
View-based Rendering: Visualizing Real
Objects from Scanned Range and Color Data

Kari Pulli∗ Michael Cohen† Tom Duchamp∗

Hugues Hoppe† Linda Shapiro∗ Werner Stuetzle∗

∗University of Washington, Seattle, WA
†Microsoft Research, Redmond, WA

Abstract

Modeling arbitrary real objects is difficult and rendering textured models typi-
cally does not result in realistic images. We describe a new method for displaying
scanned real objects, calledview-based rendering. The method takes as input a col-
lection of colored range images covering the object and creates a collection of par-
tial object models. These partial models are rendered separately using traditional
graphics hardware and blended together using various weights and soft z-buffering.
We demonstrate interactive viewing of real, non-trivial objects that would be diffi-
cult to model using traditional methods.

1 Introduction
In traditionalmodel-based renderinga geometric model of a scene, together with sur-
face reflectance properties and lighting parameters, is used to generate an image of the
scene from a desired viewpoint. In contrast, inimage-based renderinga set of images
of a scene are taken from (possibly) known viewpoints and used to create new images.
Image-based rendering has been an area of active research inthe past few years because
it can be used to address two problems:

Efficient rendering of complicated scenes.Some applications of rendering, such as
walk-throughs of complex environments, require generation of images at interac-
tive rates. One way to achieve this is to render the scene froma suitably chosen
set of viewpoints. Images required during walk-through arethen synthesized
from the images computed during the pre-processing step. This idea is based on
the premise that interpolation between images is faster than rendering the scene.

Three-dimensional display of real-world objects.Suppose we wish to capture the
appearance of a 3D object in a way that allows the viewer to seeit from any
chosen viewpoint. An obvious solution is to create a model ofthe object cap-
turing its shape and surface reflectance properties. However, generating realistic
models of complex 3D objects is a nontrivial problem that we will further discuss
below. Alternatively, we can capture images of the object from a collection of
viewpoints, and then use those to synthesize new images.

The motivation for our work is realistic display of real objects. We present a method,
view-based rendering, that lies in between purely model-based and purely image-based
methods.

The construction of a full 3D model needed for model-based rendering requires a
number of steps: 1) acquisition of range and color data from anumber of viewpoints
chosen to get complete coverage of the object, 2) registration of these data into a single
coordinate system, 3) representation of all the data by a surface model that agrees with
all the images, 4) computation of a surface reflection model at each point of this sur-
face using the colors observed in the various images. Despite recent advances [4, 16],
automatically creating accurate surface models of complexobjects (step 3) is still a dif-
ficult task, while the computation of accurate reflection models (step 4) has hardly been
addressed. In addition, the rendered images of such models do not look quite as realis-
tic as photographs that can capture intricate geometric texture and global illumination
effects with ease.

Our idea is to forgo construction of a full 3D object model. Rather, we create in-
dependent models for the depth maps observed from each viewpoint, a much simpler
task. Instead of having to gather and manipulate a set of images dense enough for
purely image-based rendering, we make do with a much sparserset of images, but use
geometric information to more accurately interpolate between them. A request for an
image of the object from a specified viewpoint is satisfied using the color and geometry
in the stored views. This paper describes our new view-basedrendering algorithm and
shows results on non-trivial real objects.

The paper is organized as follows. Section 2 casts image-based rendering as an in-
terpolation problem, where samples of the light field function are interpolated to create
new images. Section 3 describes our view-based rendering approach. Section 4 presents
details of our implementation, including data acquisition, view-based model generation,
and use of graphics hardware for efficient implementation, and some results. Section 5
covers related work. Section 6 discusses hardware acceleration and concludes the paper.

