
Real-Time Enveloping with Rotational Regression

Robert Y. Wang1 Kari Pulli1,2 Jovan Popović1

1Computer Science and Artificial Intelligence Laboratory 2Nokia Research Center
Massachusetts Institute of Technology

Abstract

Enveloping, or the mapping of skeletal controls to the deformations
of a surface, is key to driving realistic animated characters. Despite
its widespread use, enveloping still relies on slow or inaccurate de-
formation methods. We propose a method that is both fast, accurate
and example-based. Our technique introduces a rotational regres-
sion model that captures common skinning deformations such as
muscle bulging, twisting, and challenging areas such as the shoul-
ders. Our improved treatment of rotational quantities is made prac-
tical by model reduction that ensures real-time solution of least-
squares problems, independent of the mesh size. Our method is
significantly more accurate than linear blend skinning and almost
as fast, suggesting its use as a replacement for linear blend skinning
when examples are available.

CR Categories: I.3.7 [Computer Graphics]: Three Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation

Keywords: Enveloping, skinning, deformation, model reduction,
animation

1 Introduction

Enveloping (or skinning) is a common and fundamental task in
computer graphics. Whenever an animator controls a character via
a skeleton, enveloping is used to map these controls to deform a
mesh surface. There is no standard way to envelope. An artist may
run a physical simulation to model muscle deformations or tune
complex systems of shape blending for more direct control. For
interactive applications, linear blend skinning enjoys the most pop-
ularity. It is easy to use and can be accelerated on graphics hard-
ware. However, linear blend skinning suffers from artifacts such as
joint collapse and restricts the range of deformations available to
the artist.

The shortcomings of linear blend skinning are well-known, and
there has been a rich body of work on alternatives. Much of this
work proposes new modeling approaches. However, given the intri-
cacy of existing modeling tools, an artist may not want to or be able
to switch. For this case, there are techniques that train on exam-
ples exported from other enveloping tools. Most of these example-
based approaches learn a model of corrective displacements on top
of linear blend skinning. However, displacement models extend
poorly to correcting the rotational errors of linear blend skinning.

Linear

blend

skinning

Our 

method

Ground 

truth

580 Hz

440 Hz

1 Hz

Figure 1: Anatomy-based techniques produce good results but are
too slow for many real-time applications. Our technique accurately
captures muscle deformations from a set of examples generated by
the black-box anatomical model and efficiently evaluates them on
graphics hardware. Our technique is more accurate than linear
blend skinning and almost as fast. (Credit: Joel Anderson)

The methods that directly model rotational deformations rely on
strong assumptions about where and how these deformations oc-
cur. Finally, most techniques are simply not fast enough for use in
applications such as video games and training simulations.

We believe that an artist should be able to use any enveloping tool,
or even run a muscle simulation, without worrying about the com-
putational efficiency of the resulting model. Thus, our technique
learns from examples exported from any black-box enveloping tool
and generates a model suitable for fast evaluation on graphics hard-
ware. We also anticipate that a common set of skinning behav-
iors would include deformations such as twisting, muscle bulges,
and shoulder deformations. We designed our rotational regression
model with these behaviors in mind. All in all, we are proposing
our technique as a more general, less artifact-ridden, replacement
for linear blend skinning.

We formulate the enveloping problem as learning a mapping y(q)
from a set of example skeleton-mesh pairs {(qi,yi)}. We choose
to learn our mapping in the space of deformation gradients. Defor-
mation gradients encode the local orientation, scaling, and shear-
ing of a deformed mesh with respect to the mesh in the rest pose.
We train and evaluate deformation gradient predictors D(q) that
can relate our input, bone transformations, to deformation gradi-
ents of our output mesh surface (Section 3). From these predictions,
we can reconstruct the mesh vertex positions by solving a Poisson



q

Deformation
Gradient 
Prediction

Mesh
Reconstruction

D (q)

.
 
.
 
.

.
 
.
 
.

y(q)

Figure 2: Overview. Our model maps skeletal pose q to its corre-
sponding mesh y(q). The mapping has two steps. First, we predict
deformation gradients of the mesh based on the skeletal pose. We
then reconstruct vertex positions from these predictions by solving
a Poisson equation.

equation (Section 4). We begin by describing a prediction step that
evaluates the deformation gradient of every triangle, and a recon-
struction step that solves for the position of every vertex. However,
we can exploit coherency and coordination of the vertices and tri-
angles (Section 5) to reduce the number of deformation gradients
we have to predict and the number of coordinates we have to solve
for at runtime. Our reduction not only makes CPU evaluation much
faster, but also takes the particular form of matrix-palette skinning,
allowing us to perform the bulk of our runtime evaluation on the
GPU (Section 6).

2 Related Work

Physically based and anatomy-based approaches have pro-
duced some of the most realistic results in enveloping [Scheepers
et al. 1997; Wilhelms and Gelder 1997; Teran et al. 2005]. Com-
mercial packages for muscle simulations are readily available and
commonly used in movie production and special effects [cgChar-
acter 2003; Comet 2006]. Other approaches use physics but not
anatomy to describe muscle deformations [Hyun et al. 2005; Capell
et al. 2002; Capell et al. 2005; Guo and Cheong Wong 2005]. We
complement these approaches by transforming the models they pro-
duce into a form suitable for evaluation on graphics hardware. In
fact, our main application is to take custom rigged models that are
costly to evaluate and learn an efficient form for use in a training
simulation or video game.

Linear blend skinning is the most pervasive enveloping tech-
nique used in interactive applications. This unpublished technique
is also known as single-weight enveloping and skeletal subspace
deformation, whose acronym SSD we use for the remainder of this
paper. The benefit of SSD lies in its ease of use and applicability
to modern graphics hardware in the form of matrix-palette skinning
[Lee 2006]. SSD transforms each vertex with a linear blend of bone
rotations. The blend weights are usually hand-painted, but there are
also well-known techniques for optimally training them from a set
of examples [Mohr and Gleicher 2003; James and Twigg 2005].

