they allow capturing the appearahany object regardless
of the complexity of its surface. A disadvantage is the difficof storing and accessing
the enormous lumigraph representation.

The “algebraic” approach to image-based rendering usiirg paimages and pixel
correspondences in the two images was introduced by LavehBaugeras [11]. It has
since been used in several other systems [15, 18, 7]. Giveaatalense pixel corre-
spondences one can calculate the 3D coordinates of surfétes pisible in both im-
ages, and then project these to the image plane of the vidna¢ra. However, the pro-
jection can also be calculated directly without
3D reconstruction. This is illustrated in Fig. 8
which shows the stored images 1 and 2, andthe /L i
image plane of the virtual camera v. Since 1
pixel marked in image 1 corresponds to the dne
marked in image 2, their associated raysand L1
rp are assumed to intersect at the same locatiglre 8: Two matching rays correspond to
on the object surface. That point projects to tte pixel of the virtual camera where the pro-
imagev at the intersection of the epipolar lind&etions of the rays intersect.

e; andey, which are the projections af andr, onto imagev. The color of the des-
tination pixel would be a combination of the colors of theubpixels. The pixel cor-
respondence mapping between the input images is not easyrelidbly, especially

within regions of homogeneous color. But fortunately, thgions where such pixels
project have almost constant color, so a projection errar fefv pixels typically does
not cause visible artifacts.

Chen and Williams [2] used similar methods to trade unbodrsiene complexity
to bounded image complexity. They render a large numberenfwiof a complicated
scene and obtain accurate pixel correspondences from dalptbs that are stored in
addition to the color at each pixel. The missing views nedde@ walk-through of
the virtual environment are interpolated from the storedsonMax and Ohsaki [14]
used similar techniques for rendering trees from precoewpitbuffer views. How-
ever, rather than morphing the precomputed images, thegjesp them pixel by pixel.
Shadeet al. [17] partition the geometric primitives in the scene, rarideges of them,
and texture map the images onto quadrilaterals, which amadied instead of the ge-
ometry. Debeveet al. [6] developed a system that fits user-generated geometdelso
of buildings to digitized images by interactively assoicigimage features with model
features and fitting model parameters to images. The bgidame view-dependently
texture mapped using the color images. The interpolatidwédsen different texture
maps is improved by determining more accurate surface gepmsing stereo from
several input images and morphing the texture map accdyding

Two recent papers use similar techniques to ours. Mark. [13] investigate the
use of image-based rendering to increase the frame raterfootely viewing virtual
worlds. Their proposed system would remotely render imdigea geometric mod-
els at 5 frames/sec and send them to a local computer thassarpinterpolates two
consecutive frames at about 60 frames/sec. The 3D warp s @®im [2]. Using the
z-values at each pixel a dense triangle mesh is constructetd two views between
which the interpolation is performed. Normal vectors anehltses at each pixel are
used to locate false connections across a step edge betweenlading and occluded
surface. Darsat al. [5] describe another approach for rapidly displaying caogiéd
environments. The virtual environment is divided into csibErom the center of each
cube, six views (one for each face of the cube) are rendersthguhe z-buffer, the
geometry of the visible scene is tessellated into a spaesete mesh, which is texture
mapped using the rendered color image. A viewer at the cefitarcube can sim-
ply view the textured polygon meshes stored at the cube wHlkhe viewer moves,
parts of the scene previously hidden become visible. Therted meshes from several
cubes can be used to fill the holes. The authors discussatiffereighting schemes for
merging meshes from several cubes.

6 Discussion
We have described a new rendering method called view-baselring that lies in be-
tween purely model-based and purely image-based methbdsnput to our method is
a small set of range and color images, containing both genaetd color information.
An image can be rendered from an arbitrary viewpoint by hlegthe information
obtained from several of these views. This blending openati accomplished by three
weights determined by the view direction of the virtual camehe surface sampling
density and orientation, and the distance from the meshdanyn As a robust solu-
tion to the visibility problem, we propose the use of a sofiuffering technique to

allow only points within a threshold to be included in blemgli We have demonstrated
interactive viewing of two non-trivial real objects usingranethod.

Our view-based rendering has several advantages overdtiiidnal model-based
approach of rendering full objects. It is much easier to nhedeh view separately
than it is to create a model of the whole object, especialfiggfobject has convoluted
geometry. Our approach automatically gives view-depenteturing of the object,
which produces more realistic images than can typicallytlieined by static texturing.

The advantages over image-based rendering are twofoldraraddirect consequence
of having explicit geometric information. First, signifitdy fewer input images are
needed for view-based rendering than for image-based regd&econd, we can con-
struct composite objects from several view-based modelsomtrast, realistic compos-
ite images can be generated from image-based models ohkiifiounding boxes do
not intersect.