2 Image-based rendering as an interpolation problem
The basic problem in image-based render-
ing is to compute an image of a scene as
seen from some target viewpoint, using a
set of input images, their corresponding
camera poses, and possibly additional as-
sociated information. A useful abstrac-
tion in this context is thelight field func-
tion (also known as theplenoptic function).
Levoy and Hanrahan [12] define the light
field as the radiance at a pointin a given
direction. For our purposes, it is more con-

(a) (b)

Figure 1: (a) A pencil of rays describes the colors of
visible points from a given point. (b) The light field
function describes the colors of all rays starting from
any point.

venient to define the light field as the radiance at a pointfrom a given direction (see
Figure 1).
More precisely, we define aray to be a directed half-line originating from a 3Dbase-
point. We may therefore represent a ray as an ordered pair (x, n̂) ∈ IR3

× S2, wherex is
its basepoint,̂n is its direction, andS2 denotes the unit sphere. The light field is then a
functionf : IR3

×S2
→ IR3 which assigns to each ray (x, n̂) an RGB-colorf (x, n̂). Thus,

f (x, n̂) measures the radiance atx in the direction−n̂. The collection of rays starting

from a point is called apencil. If we had complete knowledge of the light field function,
we could render any view from any locationx by associating a ray (or an average of
rays) in the pencil based atx to each pixel of a virtual camera.

The full light field function is only needed to render entire environments from an
arbitrary viewpoint. If we are content with rendering individual objects from some
standoff distance, it suffices to know the light field function for the subset of IR3 × S2

of “inward” rays originating from points on a convex surfaceM
that encloses the object. Following Gortleret al. [9], we call this
simpler function alumigraph. We call the surfaceM that encloses
the object thelumigraph surface. Figure 2 shows a schematic of
the lumigraph domain for the case where the lumigraph surface
is a sphere.

The lumigraph contains all rays needed to synthesize an image
from any viewpoint exterior to the convex hull of the object being
modeled. Each pixel in the image defines a ray that intersectsthe

Figure 2: A spherical
lumigraph surface.

lumigraph surfaceM at a point, sayx. If n̂ is the direction of that ray, then the RGB-
color value assigned to the pixel isf (x, n̂).

2.1 Distance measures for rays
In practice we will never be able to acquire the full 5D light field function or even a
complete 4D lumigraph. Instead we will have a discrete set ofimages of the scene,
taken at some finite resolution. In other words, we have the values of the function for
a sample of rays (really for local averages of the light field function). To render the
scene from a new viewpoint, we need to estimate the values of the function for a set
of query rays from its values for the sample rays. Thus,image-based rendering is an
interpolation problem.

In a generic interpolation problem, one is given the values of a function at a discrete
set of sample points. The function value at a new query point is estimated by a weighted
average of function values at the sample points, with weights concentrating on samples
that are close to the query point. The performance of any interpolation method is criti-
cally dependent on the definition of “closeness”.

In image-based rendering, the aim is to paint pixels on the image plane of a virtual
camera, and therefore the renderer looks for rays close to the one associated with some
particular pixel. In the next two sections we examine two closeness measures.

2.1.1 Ray-surface intersection
Figure 3 shows a piece of a lumigraph with several pencils of rays. In Fig. 3(a) there is
no information about the object surface geometry. In that case we have to concentrate
on pencils whose origins are close to the query ray and interpolate between rays that
are parallel to the query ray. The denser the pencils are on the the lumigraph surfaceM,
and the more rays in each pencil, the better the match we can expect to find.

Assuming that the object is a Lambertian reflector, the lumigraph representation has
a high degree of redundancy: there are many rays that intersect the object surface at
the same point. Figure 3(b) shows a case where the precise object geometry is not
known, but there is an estimate of the average distance between the object surface and
the lumigraph surface. We can estimate where the query ray intersects the object surface
and choose rays from nearby pencils that point to the intersection point. The expected

(a) (b) (c)

Figure 3 The query ray is dotted; sample rays are solid. (a) Choose simi-
lar rays. (b) Choose rays pointing to where the query ray meets surface. (c)
Choose rays intersecting the surface where the query ray does.

error in our estimate off (x, n̂) should now be less than in case (a). Or, to obtain the
same error, we need far fewer sample rays (i.e. images).

Figure 3(c) illustrates the case where there is accurate information about the object
geometry. To estimatef (x, n̂), we can locate the sample rays that intersect the object
surface at the same location as the query ray. With an accurate surface description it
is possible to find all the rays directed towards that location and even remove rays that
really intersect some other part of the surface first. Naturally, the expected error with a
given collection of rays is minimized.