Linearly blending rotations leads to well-known artifacts such as
collapsing joints and the “candy wrapper effect” [Lewis et al. 2000;
Mohr and Gleicher 2003]. There have been many techniques that
address these problems. Wang and Phillips [2002] and Merry et al.
[2006] propose variations to SSD that trains more blend weights per
vertex per joint. While these models are more expressive, they also
require more training data to prevent overfitting. The remaining
techniques fall into two broad categories: displacement interpolat-
ing approaches and rotation interpolating approaches.

Displacement interpolating approaches take as input a base-
line SSD model and a set of training poses composed of skeleton-
mesh pairs [Lewis et al. 2000; Sloan et al. 2001; Kry et al. 2002;
Allen et al. 2006; Rhee et al. 2006]. They compute corrective dis-
placements to the SSD model based on the training data and inter-
polate these displacements in pose space. Adding displacements
works well to correct minor errors of SSD. However, we show that
interpolating displacements to correct SSD rotational errors, such
as those found in twisting motion, becomes unwieldy, requiring
abundant training data. Our technique complements the displace-
ment approaches above because it provides a superior baseline tech-
nique that better approximates rotational deformations.

Rotation interpolating approaches such as the work of Weber
[2000], and Mohr and Gleicher [2003] extend the expressive power
of SSD by introducing additional spherical linearly interpolated
“half-way” joints. However, these joints are added a priori, with-
out regard to the actual deformations given by example poses. We
extend the idea of introducing additional joints by identifying pre-
cisely where they are needed (Section 5) and by fitting the behavior
of these joints to surface deformations. We show that this improves
upon existing techniques, especially for the case of joints with both
bending and twisting. Kavan and Žára [2005] take an existing SSD
model and non-linearly blend quaternions instead of transforma-
tion matrices. This technique corrects twisting defects but cannot
approximate muscle deformations that were never present in the
original SSD model.

Deformation gradients have been used by a variety of tech-
niques for pose modeling [Sumner and Popović 2004; Anguelov
et al. 2005; Der et al. 2006]. We share with these techniques a
common Poisson reconstruction step, but differ in how we model
the deformation gradients. Der et al. [2006] describe a pose space
with the non-linear span of a set of deformation gradients extracted
from example meshes. This pose space can then be explored by
mesh-based inverse-kinematics. While this is useful for certain ap-
plications, animators often want to control a mesh with a specific
skeleton or precisely drive non-end-effector joints. Furthermore,
Der et al. [2006] model the pose space non-parametrically, incur-
ring an evaluation cost cubic in the number of training poses. The
SCAPE pose model predicts deformation gradients from bone ro-
tations much like our own model [Anguelov et al. 2005]. SCAPE
can even handle different identities in addition to different poses.
On the other hand, our method more accurately predicts rotational
deformations and is orders of magnitude faster to evaluate.

3 Deformation Gradient Prediction

The deformation gradient D is a local description of orientation,
scaling, and shearing of a deformed mesh surface y relative to a rest
(or undeformed) surface ŷ. For a triangle mesh, the deformation
gradient for each triangle is simply a 3 × 3 matrix [Sumner and
Popović 2004; James and Twigg 2005].

Our task is to predict these deformation gradients D from bone
transformations q given a set of examples. For an articulated rigid-
body, this mapping is the identity; the deformation gradients of each
rigid segment are equal to the bone rotation affecting that segment.
Linear blend skinning generalizes this mapping, allowing mesh de-
formations to depend on a linear blend of bone transformations.
We’ve designed our deformation gradient predictors D(q) to cap-
ture additional deformations such as twisting and muscle bulges.

Each deformation gradient D can be separated into a rotational
component R and a scale/shear component S using polar decom-
position, and these components need to be treated differently. We



predict the former with a rotational regression model and the latter
with a scale/shear regression model. Together, these two predic-
tions form our deformation gradient predictors D(q) (Figure 3).

To perform the regression above, we require sequences of bone ro-
tations qi and deformation gradients Di. We extract the former
from the example skeletal poses and the latter from the correspond-
ing example meshes. While we describe the construction of defor-
mation gradient predictors on a per-triangle basis below, our model
can be applied to any sequence of deformation gradients—a prop-
erty we exploit for our reduced reconstruction step.

Deformation gradient
sequence

i

Regression W,u H

R(q) S(q) D (q)* =

Deformation
gradient predictor

. . .

. . .

D
i

qi

Bone transformation
sequence

Figure 3: We learn a mapping from a sequence of bone transfor-
mations to a sequence of deformation gradients. We build separate
regression models for rotation and scale/shear, learning parame-
ters W and u for rotation and H for scale/shear. The rotational
model R(q) and scale/shear model S(q) combine to form our de-
formation gradient predictor.

3.1 Notation

We denote each skeletal pose q to be a vector of J concatenated
bone transformations [vec(Q1)

T ,dT
1 , . . . , vec(QJ)T ,dT

J ]T ∈
R

12J×1. Bone transformations are defined relative to the rest pose
but are not relative to the parent frame. Each mesh y ∈ R

3V ×1 is a
vector of V concatenated vertex positions. In the next section, we
find it convenient to work in axis-angle representations. We use θ
and ρ to denote the axis-angle forms of bone rotations Q and mesh
rotations R respectively. We represent axis-angle quantities as 3-
vectors with angle encoded in the magnitude and axis encoded in
the direction.