The disadvantage is that our system shows the object in fightilg. Relighting of
synthetically created view-based models is possible if tweesadditional information
such as normals and reflectance properties for each pixdieofeixture maps. For
real objects, normals could be approximated but obtairéfigetance properties is not
trivial.

References

[1] S.E.Chen. Quicktime VR - an image-based approach toalignvironment navigation. RIGGRAPH
95 Conference Proceedingsages 29—-38. ACM SIGGRAPH, Addison Wesley, August 1995.

[2] S. E. Chen and L. Williams. View interpolation for imaggnshesis. InComputer Graphics (SIG-
GRAPH '93 Proceedingsyolume 27, pages 279-288, August 1993.

[3] Y. Chen and G. Medioni. Object modelling by registratioihmultiple range imagedmage and Vision
Computing 10(3):145-155, April 1992.

[4] B. Curless and M. Levoy. A volumetric method for buildiegmplex models from range images. In
SIGGRAPH 96 Conference Proceedingages 303—-312. ACM SIGGRAPH, Addison Wesley, August
1996.

[5] L.Darsa, B.C. Silva, and A. Varshney. Navigating statiwvironments using image-space simplification
and morphing. IrProc. 1997 Symposium on Interactive 3D Graphjzages 25-34, April 1997.

[6] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling anddesing architecture from photographs: A
hybrid geometry- and image-based approaclSIlBGRAPH 96 Conference Proceedingages 11-20.
ACM SIGGRAPH, Addison Wesley, August 1996.

[7] T. Evgeniou. Image based rendering using algebraicnigcies. Technical Report A.l. Memo No.
1592, Massachusetts Institute of Technology, 1996.

[8] M. Garland and P. Heckbert. Fast polygonal approxinmatd terrains and height fields. Technical
Report CMU-CS-95-181, Dept. of Computer Science, Carndfgdion University, Pittsburgh, PA,
1995.

[9] S.J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. CohEme lumigraph. I'SIGGRAPH 96 Confer-
ence Proceedingpages 43-54. ACM SIGGRAPH, Addison Wesley, August 1996.

[10] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. t3keie Mesh optimization. Ii€Computer
Graphics (SIGGRAPH '93 Proceedingsplume 27, pages 19-26, August 1993.

[11] S.Laveau and O. D. Faugeras. 3-d scene representati@ealection of images and fundamental ma-
trices. Technical Report RR 2205, INRIA, France, 1994. kade from ftp:/ftp.inria.fr/INRIA/tech-
reports/RR/RR-2205.ps.gz.

[12] M. Levoy and P. Hanrahan. Light field rendering. StGGRAPH 96 Conference Proceedingages
31-42. ACM SIGGRAPH, Addison Wesley, August 1996.

(13]

(14]

[15]

[16]

(17]

(18]

W. R. Mark, L. McMillan, and G. Bishop. Post-renderind ®&arping. InProc. 1997 Symposium on
Interactive 3D Graphicspages 7-16, April 1997.

N. Max and K. Ohsaki. Rendering trees from precomputdslifer views. InEurographics Rendering
Workshop 1995pages 74—81;359-360. Eurographics, June 1995.

L. McMillan and G. Bishop. Plenoptic modeling: An imagased rendering system. 8iGGRAPH
95 Conference Proceedingsages 39—-46. ACM SIGGRAPH, Addison Wesley, August 1995.

K. Pulli, T. Duchamp, H. Hoppe, J. McDonald, L. Shapiamd W. Stuetzle. Robust meshes from mul-
tiple range maps. IRroc. IEEE Int. Conf. on Recent Advances in 3-D Digital Inmagand Modeling
May 1997.

J. Shade, D. Lischinski, D. Salesin, T. DeRose, and yd&n Hierarchical image caching for acceler-
ated walkthroughs of complex environments SIiEGRAPH 96 Conference Proceedingages 75-82.
ACM SIGGRAPH, Addison Wesley, August 1996.

T. Werner, R. D. Hersch, and V. Hlava¢. Rendering-eafld objects using view interpolation. In
Proc. IEEE Int. Conf on Computer Vision (ICC\ages 957-962, June 1995.

(a) (b) (c)

Figure 9 (a) A colorimage of a toy dog. (b) Weighit, is applied to each face
of the triangular mesh. (c) Weight, smoothly decreases towards the mesh
boundary.

Figure 10 (a) The result of combining three views by repeatedly reindehe
view-based meshes from the viewpoint of the virtual camsrdescribed in
Section 3.1. (b) Using the weights and soft z-buffering désd in Section 3.2
produces a much better result.

Figure 11 Our viewer shows the three view-based models rendered fiem t
viewpoint of the virtual camera. The final image is on the dwtright.