2.1.2 Ray direction
To improve the estimate of the lighting function we can take into account the direc-
tion and more heavily weight sample rays whose direction is near that of the query
ray. There are three justifications for this. First, few surfaces reflect the incoming light
uniformly in every direction. A typical example of this is specular reflections on shiny
surfaces, but the appearance of many materials such as velvet or hair varies signifi-
cantly with viewing direction. In image-based rendering this suggests favoring rays
with similar directions.

Second, undetected self-occlusions may cause us to incorrectly conclude that two
sample rays intersect the object surface at the same point and lead us to incorrectly es-
timate the light field function. If the occlusion is due to a large-scale object feature, and
we have enough information about the surface geometry, we may be able to notice the
self-occlusion and cull away occluded rays (see Fig. 3(c)).However, if the occlusion is
due to small scale surface geometry, and we have only approximate information of the
surface geometry, the occlusion is much harder to detect, asshown in Fig. 4(a). More-
over, if the object has thin features, as illustrated in Fig.4(b), then rays may approach
the object surface from opposite directions and intersect it at points that are spatially
near, yet far apart with respect to distance as measured along the surface. The likeli-
hood of such errors decreases by more heavily weighting sample rays whose directions
are near the direction of the query ray.

Third, as shown in Fig. 4(c), when the angle between the queryray and the sample
ray is large, small errors in the surface geometry can lead tolarge errors in the estimate
of distance between the intersection points with the objectsurface. We get more robust
results by favoring rays with similar direction to that of the query ray.

(a) (b) (c)

Figure 4 (a) Detailed surface geometry can cause occlusions that make the
surface appear different from different directions. (b) Thin features can cause
a discrepancy between surface distance and spatial distance of intersection
points. (c) The more parallel the rays the less damaging an error in an esti-
mate of surface distance.

3 View-based rendering
The preprocessing of the input data is described in more detail in Section 4, but for
clarity we summarize it here. The input to our view-based rendering system is a set
of views, i.e., colored range images of an object. Registering the range maps into a
common coordinate system gives us the camera locations and orientations of the colored
images with respect to the object. We replace each dense range map by a sparse triangle
mesh that closely approximates it. We then texture map each triangle mesh using the
associated colored image. To synthesize an image of the object from a fixed viewpoint
we individually render the meshes constructed from three close viewpoints and blend
them together with a pixel-based weighting algorithm that uses soft z-buffering.

3.1 A simple approach
To better understand the virtues of our approach, it is helpful to contrast it with a simpler
algorithm. If we want to view the object from any of the storedviewpoints, we can place
a virtual camera at one of them and render the associated textured mesh. We can move
the virtual camera around by rendering the mesh from the new viewpoint. But as the
viewpoint changes, parts of the surface not seen from the original viewpoint become
visible, opening holes in the rendered image. If, however, the missing surface parts are
seen from one or more other stored viewpoints, we can fill the holes by simultaneously
rendering the textured meshes associated with the additional viewpoints. The resulting
image is a collage of several individual images.

The results are displayed in Fig. 10(a). In terms of ray interpolation, the graphics
hardware interpolates the rays within each view, finding a ray for each pixel that inter-
sects the surface approximately where the query ray of the pixel does. However, there
is no interpolation between the views, only the ray from the mesh that happens to be
closest to the camera at the pixel is chosen. With imperfect geometrical information
and registration, we get a lot of visible artifacts.

We can improve on this by interpolating rays between different views. The next
section describes how we use various weights that account for such factors as view-
ing directions and surface sampling densities and how we blend rays correctly even in
presence of partial self-occlusions. The results of the better interpolation are shown in
Fig. 10(b).

viewing direction
of the virtual camera

views surrounding
the virtual camera

(a) (b)

φ

φ φ

φi

j k

Figure 5 (a) The weightswβ assigned to the views at the verticesi, j, andk of
the Delaunay triangles containing the current view are its barycentric coordi-
nates. (b) The weightwφ is the cosine of the angleφ between the normal and
the ray to the sensor.

3.2 Three weights and soft z-buffering
We preprocess the viewing directions of the input views as follows. Each viewing
direction corresponds to a point on the unit sphere. The viewing directions thus define
a set of points on the sphere and we compute the Delaunay triangulation of this set, as
illustrated in Fig. 5(a).