3.2 Rotational Regression

The basic assumption of SSD is that vertices on the mesh transform
with some subset of the bones affecting them. However, when a
muscle bulges, some parts of the mesh do not rotate by the same
amount as the joint causing the bulge. Other parts may rotate in the
opposite direction or along a different axis (Figure 4). We propose
a more general model relating a joint rotation sequence to a triangle
rotation sequence.

Figure 4: Arm flexing.
While most of the forearm
rotates in the same direction
and amount as the bone,
parts of the bicep rotate
about different axes and by
different amounts.

Below, we assume that we know which joint affects the triangle. In
practice, we train a model for each joint in the skeleton and select
the one that best approximates the triangle rotation sequence.

3.2.1 Model

To relate bone rotations to triangle rotations, we first need to ex-
press both in the same coordinate frame. Let θ̃ and ρ̃ denote our

bone rotations and triangle rotations expressed in the joint frame.
Intuitively, θ̃ is the joint rotation. We relate the angle of the triangle
rotation to the joint angle by a scale factor u and the axis of the
triangle rotation to the joint axis by a rotation offset W . By using
the axis-angle representation, this relationship (Figure 5) takes on a
linear form:

ρ̃(q) = uW θ̃b(q),

where θb(q) extracts the rotation of bone b from skeletal pose q.

source
rotation

target
rotation

angle
scale

axis
offset

u W

i

..
.

..
.

..
.

Figure 5: Our rotation predictors learn a constant rotational axis
offset W and a constant angle scale factor u to relate a joint rota-
tion sequence (source) to a triangle rotation sequence (target).

For each triangle, we are fitting only four parameters (three for the
rotation offset W and one for the scale factor u). This simple model
is surprisingly powerful and general. The model handles twisting
with the rotation scale factor u, while the rotation offset to the axis
effectively models muscle bulges (Figure 6).

10
3

0

10

0 0.5 1 1.5 2 2.5

SSD

Our method

error (radians)

n
u

m
b

e
r 

o
f 

tr
ia

n
g

le
s 

(l
o

g
 s

ca
le

)

0 1u

4

10
2

10
1

Figure 6: Muscle arm error histogram and scale plot. We plot a
histogram of the errors for our rotational regression heuristic com-
pared to SSD for three poses of a muscle flexing. We also show the
angle scale factor in false color. Note that triangles on the bicep are
related to the joint rotation by a small (but non-zero) scale factor
while triangles on the forearm move nearly rigidly.

3.2.2 Training

For training, we are given rotation sequences for a bone qi and a
triangle ρi. First, we transform both sets of rotations into the joint
frame, forming θ̃b(q

i) and ρ̃i. The optimal rotation offset and scale
parameters, W ∈ SO(3) and u ∈ R, are given by

argmin
W,u

∑

i∈1...N

‖uW θ̃b(q
i) − ρ̃

i‖2,

which can be solved with coordinate descent, alternating between
solving for u and W separately. Given rotation offset W , the op-
timal scale u has a closed-form solution. Given scale factor u,
solving for W becomes an instance of the Procrustes problem, also
yielding a closed form solution [Eggert et al. 1997].



We initialize the scale factor u independently of W :

argmin
u

∑

i∈1...N

(

u‖θ̃b(q
i)‖ − ‖ρ̃i‖

)

2
.

If the rotational deformation is well represented by this scale-offset
model, it can be shown that starting with this initial guess yields the
optimal parameters in the first iteration.

Our training technique is fast enough that we can afford to fit a
model for each joint and select the best one that fits our triangle ro-
tation sequence. We do not require any prior information relating a
triangle and a joint. We rely on this property in section 5.2 to relate
an arbitrary surface rotation sequence to a joint rotation sequence.

Furthermore, we can fit the residual rotations to additional bones
for areas with multiple joint dependencies. In practice, we found
that two bones were sufficient for all of our examples.

3.3 Scale/Shear Regression

We predict each component of the scale/shear matrix linearly with
respect to the axis-angle representation of two joints [Anguelov
et al. 2005],

vec(S(q)) = Hθ̃b1,b2(q)

The two joint rotations that we use are the joint associated
with the best rotational predictor found by the rotational regres-
sion step θb1 (Section 3.2), and its parent θb2 . We concate-
nate these two rotations and a bias term to form θ̃b1,b2(q) =

[θ̃b1(q)
T

θ̃b2(q)
T

1]T ∈ R
7×1. Given a scale/shear sequence Si

and bone rotation sequence qi, we can determine the parameters
H ∈ R

9×7 of this predictor using least-squares:

argmin
H

∑

i∈1...N

‖Hθ̃b1,b2(q
i) − vec(Si)‖

2

.

4 Mesh Reconstruction

To map deformation gradient predictions back to vertex positions,
we solve a Poisson equation. First, we describe this process in its
most general formulation: when we have a deformation gradient
prediction at each triangle and nothing else. Next we modify the
formulation to integrate the global positions of a set of near-rigid
vertices. These near-rigid vertices are easy to predict with SSD,
and improve accuracy by introducing global translation information
into our Poisson problem. Finally, we formulate a reduced form of
our mesh reconstruction optimization by exploiting coherency and
coordination of triangles and vertices. This will allow us to perform
the entire reconstruction step on the GPU.

4.1 Poisson Mesh Reconstruction

Poisson mesh reconstruction is the process of piecing together the
deformation gradient predictions from the previous section into a
single coherent mesh. Our Poisson equation formulation relates
deformation gradients to vertices through edges [Anguelov et al.
2005]:

argmin
y

∑

k∈1...T

∑

j=2,3

‖Dk(q)v̂k,j − vk,j‖
2, (1)

where vk,j = yk,j − yk,1 denotes the jth edge of the kth triangle
in the pose we are solving for and v̂k,j denotes the same edge in
the rest pose. Equation 1 is a least-squares problem corresponding
to a linear system. We pre-factor the left-hand side of this system
with the sparse Cholesky factorization [Sumner et al. 2005]. Given
the per-triangle deformation gradient predictions for a new pose,
we can obtain the vertex positions by back substitution.

