
1

2

Kari Pulli Nokia Research Center

Jani Vaarala Nokia

Ville Miettinen NVIDIA

Robert Simpson AMD

Tomi Aarnio Nokia Research Center

Mark Callow HI Corporation

The Mobile 3D
Ecosystem
The Mobile 3D
Ecosystem

3

Today’s program: MorningToday’s program: Morning

• Start at 8:30

• Intro & OpenGL ES
overview
45 min, Kari Pulli

• Using OpenGL ES 1.x
50 min, Jani Vaarala

• OpenGL ES on PyS60
10 min, Kari Pulli

• Break 10:15 – 10:30
• OpenGL ES

performance
considerations
45 min, Ville Miettinen

• OpenGL ES 2.0
60 min, Robert Simpson

• N95 raffle

• Break 12:15

4

Today’s program: AfternoonToday’s program: Afternoon

• Start at 13:45

• M3G Intro
10 min, Kari Pulli

• M3G API overview
65 min, Tomi Aarnio

• M3G in the Real World 1
30 min, Mark Callow

• Break 15:30 – 15:45
• M3G in the Real World 2

60 min, Mark Callow

• M3G 2.0
30 min, Tomi Aarnio

• Closing & Q&A
15 min, Kari Pulli

• N95 raffle
• Finish at 17:30

5

Course Evaluations

http://www.siggraph.org/courses_evaluation

4 Random Individuals will win an ATI Radeontm HD2900XT

6

N95 raffle

2 Random Individuals will win a Nokia N95
• OpenGL ES 1.1 and M3G 1.1 HW
• 5 Megapixel camera
• GPS, mapping
• MP3 player
• W-LAN
• …

Put a card with name, affiliation, and
feedback to a box, one phone is raffled in
the morning session, one in the afternoon.

7

Special Issue of IEEE CGA: Mobile Graphics
• The July-August 2008 issue, the abstracts are due Oct 31, 2007. We are

looking for research or system papers in any areas of mobile graphics,
including:

• Mobile gaming
• Graphics hardware
• User interface toolkits and design tools
• Augmented reality
• Interaction design
• Input techniques and technologies
• Multimodal interfaces (such as speech, haptics, and sensors)
• Programming languages and file formats (such as vector graphics)
• Software architectures and service approaches
• Visualization on small displays
• Adapting multimedia to mobile clients
• Techniques for rendering and browsing the Web
• Design principles for information presentation
• Research into particular domains (health care, developing world)

8

Mobile 3D Graphics: with OpenGL ES and M3G

• Book on mobile 3D APIs coming out
soon

• Pulli, Vaarala, Miettinen, Aarnio,
Roimela

• Can already pre-order from Amazon

• Morgan Kaufmann booth should
have more information

9

Evolution of the ComputerEvolution of the Computer
Mainframe computer Mini computer Personal computer

Laptop computer Multimedia Computer

The computers of the 50s and 60s were large enough to fill a room. The
minicomputers of the 70s and 80s were still massive beasts.
The PC still takes over half of ones desk, laptops shrank them so they could
be carried around in a bag. Finally, the high-end cell phones pack the same
computation that you found a couple of years ago in a laptop into a form
factor that fits your palm and pocket.

10

Pervasive Mobile ComputingPervasive Mobile Computing

• Mobile phones are the largest and fastest growing market - ever
– The largest ever market opportunity for the graphics industry

• Handsets are becoming personal computing platform
– Not “just” phones: A real computer in your hand

• Sophisticated media processing is a key
– Just like it has been on the PC

– Games are one of the first handheld media applications

These mobile handheld computers form the fastest growing computing platform, for
graphics and many other technologies as well.
They are ubiquitous, most people have at least one.
They are not “just” phones, but general personal computers, able to process many
types of media such as audio, video, graphics, and imaging.

11

Sources: Nokia 2005 & 2006, GSM Association 2006

3 billion mobile
subscribers by 2007.

Over 1 billion wireless
broadband subscribers
by 2009.

Up to 90% of the 6
billion will have mobile
coverage by 2010.

Current expectation:

Here are some numbers to show how pervasive they are.
3 billion mobile subscribers globally this year, 1 billion wireless broadband
subscribers in two more years,
and by 2010 there will be more people with mobile phones than there are
people with a tooth brush today (~4 billion).

12

Towards the 3 Billion Milestone
Mobile phone

subscriptions

globally,

millions

Source: Nokia

3 billion
in 2007

3 billion
in 2007

0
-92 -93 -94 -95 -96 -97 -98 -99 -00 -02-01 -03 -04 -05 -07e

200

400

600

800

1 000

1 200

1 400

1 600

1 800

2 000

2 200

2 400

2 600

2 800

3 000

Current global
penetration 33

%

Here’s the recent growth rate. Globally we’re still in the exponential growth
phase, though in the industrial world the growth is hitting the top end of the
typical S-curve.

13

Challenge? Power!Challenge? Power!

• Power is the ultimate bottleneck
– Usually not plugged to wall, just batteries

• Batteries don’t follow Moore’s law
– Only 5-10% per year

Let’s go through some of the challenges in mobile computing, contrasting to
desktop computing.
The first, and most important one is power. Mobile devices usually operate
on batteries, whereas PCs are usually directly connected to power grid. And
people expect longer standup times from their phones than from their
laptops.
The battery efficiency grows at a much slower rate than the general IC
technology, which has followed Moore’s law for the last four decades..

14

Challenge? Power!Challenge? Power!

• Gene’s law
– "power use of integrated circuits decreases

exponentially" over time => batteries will last longer
• Since 1994, the power required to run an IC has declined 10x

every 2 years

– But the performance of 2 years ago is not enough
• Pump up the speed

• Use up the power savings

Luckily there is a corollary to the Moore’s law, known as Gene’s law, which
says that as the chips get smaller, they use less power.
So with the same batteries you can get more output. But the expectations
rise all the time, people expect more and faster of everything in newer
models.