To synthesize an image of the object from a fixed viewpoint, wefirst select the three
views corresponding to the vertices of the Delaunay triangle containing the current
viewing direction of the virtual camera. The textured mesh of each selected view is
individually rendered from this viewpoint to obtain three separate images. The images
are blended into a single image by the following weighting scheme. Consider a single
pixel. We setc =

∑3
i=1 wici/

∑3
i=1 wi whereci is the color value associated with that

pixel in theith image andwi is a weight designed to overcome the difficulties encoun-
tered in the naive implementation mentioned above. The weight wi is the product of
three weightswi = wβ,i · wφ,i · wγ,i , whose definition is illustrated in Figs. 5 and 9.
Self-occlusions are handled by using soft z-buffering to combine the images pixel by
pixel.

The first weight,wβ , measures the proximity of a chosen view to the current view-
point, and therefore changes dynamically as the virtual camera moves. We first calcu-
late the barycentric coordinateβ of the current viewpoint with respect to the Delaunay
triangle containing it (see Fig. 5(a)).β has three components between 0.0 and 1.0 that
sum to 1.0, each associated with one of the triangle vertices. The components give
the weights that linearly interpolate the vertices to produce the current viewpoint. We
define the weightwβ of view i to be the component ofβ associated with that view.

The remaining two weightswφ andwγ are pixel dependent but are independent of
the view direction of the virtual camera. The second weightwφis a measure of surface
sampling density (see Figs. 5(b) and 9(b)) and it is constantwithin each triangle in a
mesh. Consider a point on a triangle in the mesh of viewi corresponding to a given
pixel. A small region of areaA about the point projects to a region of areaAcosφ on

the “image plane” of theith sensor, whereφ is the angle between the normal to the
triangle and the ray from the point to the sensor. We setwφ = cosφ. Darsaet al. [5]
use a similar weight.

The third weightwγ which we call theblend weight, is designed to smoothly blend
the meshes at their boundaries. As illustrated by Fig. 9(c),the blend weightwγ,i of view
i linearly increases with distance from the mesh boundary to the point projecting onto
the pixel. Whereaswβ is associated with a view, andwφ with the triangles approximat-
ing the geometry of the view,wγ is associated with color texture of the view. A similar
weight was used by Debevecet al. [6].

Most self-occlusions are handled during rendering of individual views using back-
face culling and z-buffering. When combining the view-based partial models, part of
one view’s model may occlude part of another view’s model. Unless the surfaces are
relatively close to each other, the occluded pixel must be excluded from contributing
to the pixel color. This is done by performing “soft” z-buffering, in software. First,
we consult the z-buffer information of each separately rendered view and search for the
smallest value. Views with z-values within a threshold fromthe closest are included
in the composition, others are excluded. The threshold is chosen to slightly exceed an
upper estimate of the combination of the sampling, registration, and polygonal approx-
imation errors.

Figure 6 illustrates a potential problem. In the picture
the view-based surface approximation of the rightmost cam-
era has failed to notice a step edge due to self-occlusion in
the data, and has incorrectly connected two surface regions.
When performing the soft z-buffering for the pixel corre-
sponding to the dashed line, the wrongly connected step edge
would be so much closer than the contribution from the other
view that the soft z-buffering would throw away the correct

Figure 6: Problems with un-
detected step edges.

sample. However, while doing the soft z-buffering we can treat the weights as confi-
dence measures. If a pixel with a very low confidence value covers a pixel with a high
confidence value, the low confidence pixel is ignored altogether.

Rendering the registered geometry using graphics hardwareand our soft z-buffering
finds rays that intersect the surface where the query ray of a pixel does. Weightswβ and
wφ are used to favor good rays in the sense discussed in Section 2, while wγ is used to
hide the effects of inevitable inaccuracies due to the use ofreal scanned data.