4.2 Near-Rigid/SSD Vertex Constraints

Without information about the translational component of the skele-
ton, the Poisson optimization does not detect or compensate for
global translational problems. Low-frequency errors can accumu-
late (Figure 7), and the extremities of a character may veer away
from the joint configuration. We address this problem by identi-
fying a set of near-rigid vertices. Near-rigid vertices are easy to
predict, since by definition, even an articulated rigid-body predictor
would suffice. In practice, we use the richer SSD model. SSD does
not suffer from error accumulation problems because each vertex is
dependent on the translational components of the skeleton, which
contains information about the global position of each bone. Fixing
a set of vertices to their SSD prediction provides our optimization
with this information as well. An additional benefit of this process
is that our method is exactly as fast as SSD for regions that SSD
predicts well and improves the quality where it does not.

(a) (b) (c)

Figure 7: “Fixing” Poisson. We use the Poisson equation to re-
construct vertex positions from edge predictions (a). However, low-
frequency errors can accumulate, and the extremities of the mesh
may no longer match the joint configuration (b). Fixing a set of
near-rigid vertices to their SSD prediction (red dots) solves this
problem (c).

We evaluate the error of each vertex over the training set and thresh-
old to select the set of vertices best predicted by SSD, F . We fix
the vertices of this set F to their SSD predictions in our objective
function. Define the linear map Ψa such that Ψaq is equivalent to
∑J

b wa,bTb(q)ŷa, the SSD prediction of vertex a at pose q. We
obtain our SSD weights wa,b by non-negative least-squares [James
and Twigg 2005]. We substitute ya = Ψaq for all ya ∈ F into
Equation 1:

argmin
y

∑

k∈1...T

∑

j=2,3

‖Dk(q)v̂k,j − vk,j‖
2

where

vk,j =











yk,j − yk,1 if yk,j /∈ F and yk,1 /∈ F

yk,j − Ψk,1q if only yk,1 ∈ F

Ψk,jq − yk,1 if only yk,j ∈ F .
(2)

If both vertices of an edge are fixed, the error term for the edge can
be dropped completely from the objective function.

We can solve Equation 2 similarly to Equation 1, by pre-factoring
the left-hand side of the corresponding linear system, and evalu-
ating new poses with back-substitution. While this formulation is
sufficient for some applications, we introduce a faster formulation
in the next section that is competitive with SSD in terms of speed.

4.3 Reduced Mesh Reconstruction

The optimization problem in Equation 2 solves for the coordinates
of every vertex (3V degrees of freedom) and requires predicting the
deformation gradient of every triangle Dk(q). In this section, we
reduce this optimization to involve only the transformation matrices
of a set of P proxy-bones (12P degrees of freedom) and to require
the prediction of only P deformation gradients. The size of P does



. . .

Examples

Reduced Training

y i,qi i = 1 . . . N

Triangle deformation
gradient sequences

k = 1 . . . TD
i
k

. . .

. . .

. . .

.
 
.
 
.

.
 
.
 
.

.
 
.
 
.

.
 
.
 
.

k

i

Reduction

Key deformation
gradient sequences

` = 1 . . . PD
i
`

.
 
.
 
.

. . .

. . .

. . .

.
 
.
 
.

.
 
.
 
.

.
 
.
 
.

`

i

Regression D ` (q)
.
 
.
 
.

.
 
.
 
.

`

Deformation
gradient predictors

Model

C1 C2

Figure 8: Training a Reduced Model. Given a set of example skeleton-mesh pairs, we can extract triangle deformation sequences D i
k.

Our predictor reduction step gives us sequences of key deformation gradient sequences Di
`, from which we train key deformation gradient

predictor. These predictors, combined with the mesh reconstruction matrices C1 and C2, form our model.

not depend on the resolution of the mesh, but rather on the com-
plexity of the deformation. In our examples, P never exceeds 100.
While we reformulate our optimization in this section, the details of
selecting the key deformation gradients and proxy-bones are given
in Section 5.

Our reduced mesh reconstruction scheme (Figure 8) is based on
the idea that the triangles and vertices of an articulated model are
very coordinated. We leverage this assumption by expressing each
triangle deformation gradient predictor as a linear combination of
P key deformation gradient predictors:

Dk(q) =
∑

`∈1...P

βk,`D`(q). (3)

We also express each vertex as the SSD-like prediction from a set
of proxy-bones:

ya(t) =
∑

b∈1...P

αa,bTb(t)ŷa = Φat (4)

where Φa is defined similarly to Ψa and t packs the proxy-bone
transformations Tb similarly to q. Our choice of an SSD-like model
here is significant because the evaluation of y(t) can be performed
on the GPU with matrix-palette skinning.

We substitute Equations 3 and 4 into Equation 2 and solve for the
proxy-bone transformations t:

t(q) = argmin
t

∑

k∈1...T

∑

j=2,3

∥

∥

∥

∑

`∈1...P

βk,`D`(q)v̂k,j − vk,j

∥

∥

∥

2

where

vk,j =











Φk,jt − Φk,1t if yk,j /∈ F and yk,1 /∈ F

Φk,jt − Ψk,1q if only yk,1 ∈ F

Ψk,jq − Φk,1t if only yk,j ∈ F

(5)

Because we chose linear models for both predictor and vertex re-
ductions, the solution t(q) is also linear with respect to the defor-
mation gradient predictors D`(q) and the bone rotations q, taking
the form of

t(q) = C1d(q) + C2q, (6)

where d(q) = [vec(D1(q))T . . . vec(DP (q))T ]T . The derivation
of C1 and C2 are given in the supplemental materials. To obtain the
vertex positions y, we substitute t(q) for t in Equation 4.