4 Implementation
4.1 View acquisition
Data acquisition. We obtain the range data from a stereo camera system that uses
active light. Both cameras have been calibrated, and an uncalibrated light source sweeps
a beam (a vertical light plane) past the object in discrete steps. For each pixel on the
beam, we project its epipolar line to the right camera’s image plane. The intersection
of the epipolar line and the bright line gives a pixel that sees the same surface point as
the original pixel from the left camera. We obtain the 3D coordinates of that point by
triangulating the corresponding pixels. After the view hasbeen scanned, we turn the
lights on and take a color picture of the object. The object isthen repositioned so we

can scan it from a different viewpoint.
View registration. Registering the views using the range data aligns the range maps
around the object. A transformation applied to the range data also moves the sensor
with respect to an object centered coordinate system, giving us the relative camera
positions and orientations. We perform the initial registration interactively by marking
identifiable object features in the color images. This initial registration is refined using
Chen and Medioni’s registration method [3] modified to deal with multiple data sets
simultaneously.
Triangle mesh creation. We currently create the triangle meshes interactively. The
user marks the boundaries of the object by inserting points into the color image, while
the software incrementally updates a Delaunay triangulation of the vertices. The system
optimizes the z-coordinates of all the vertices so that the least squares error of the range
data approximation is minimized. Triangles that are almostparallel to the viewing
direction are discarded, since they are likely to be step edges, not a good approximation
of the object surface. Triangles outside of the object are discarded as well.

We have begun to automate the mesh creation phase. First, we place a blue cloth
to the background and scan the empty scene. Points whose geometry and color match
the data scanned from the empty scene are classified as background. The adding of
vertices is easily automated. For example, Garland and Heckbert [8] add vertices to
image coordinates where the current approximation is worst. The drawback of this
approach is that if the data contains step edges due to self-occlusions, the mesh is likely
to become unnecessarily dense before a good approximation is achieved. To prevent
this we perform a mesh simplification step using the mesh optimization methods by
Hoppeet al. [10].

4.2 Rendering
We have built an interactive viewer for viewing the reconstructed images (see Fig-
ure 11). For each frame, we find three views whose view directions surround the current
view direction on a unit sphere. The three views are then rendered separately from the
viewpoint of the virtual camera as textured triangle meshesand weighted using the
barycentric coordinates of the current view direction withrespect to the chosen views.

Two of the weights,wφ andwγ are static for each view, as they do not depend on
the viewing direction of the virtual camera. We apply both ofthese weights offline and
code them into the alpha channels of the mesh color and the texture map. wφ is the
weight used to decrease the importance of triangles that aretilted with respect to the
scanner. It is applied by assigning the RGBA color (1, 1, 1,wφ) to each triangle.wγ is
the weight used to hide artifacts at the mesh boundary of a view. It is directly applied
to the alpha channel of the texture map that stores the color information. We calculate
the weights for each pixel by first projecting the triangle mesh onto the color image and
painting it white on a black background. We then calculate the distanced for each white
pixel to the closest black pixel. The pixels with distances of at leastn get alpha value 1;
all other pixels get the valuedn.

Figure 7 gives the pseudo
code for the view composition
algorithm. The function
min reliable z() returns the
minimum z for a given pixel,
unless the closest pixel is a low
confidence (weight) point that
would occlude a high confi-
dence point, in which case the

FOR EACH pixel
 zmin := min_reliable_z(pixel)
 pixel_color := (0,0,0)
 pixel_weight := 0
 FOR EACH view
 IF zmin <= z[view,pixel] <= zmin+thrsoft_z THEN
 weight := wθ * wϕ * wγ
 pixel_color += weight * color[view,pixel]
 pixel_weight += weight
 ENDIF
 END
 color[pixel] := pixel_color / pixel_weight
END

Figure 7: Pseudo code for color blending.

z for the minimum high confidence point is returned.
When we render a triangle mesh with the described colors and texture maps, the hard-

ware calculates the correct weights for us. The alpha value in each pixel iswφ · wγ . It
is also possible to apply the remaining weight,wβ , using graphics hardware. After we
render the views, we have to read in the information from the frame buffer. OpenGL
allows scaling each pixel while reading the frame buffer into memory. If we scale the
alpha channel bywβ , the resulting alpha value contains the final weightwβ · wφ · wγ .

4.3 Results
We have implemented our object visualization method on an SGI Maximum Impact
with a 250 MHz MIPS 4400. We first obtain a polygonal approximation consisting of
100–250 triangles for each view. The user is free to rotate, zoom, and pan the object
in front of the virtual camera. For each frame, we choose three views. The texture-
mapped polygonal approximations of the views are rendered from the current viewpoint
separately into 256× 256 windows. The images are combined pixel by pixel into a
composite image.

Figure 10 compares the simple approach of Section 3.1 to our view-based rendering
method that uses three weights and soft z-buffering (Section 3.2). In Fig. 10(a) three
views have been rendered repeatedly into the same frame fromthe viewpoint of the
virtual camera. The mesh boundaries are clearly visible andthe result looks like a badly
made mosaic. In Fig. 10(b) the views have been blended smoothly pixel by pixel. Both
the dog and the flower basket are almost free of blending artifacts such as background
color showing at mesh boundaries and false surfaces due to undetected step edges in
the triangle meshes.

Our current implementation can deliver about 8 frames per second. The execution
time is roughly divided into the following components. Rendering the three texture
mapped triangle meshes takes 37%, reading the color and z-buffers into memory takes
13%, building the composite image takes 44%, and displayingthe result takes 6% of
the total execution time.

4.4 Additional hardware acceleration
The only parts of our algorithm not currently supported by graphics hardware are the
weighted pixel averaging and the soft z-buffering. The weighted averaging would be
easy to implement by allowing more bits for the accumulationbuffer, interpreting the
alpha channel value as a weight instead of the opacity value,and providing a command
that divides the RGB channels by the alpha channel value. An approximate implemen-
tation of the soft z-buffering in hardware would require adding, replacing, or ignoring

the weighted color and the weight (alpha value) depending onwhether the new pixel’s
z value is within, much closer, or much farther from the old z-value, respectively. For
exact implementation two passes are required: first find minimum reliable z, then blend
using soft threshold based on that minimum z.

5 Related work
Chen [1] and McMillan and Bishop [15] modeled environments by storing the light
field function around a point. The rays visible from a point are texture mapped to a
cylinder around that point, and any horizontal view can be created by warping a portion
of the cylinder to the image plane. Both systems allow limited rotations about a vertical
axis, but they do not support continuous translation of the viewpoint.

Levoy and Hanrahan [12] and Gortleret al. [9] developed image synthesis systems
that use a lumigraph and that support continuous translation and rotation of the view
point. In fact, the term “lumigraph” that we use to describe the 4D slice of the light
field is borrowed from [9]. Both systems use a cube surrounding the object as the
lumigraph surface. To create a lumigraph from digitized images of a real object, Levoy
and Hanrahan moved the camera in a regular pattern into a known set of positions, and
projected the camera images back to the lumigraph cube. Gortler et al. moved a hand-
held video camera around an object placed on the capture stage. The capture stage is
patterned with a set of concentric circles for estimating the camera pose for each image.
The rays from the images are projected to the lumigraph walls, and the lumigraph is
interpolated from these samples and stored as a grid of 2D images. In both systems, new
images are synthesized from a stored grid of 2D images by an interpolation procedure,
but Gortleret al. use additional geometric information to improve on ray interpolation.
They create a rough model from the visual hull of the object. One advantage of the
lumigraph methods is that they allow capturing the appearance of any object regardless
of the complexity of its surface. A disadvantage is the difficulty of storing and accessing
the enormous lumigraph representation.

The “algebraic” approach to image-based rendering using pairs of images and pixel
correspondences in the two images was introduced by Laveau and Faugeras [11]. It has
since been used in several other systems [15, 18, 7]. Given correct dense pixel corre-
spondences one can calculate the 3D coordinates of surface points visible in both im-
ages, and then project these to the image plane of the virtualcamera. However, the pro-
jection can also be calculated directly without
3D reconstruction. This is illustrated in Fig. 8
which shows the stored images 1 and 2, and the
image plane of the virtual camera v. Since the
pixel marked in image 1 corresponds to the one
marked in image 2, their associated raysr1 and
r2 are assumed to intersect at the same location
on the object surface. That point projects to the
imagev at the intersection of the epipolar lines

1 2

v

r1

e1

e2
r2

Figure 8: Two matching rays correspond to
the pixel of the virtual camera where the pro-
jections of the rays intersect.

e1 ande2, which are the projections ofr1 andr2 onto imagev. The color of the des-
tination pixel would be a combination of the colors of the input pixels. The pixel cor-
respondence mapping between the input images is not easy to do reliably, especially

within regions of homogeneous color. But fortunately, the regions where such pixels
project have almost constant color, so a projection error ofa few pixels typically does
not cause visible artifacts.