Thus we have reduced our entire Poisson mesh reconstruction step
into a matrix-vector multiplication (Equation 6) and matrix-palette
skinning (Equation 4). We describe in Section 6 that both of these

operations can be performed on the GPU. The cost of evaluating
P deformation gradient predictors is negligible compared to mesh
reconstruction, involving only nine 7-component dot products and
a handful of quaternion multiplications per predictor.

5 Dimensionality Reduction

In the previous section, we described a reduced formulation of the
mesh reconstruction step. We outlined the form of the reduction
to be matrix-palette skinning for vertices and a linear blend model
for deformation gradients. In this section we find the parameters re-
quired by the reduction: the SSD weights α for the vertex reduction,
the blend weights β for the predictor reduction, and the key defor-
mation gradient predictors D`(q). Given the formulation of our
reduced reconstruction model, we can write objective functions for
finding each of these terms. As we shall see, however, solving these
optimization problems directly can be intractable, and we describe
a clustering technique for finding these quantities approximately.
Note that our proposed clustering is one of many that are possible.
In particular, the mean-shift approach advocated in skinning mesh
animations by James and Twigg [2005] could be substituted for the
vertex reduction below. Mean-shift clustering is less susceptible to
noise. On the other hand, our approach is faster, progressive, and
clusters bones based on vertex error.

5.1 Vertex reduction

We measure the error of our vertex reduction over a set of training
meshes yi by the L2 difference between the SSD-based proxy-bone
prediction and the ground truth vertex position, E(T i

b , αa,b) =
∑N

i

∑V

a ‖yi
a−

∑P

b αa,bT
i
b ŷa‖

2. Ideally, we would like to find the
solution with the minumum number of proxy-bones P for a given
maximum error threshold ε. This would require us to solve

min
T i

b
,αa,b

P subject to E(T i
b , αa,b) < ε.

Given fixed P and fixed transformations T i
b , we can solve for

weights αa,b using non-negative least-squares [James and Twigg
2005]. Similarly, given fixed P and fixed αa,b, we can find the
least-squares solution for proxy-bone transformations T i

b . How-
ever, we cannot solve for both simultaneously, and we do not know
P beforehand. Instead, we take an approximate approach inspired
by work in mesh decimation [Cohen-Steiner et al. 2004; Diebel
et al. 2006].

Define the error EA→B of joining proxy-bone A to proxy-bone B

as
∑N

i

∑

a∈GA
‖yi

a − T i
b ŷa‖

2. This error is an upper bound for
the real approximation error of joining the vertices of group GA



to group GB . We add all possible joins between contiguous groups
into a priority queue and iteratively perform the join with the lowest
error until our error threshold is reached (Figure 9). Specifically:

1. Begin with a proxy-bone for each triangle k initialized to the
transformation matrices T i

k mapping the vertices of k from the
rest pose to each pose i. Initialize the associated group Gk to
contain the vertices of triangle k.

2. Greedily pick the join A → B with the smallest error EA→B

and add the vertices of group A to group B.

3. Solve for the weights αa,b given the current set of transforma-
tions T i

b

4. Solve for the transformations T i
b given the current set of

weights αa,b.

5. If E(T i
b , αa,b) < ε go to Step 2.

P=500 250 120 60 30
Predictor
Reduction

Figure 9: Vertex clustering. Successive iterations merge coordi-
nated vertices into fewer and fewer proxy-bones. The resulting
transformations also form a good initial guess for predictor reduc-
tion.

In practice, we need not evaluate steps 3, 4, or 5 at every iteration.
Error increases smoothly, and we only need to be careful when we
get close to the threshold. For efficiency reasons, we also only con-
sider joins of contiguous proxy-bones [Cohen-Steiner et al. 2004].
We restrict each vertex to depend on only the proxy-bone transfor-
mations of the group it belongs to and the groups adjacent to that
group. This reduces overfitting and also boosts performance.

5.2 Predictor Reduction

To obtain key deformation gradient predictors D`(q), we first find
key deformation gradient sequences Di

` from triangle deformation
gradient sequences Di

k. We then train predictors from these se-
quences as in Section 3 (Figure 9). Our error metric for finding the
best key sequences is the objective function from Equation 2 with
the substitution

Di
k =

∑

`∈1...P

βk,`D
i
`

where βk,` are the blend weights:

argmin
βk,`,Di

`

∑

i∈1...N

∑

k∈1...T

∑

j=2,3

∥

∥

∥

∑

`∈1...P

βk,`D
i
`v̂k,j − v

i
k,j

∥

∥

∥

2

.

We can solve the optimization above using coordinate descent, al-
ternating between solving for βk,` and Di

` separately. Fortunately,
vertex reduction allows us to start from a particularly good initial
guess for Di

`. We initialize Di
` to be the upper-left 3x3 matrix of the

T i
b matrix we found from vertex clustering. The coordinate descent

converges in three iterations or less for all of our examples. Hav-
ing obtained key deformation gradient sequences, Di

`, we can train
deformation gradient predictors D`(q) as described in Section 3.

C
1

C2

+

Matrix 
palette
skinning

Mesh Reconstruction 

=

Matrix 
vector 
multiplies y(q)

qd(q)

t (q)

On GPU

Figure 10: Mesh reconstruction on the GPU. We load C1, C2 and
the bone weights for matrix-palette skinning on the GPU before-
hand. At runtime, we need only send the vectors d(q) and q per
model.