Chen and Williams [2] used similar methods to trade unbounded scene complexity
to bounded image complexity. They render a large number of views of a complicated
scene and obtain accurate pixel correspondences from depthvalues that are stored in
addition to the color at each pixel. The missing views neededfor a walk-through of
the virtual environment are interpolated from the stored ones. Max and Ohsaki [14]
used similar techniques for rendering trees from precomputed Z-buffer views. How-
ever, rather than morphing the precomputed images, they reproject them pixel by pixel.
Shadeet al. [17] partition the geometric primitives in the scene, render images of them,
and texture map the images onto quadrilaterals, which are displayed instead of the ge-
ometry. Debevecet al. [6] developed a system that fits user-generated geometric models
of buildings to digitized images by interactively associating image features with model
features and fitting model parameters to images. The buildings are view-dependently
texture mapped using the color images. The interpolation between different texture
maps is improved by determining more accurate surface geometry using stereo from
several input images and morphing the texture map accordingly.

Two recent papers use similar techniques to ours. Market al. [13] investigate the
use of image-based rendering to increase the frame rate for remotely viewing virtual
worlds. Their proposed system would remotely render imagesfrom geometric mod-
els at 5 frames/sec and send them to a local computer that warps and interpolates two
consecutive frames at about 60 frames/sec. The 3D warp is done as in [2]. Using the
z-values at each pixel a dense triangle mesh is constructed for the two views between
which the interpolation is performed. Normal vectors and z-values at each pixel are
used to locate false connections across a step edge between an occluding and occluded
surface. Darsaet al. [5] describe another approach for rapidly displaying complicated
environments. The virtual environment is divided into cubes. From the center of each
cube, six views (one for each face of the cube) are rendered. Using the z-buffer, the
geometry of the visible scene is tessellated into a sparse triangle mesh, which is texture
mapped using the rendered color image. A viewer at the centerof a cube can sim-
ply view the textured polygon meshes stored at the cube walls. If the viewer moves,
parts of the scene previously hidden become visible. The textured meshes from several
cubes can be used to fill the holes. The authors discuss different weighting schemes for
merging meshes from several cubes.

6 Discussion
We have described a new rendering method called view-based rendering that lies in be-
tween purely model-based and purely image-based methods. The input to our method is
a small set of range and color images, containing both geometric and color information.

An image can be rendered from an arbitrary viewpoint by blending the information
obtained from several of these views. This blending operation is accomplished by three
weights determined by the view direction of the virtual camera, the surface sampling
density and orientation, and the distance from the mesh boundary. As a robust solu-
tion to the visibility problem, we propose the use of a soft z-buffering technique to

allow only points within a threshold to be included in blending. We have demonstrated
interactive viewing of two non-trivial real objects using our method.

Our view-based rendering has several advantages over the traditional model-based
approach of rendering full objects. It is much easier to model each view separately
than it is to create a model of the whole object, especially ifthe object has convoluted
geometry. Our approach automatically gives view-dependent texturing of the object,
which produces more realistic images than can typically be obtained by static texturing.

The advantages over image-based rendering are twofold and are a direct consequence
of having explicit geometric information. First, significantly fewer input images are
needed for view-based rendering than for image-based rendering. Second, we can con-
struct composite objects from several view-based models. In contrast, realistic compos-
ite images can be generated from image-based models only if their bounding boxes do
not intersect.

The disadvantage is that our system shows the object in fixed lighting. Relighting of
synthetically created view-based models is possible if we store additional information
such as normals and reflectance properties for each pixel of the texture maps. For
real objects, normals could be approximated but obtaining reflectance properties is not
trivial.

References
[1] S. E. Chen. Quicktime VR - an image-based approach to virtual environment navigation. InSIGGRAPH

95 Conference Proceedings, pages 29–38. ACM SIGGRAPH, Addison Wesley, August 1995.

[2] S. E. Chen and L. Williams. View interpolation for image synthesis. InComputer Graphics (SIG-
GRAPH ’93 Proceedings), volume 27, pages 279–288, August 1993.

[3] Y. Chen and G. Medioni. Object modelling by registrationof multiple range images.Image and Vision
Computing, 10(3):145–155, April 1992.

[4] B. Curless and M. Levoy. A volumetric method for buildingcomplex models from range images. In
SIGGRAPH 96 Conference Proceedings, pages 303–312. ACM SIGGRAPH, Addison Wesley, August
1996.

[5] L. Darsa, B. C. Silva, and A. Varshney. Navigating staticenvironments using image-space simplification
and morphing. InProc. 1997 Symposium on Interactive 3D Graphics, pages 25–34, April 1997.

[6] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and rendering architecture from photographs: A
hybrid geometry- and image-based approach. InSIGGRAPH 96 Conference Proceedings, pages 11–20.
ACM SIGGRAPH, Addison Wesley, August 1996.

[7] T. Evgeniou. Image based rendering using algebraic techniques. Technical Report A.I. Memo No.
1592, Massachusetts Institute of Technology, 1996.

[8] M. Garland and P. Heckbert. Fast polygonal approximation of terrains and height fields. Technical
Report CMU-CS-95-181, Dept. of Computer Science, CarnegieMellon University, Pittsburgh, PA,
1995.

[9] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The lumigraph. InSIGGRAPH 96 Confer-
ence Proceedings, pages 43–54. ACM SIGGRAPH, Addison Wesley, August 1996.

[10] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh optimization. InComputer
Graphics (SIGGRAPH ’93 Proceedings), volume 27, pages 19–26, August 1993.

[11] S. Laveau and O. D. Faugeras. 3-d scene representation as a collection of images and fundamental ma-
trices. Technical Report RR 2205, INRIA, France, 1994. Available from ftp://ftp.inria.fr/INRIA/tech-
reports/RR/RR-2205.ps.gz.

[12] M. Levoy and P. Hanrahan. Light field rendering. InSIGGRAPH 96 Conference Proceedings, pages
31–42. ACM SIGGRAPH, Addison Wesley, August 1996.

[13] W. R. Mark, L. McMillan, and G. Bishop. Post-rendering 3d warping. InProc. 1997 Symposium on
Interactive 3D Graphics, pages 7–16, April 1997.

[14] N. Max and K. Ohsaki. Rendering trees from precomputed Z-buffer views. InEurographics Rendering
Workshop 1995, pages 74–81;359–360. Eurographics, June 1995.

[15] L. McMillan and G. Bishop. Plenoptic modeling: An image-based rendering system. InSIGGRAPH
95 Conference Proceedings, pages 39–46. ACM SIGGRAPH, Addison Wesley, August 1995.

[16] K. Pulli, T. Duchamp, H. Hoppe, J. McDonald, L. Shapiro,and W. Stuetzle. Robust meshes from mul-
tiple range maps. InProc. IEEE Int. Conf. on Recent Advances in 3-D Digital Imaging and Modeling,
May 1997.

[17] J. Shade, D. Lischinski, D. Salesin, T. DeRose, and J. Snyder. Hierarchical image caching for acceler-
ated walkthroughs of complex environments. InSIGGRAPH 96 Conference Proceedings, pages 75–82.
ACM SIGGRAPH, Addison Wesley, August 1996.

[18] T. Werner, R. D. Hersch, and V. Hlavác̆. Rendering real-world objects using view interpolation. In
Proc. IEEE Int. Conf on Computer Vision (ICCV), pages 957–962, June 1995.

(a) (b) (c)

Figure 9 (a) A color image of a toy dog. (b) Weightwφ is applied to each face
of the triangular mesh. (c) Weightwγ smoothly decreases towards the mesh
boundary.

(a) (b)

Figure 10 (a) The result of combining three views by repeatedly rendering the
view-based meshes from the viewpoint of the virtual camera as described in
Section 3.1. (b) Using the weights and soft z-buffering described in Section 3.2
produces a much better result.

Figure 11 Our viewer shows the three view-based models rendered from the
viewpoint of the virtual camera. The final image is on the bottom right.