6 GPU Implementation

There are two components of our GPU implementation: a matrix-
vector multiplication and matrix-palette skinning (Figure 10). Both
operations are straightforward on modern graphics hardware and
our implementation is one of many that are possible. We take a
total of three passes to skin our character, not including the final
rendering pass. The first pass performs the matrix-vector multipli-
cation. The next pass uses matrix-palette skinning to compute the
vertex positions. The third pass computes the normal vectors of the
skinned character from the post-transformed geometry. The only
data that we send to the GPU at runtime are the vectorized defor-
mation gradient predictions d(q) and bone transformations q—the
remainder of the computation is performed completely on the GPU.

Matrix-vector multiplication: We precompute and upload C1

and C2 into video memory as a static floating-point texture. For
each model, we upload textures d(q) and q at each frame and
use a fragment program to perform the matrix-vector multiplica-
tion, one column at a time. The results are rendered on to the same
12P × 1 rectangle and accumulated using hardware blending. We
store the final result, a vector of concatenated proxy-bone transfor-
mation matrices, as a texture.

Matrix-palette skinning: There are many ways to apply matrix-
palette skinning on modern graphics hardware; see Lee [2006] for
a recent survey. In light of the increase in multi-pass rendering
in video games, we chose to skin only once per frame in a sepa-
rate pass, storing the positions in a texture. These results can be
played back for each subsequent rendering pass. This avoids re-
dundant skinning on each rendering pass and is similar to DirectX
10 memexport skinning [Lee 2006] and deferred shading [Har-
greaves 2004]. For each vertex, we send the proxy-bone weights
and indices as texture coordinates which can be used to look up the
proxy-bone transformation matrices computed in the previous pass.

Normal vectors: While traditional normal vector computation
for a skinned character is usually approximated on the GPU, we
perform this computation more accurately using the triangle nor-
mals of the skinned vertices. For each vertex, we precompute the
indices of its 1-ring of neighbors. At runtime, these indices are
passed along as texture coordinates and used to fetch the position
of each neighbor computed from the skinning computation in the
previous pass. We then take the appropriate cross products to com-
pute each triangle normal, and normalize the sum of the triangle
normals to obtain the vertex normal.



0.0%

30.0%

60.0%

90.0%

120.0%

150.0%

SSD Train SSD Test RR Train RR Test

James Drago Gorilla Dragon

Leg
T-Rex Elbow Bar Muscle

Arm
Shoulder

E
n
v
e
lo

p
in

g
 E

rr
o
r

Figure 11: Our errors are not only generally lower than SSD, but
their standard deviations (error-bars) are smaller as well, meaning
that the errors are usually harder to detect visually. All errors are
normalized so that 100% corresponds to the best rigid-articulated
body predictor for each example. Both approximation error (dotted
line) and generalization error (solid line) for both SSD and our
rotational regression method (RR) are shown. (Lower is better.)

7 Results

Our technique compares favorably in quality to SSD, displacement
interpolating approaches, and rotation interpolating approaches.
We also compare the speed of our GPU implementation to matrix-
palette skinning. Our datasets included artist-created examples
from Poser, anatomically simulated examples using the cMuscle-
System [2006], and 3-D human scan data [Anguelov et al. 2005].

7.1 Error Metric

We evaluate all our examples using a metric inspired by the percent
position error (PPE) developed by Karni and Gotsman [2004] in
the context of animation compression. PPE measures the total error
of each predicted vertex, normalized by the best constant prediction
of the animation. However, in the context of enveloping, the anima-
tion of a moving walk could be globally well preserved but locally
prone to artifacts. We are only interested in these local deforma-
tions; the global motion is already given by the skeletal information
at each pose. Our enveloping error metric normalizes the total error
at each predicted vertex by the error of the best articulated rigid-
body prediction of the animation:

EE =

√

∑N

i

∑V

a
‖ya(qi) − yi

a‖2

∑N

i

∑V

a ‖ra(qi) − yi
a‖2

,

where ra(qi) is the best articulated rigid-body prediction of yi
a

based on the skeletal frames qi, computed by selecting the single
best bone transformation for the vertex over all the poses.

We measure both approximation error and generalization error. Ap-
proximation error is measured by evaluating the model on the train-
ing set. We measure generalization in two ways. For the datasets
where we are given an animation sequence, we sample key frames
from the sequence for training and evaluate over the entire se-
quence. For the datasets where we are given a set of random
and disjoint poses, we evaluate the leave-one-out cross validation
(LOOCV) error. That is, for each example i ∈ 1 . . . N we train on
the N −1 poses not including i and evaluate the resulting model on
pose i.

Example Vertices Joints
Proxy 

bones

Train 

Poses

Test 

Poses

Our 

flops

SSD 

flops

Our 

fps

SSD 

fps

Our 

Mem

SSD 

Mem

Train 

Time

James 11106 73 80 31 LOOCV 5.1M 2.6M 595 1000 5.2M 530K 6m

Drago 12500 16 80 49 LOOCV 5.0M 2.9M 618 1030 4.2M 600K 7m

Gorilla 25438 61 100 46 LOOCV 9.9M 5.9M 449 673 8.1M 1.2M 18m

Dragon Leg 2210 14 40 9 86 1.0M 0.5M 681 1144 1.1M 110K 35s

T-Rex 29380 155 60 11 121 9.4M 6.8M 443 583 5.8M 1.4M 6m

Elbow 2610 2 30 3 15 1.0M 0.6M 685 1164 880K 130K 30s

Bar 80 2 25 3 50 0.2M 0.0M 711 1228 310K 3K 5s

Muscle Arm 5256 3 30 4 40 2.0M 1.2M 692 1200 860K 250K 50s

Shoulder 2610 2 40 10 100 1.0M 0.6M 690 1172 880K 130K 30s

Table 1: While our method is slower than SSD, we are usually
within a factor of two in terms of both frame-rate and the number
of floating-point operations. Our results compare most favorably
for large detailed meshes, such as the T-rex, because most of the
time is spent on the same matrix-palette skinning computation as
SSD. Our absolute speed and memory requirements are sufficient
for use in interactive applications.

Comparison with SSD: We compared our model both in terms
of quality and speed to SSD. All of our SSD models were trained
using non-negative least-squares [James and Twigg 2005]. Like
James and Twigg [2005], we cap the number of non-zero weights
at four. In Figure 11, we show that our technique is superior in
terms of quality on every example we tried. Both our total envelop-
ing error and the variance of our errors across the vertices is lower,
meaning that our errors are low-frequency and less distracting vi-
sually. We compare particular poses in Figure 12.

We evaluate the speed of our technique in Table 1. While we are
slower than SSD, the performance difference is always within a
factor of two. While faster GPU implementations are possible, we
use the same matrix-palette skinning implementation for both our
method and SSD. Both methods were benchmarked on a Pentium
4 2.8 GHz machine with an NVIDIA GeForce 8800 GTX. We also
estimate the number of floating-point operations for each method to
provide a hardware independent perspective on performance.

The memory usage for our technique is significantly higher than
that of SSD. However, even for the largest models, the memory
usage is well within the capabilities of modern graphics hardware.
Training for our model is also reasonable for an offline processing
step.

Overall, our technique approximates deformations significantly
better than SSD, while generalizing well and being comparable
enough in speed to serve as its replacement.

Comparison with Displacement Interpolating Approaches:
We highlight the limitations of displacement interpolation for the
case of a simple two-joint twisting model, illustrated in the Bar and
Elbow examples of Figure 13. One joint twists 180 degrees with re-
spect to the other. This example is a special case of when Eigenskin
[Kry et al. 2002] and pose space deformation [Lewis et al. 2000] are
equivalent. Our model can learn the twisting deformation with just
three training examples, while pose space deformation, though a
perfect approximator, fails to generalize correctly to the new pose.

Comparison with Rotation Interpolating Approaches: The in-
sertion of half-way joints and expanding/contracting joints as pro-
posed by Mohr and Gleicher [2003] can perfectly model the twist-
ing effects in Figure 13. In other cases, the technique is less accu-
rate. We highlight the limitations of Mohr and Gleicher’s technique
with an anatomically rigged arm (Figure 14). In this case, the elbow
is undergoing both bending and twisting. Applying Mohr and Gle-
icher’s model allows the vertices of the forearm to choose a linear



Our methodGround truth SSD Our methodGround truth SSD

Figure 12: Our model captures deformations of 3-D human scan data and artist created data. In both cases, we are better at approximating
the shoulders than SSD.

Ground 
truth

SSDEigenskin/
PSD

Our 
method

EvaluationTraining

Figure 13: Twisting bar and arm test. We took three poses from an
animation sequence of a twisting bar and trained an SSD model, an
EigenSkin/PSD model, and our model. We evaluated each model
on an unseen test pose. While SSD has difficulty even representing
the twisting deformation, the EigenSkin/PSD model overtrains on
the small set of poses and fails to correctly interpolate the twist.

combination of the bending joint and the half-way twisting joint,
but not the correct solution—a joint that bends and twists halfway.
While more joints can always be added manually, our method lo-
cates where they are most needed and adds them automatically.

8 Conclusion

We have presented an example-based enveloping model suitable for
use in interactive animation systems. Specifically, our experiments
have shown that rotational regression is an effective way of captur-
ing muscle bulging, twisting and areas such as the shoulder. We
have tested our technique on a wide variety of examples, measuring
both approximation and generalization error. Our method compares
favorably to previous techniques in terms of quality and is usually
within a factor of two of SSD in terms of speed.

Our model is good at approximating smooth, large-scale deforma-
tions such as muscle bulges. However, more sophisticated defor-
mations, and in particular, deformations that cannot be linearly re-
lated to the underlying bone rotations may not be robustly captured.
We strike a careful balance between simplicity and expressiveness,
capturing only common deformations to avoid overfitting. If train-
ing poses need to be reproduced exactly, our technique can be aug-
mented with a displacement correction model such as pose space
deformation. While our runtime model is slower than SSD, it is

Training Evaluation

Ground 
truth

Our
method

[Mohr and
Gleicher] SSD

Figure 14: Anatomical arm test. We extracted a set of poses from
an anatomically motivated arm rig with both bending and twisting
at the elbow. The twisting and muscle bulges are enough to prevent
SSD from approximating the examples well. The technique of Mohr
and Gleicher [2003] does better, but there are still differences. Our
model produces a result almost indistinguishable from the ground
truth.

still fast enough to not be a bottleneck for real-time rendering. Our
memory requirements are significantly higher than that of SSD. For
highly memory-sensitive applications, the ε parameter from Section
4.2 can be used to smoothly reduce memory usage by sacrificing ac-
curacy. Furthermore, our model is more complex than linear blend
skinning, displacement interpolating techniques, and the work of
Mohr and Gleicher [2003].

We have shown that rotational regression is a surprisingly powerful
model that, combined with a reduced Poisson formulation and di-
mensionality reduction, can be used in real-time applications. An
exciting avenue of future work is to find an analog to our rotational
model for dynamics.

Acknowledgments

We are grateful to Ilya Baran for help with formulating the rota-
tional regression model, Jiawen Chen for guidance with the GPU
implementation, and Sylvain Paris for his regular, insightful feed-
back. We thank Joel Anderson for kindly providing the T-Rex
model, and Michael Comet for the Dragon Leg and Muscle Arm
models. All three models were created with the cMuscleSystem
software (Copyright 2005-2007 Comet Digital, LLC, All Rights
Reserved). Dragomir Anguelov generously provided data and sup-
port for the Drago model. This work was supported in part by Pixar



Animation Studios, the Nokia Research Center, the National Sci-
ence Foundation, and the NVIDIA Corporation.

References

ALLEN, B., CURLESS, B., POPOVIĆ, Z., AND HERTZMANN,
A. 2006. Learning a correlated model of identity and pose-
dependent body shape variation for real-time synthesis. In Sym-
posium on Computer Animation, 147–156.

ANGUELOV, D., SRINIVASAN, P., KOLLER, D., THRUN, S.,
RODGERS, J., AND DAVIS, J. 2005. SCAPE: shape comple-
tion and animation of people. ACM Trans. Graph. 24, 3 (Aug.),
408–416.

CAPELL, S., GREEN, S., CURLESS, B., DUCHAMP, T., AND
POPOVIĆ, Z. 2002. Interactive skeleton-driven dynamic de-
formations. ACM Trans. Graph. 21, 3 (July), 586–593.

CAPELL, S., BURKHART, M., CURLESS, B., DUCHAMP, T., AND
POPOVIĆ, Z. 2005. Physically based rigging for deformable
characters. In Symposium on Computer Animation, 301–310.

CGCHARACTER, 2003. Absolute character tools 1.6.
www.cgcharacter.com.

COHEN-STEINER, D., ALLIEZ, P., AND DESBRUN, M. 2004.
Variational shape approximation. ACM Trans. Graph. 23, 3
(Aug.), 905–914.

COMET, M., 2006. Cmusclesystem 1.31. www.cometdigital.com.

DER, K. G., SUMNER, R. W., AND POPOVIĆ, J. 2006. Inverse
kinematics for reduced deformable models. ACM Trans. Graph.
25, 3 (July), 1174–1179.

DIEBEL, J. R., THRUN, S., AND BRÜNIG, M. 2006. A
bayesian method for probable surface reconstruction and deci-
mation. ACM Trans. Graph. 25, 1 (Jan.), 39–59.

EGGERT, D. W., LORUSSO, A., AND FISHER, R. B. 1997. Es-
timating 3-d rigid body transformations: a comparison of four
major algorithms. Mach. Vision Appl. 9, 5-6, 272–290.

GUO, Z., AND CHEONG WONG, K. 2005. Skinning With De-
formable Chunks. Computer Graphics Forum 24, 3, 373–381.

HARGREAVES, S. 2004. Deferred shading. In Proceedings of the
Game Developers Conference.

HYUN, D.-E., YOON, S.-H., CHANG, J.-W., SEONG, J.-K.,
KIM, M.-S., AND JÜTTLER, B. 2005. Sweep-based human
deformation. The Visual Computer 21, 8-10, 542–550.

JAMES, D. L., AND TWIGG, C. D. 2005. Skinning mesh anima-
tions. ACM Trans. Graph. 24, 3, 399–407.

KARNI, Z., AND GOTSMAN, C. 2004. Efficient compression of
soft-body animation sequences. Computer and Graphics 28, 1
(Feb.), 25–34.

KAVAN, L., AND ŽÁRA, J. 2005. Spherical blend skinning: a
real-time deformation of articulated models. In Symposium on
Interactive 3D Graphics and Games, 9–16.

KRY, P. G., JAMES, D. L., AND PAI, D. K. 2002. EigenSkin:
real time large deformation character skinning in hardware. In
Symposium on Computer Animation, 153–159.

LEE, M. 2006. Seven ways to skin a mesh: Character skinning
revisited for modern GPUs. In Proceedings of GameFest, Mi-
crosoft Game Technology Conference.

LEWIS, J. P., CORDNER, M., AND FONG, N. 2000. Pose
space deformations: A unified approach to shape interpolation
and skeleton-driven deformation. In Proceedings of ACM SIG-
GRAPH 2000, Computer Graphics Proceedings, Annual Confer-
ence Series, 165–172.

MERRY, B., MARAIS, P., AND GAIN, J. 2006. Animation space:
A truly linear framework for character animation. ACM Trans.
Graph. 25, 4 (Oct.), 1400–1423.

MOHR, A., AND GLEICHER, M. 2003. Building efficient, accurate
character skins from examples. ACM Trans. Graph. 22, 3 (July),
562–568.

RHEE, T., LEWIS, J., AND NEUMANN, U. 2006. Real-
time weighted pose-space deformation on the GPU. Computer
Graphics Forum 25, 3 (Sept.), 439–448.

SCHEEPERS, F., PARENT, R. E., CARLSON, W. E., AND MAY,
S. F. 1997. Anatomy-based modeling of the human muscu-
lature. In Proceedings of SIGGRAPH 97, Computer Graphics
Proceedings, Annual Conference Series, 163–172.

SLOAN, P.-P. J., CHARLES F. ROSE, I., AND COHEN, M. F. 2001.
Shape by example. In Symposium on Interactive 3D Graphics
and Games, 135–143.

SUMNER, R. W., AND POPOVIĆ, J. 2004. Deformation transfer
for triangle meshes. ACM Trans. Graph. 23, 3, 399–405.

SUMNER, R. W., ZWICKER, M., GOTSMAN, C., AND POPOVIĆ,
J. 2005. Mesh-based inverse kinematics. ACM Trans. Graph.
24, 3, 488–495.

TERAN, J., SIFAKIS, E., IRVING, G., AND FEDKIW, R. 2005.
Robust quasistatic finite elements and flesh simulation. In Sym-
posium on Computer Animation, 181–190.

WANG, X. C., AND PHILLIPS, C. 2002. Multi-weight enveloping:
Least-squares approximation techniques for skin animation. In
Symposium on Computer Animation, 129–138.

WEBER, J. 2000. Run-time skin deformation. In Proceedings of
Game Developers Conference.

WILHELMS, J., AND GELDER, A. V. 1997. Anatomically based
modeling. In Proceedings of SIGGRAPH 97, Computer Graph-
ics Proceedings, Annual Conference Series, 173–180.