15

Challenge? Thermal mgt!Challenge? Thermal mgt!

• But ridiculously good batteries still won’t be
the miracle cure
– The devices are small

– Generated power must get out

– No room for fans

Another problem is due to the small physical size. Even if unlimited power was
available, computation generates heat, which needs to be released. And as
opposed to PC’s there’s no room for air or liquid cooling.

16

Challenge? Thermal mgt!Challenge? Thermal mgt!

• Thermal management must
be considered early in the
design
– Hot spot would fry electronics

• Or at least inconvenience the user…

– Conduct the heat through the
walls, and finally release to the
ambient

Instead the thermal management has to be taken into account early on in the
design.
The pictures show first two pictures of a bad thermal design, where the radio
creates a hot spot, that would prevent shrinking the device any further. Such a hot
spot could fry up the electronics, or make it uncomfortable to handle or wear.
On the right we see another design (seen from the side) where the heat is much
better distributed.

17

Changed? Displays!Changed? Displays!

• Resolution
– S60: 320 x 240

– Communicators: 640 x 200

– Internet tablets like N800: 800 x 480

• Color depth
– Not many new B/W phones

– 12 / 16 / 18 / … bit RGB

Let’s take a look at some of the key enablers for mobile graphics. Probably
the most important, and most rapid development has happened in small LCD
displays.
The resolution of mobile displays started small, the display of the small red
phone in the image was around 48 x 84 pixels, black and white (or black and
green).
But displays have improved in bounds and leaps, first driven by the demand
from the digital camera displays. Now resolutions such as 320 x 240 with 16
bits of color or more are common.
Only the very cheapest phones nowadays have monochrome displays.
Some displays such as the one on the N800 internet tablet are quite a bit
sharper than what is needed for typical broadcast TV.

18

Future? Displays!Future? Displays!

• Physical size remains limited
– TV-out connection

– Near-eye displays?

– Projectors?

– Roll-up flexible displays?
allaboutsymbian.com

The physical size of the displays remains a challenge with devices that
should be pocketable (assuming you don’t want to take the route of growing
the pocket sizes).
Some high-end models allow a TV-out connection, for example with N93 and
N95 you can view your video clips and still images via a TV or projector at
640 x 480 resolution, even though the handset only has a 320 x 240 display.
Near-eye displays provide a potential for as high resolution displays as the
human eye can handle, though in order to catch on, they need to get as light
and sleek as in Mission Impossible (it should be easier without the built-in
explosives).
With miniature lasers you can fit a projector into a small enough a form
factor for cell phones, and perhaps even low enough power consumption.
Flexible displays that can be rolled up and expanded when needed are
starting to come out of research laboratories.

19

Changed? Computation!Changed? Computation!

• Moore’s law in action
– 3410: ARM 7 @ 26MHz

• Not much caching, narrow bus

– 6600: ARM 9 @ 104MHz
• Decent caching, better bus

– 6630: ARM 9 @ 220MHz
• Faster memories

– N93: ARM 11 @ 330MHz
• HW floating-point unit
• 3D HW

Another key enabler is the increased amount of computation power that’s
available. Here we see Moore’s law in action.
(Dates based on Aug 2007)
3410 launched about 5 years ago, coming with an ARM 7 CPU running at 26
MHz, and the rest of the architecture was pretty limited as well.
6600 came about 4 years ago, with a bigger processor, over 100 MHz clock,
with better caches and bus.
6630 shipped almost 3 years ago, that doubled the clock speed, came with
faster memories.
N93 shipped last year, again with much faster processing, and for the first
time with a hardware floating point unit and 3D graphics hardware.

20

State-of-the-art in 2001:
GSM world
State-of-the-art in 2001:
GSM world

• The world’s most played
electronic game?
– According to The Guardian

(May 2001)

• Communicator demo 2001
– Remake of a 1994 Amiga demo

– <10 year from PC to mobile

Let’s take a look at the brief history of mobile graphics.

Around 2001, at least in Europe and Americas, the state of the art for mobile
graphics was games such as Snake. Considering that in 2001 alone Nokia
shipped over 100 million phones, most with Snake, with very few other
games available, Snake is at least one of the most played electronic games
ever. Then there were not many other mobile games to choose from, so a lot
of people also played the game, whereas today there are so many choices
that no single game gathers as much mindshare.

In 2001 an old Amiga demo was ported to Nokia communicator, causing a
sensation at the Assembly demo competition organized yearly in Finland,
and showing that you can, in fact, do better looking graphics than the Snake
on handhelds.

21

State-of-the-art in 2001: JapanState-of-the-art in 2001: Japan

• High-level API with skinning, flat shading /
texturing, orthographic view

J-SH07
by SHARP

GENKI 3D Characters
(C) 2001 GENKI

ULALA
(c)SEGA/UGA.2001

J-SH51
by SHARP

Space Channel 5

©SEGA/UGA,2001 ©SEGA/UGA,2002

Snowboard Rider
©WOW ENTERTAINMENT INC.,
2000-2002all rights reserved.

At the same time in Japan there were more devices with color displays, inviting the
first commercial graphics applications.
The trend seems to be that the cool gadgets typically come first in the far east, then
Europe, and finally in the Americas…
The first applications were simple games, mascots or screen savers, or “mascots”
like the dog or the Ulala go-go girl.
The APIs were high-level APIs aimed for such applications.
The graphics engines were pretty modest in terms of features, featuring a only
orthographic, or parallel projection cameras, flat shading and very simple if any
lighting, and simple texture mapping.

22

State-of-the-art in 2002:
GSM world
State-of-the-art in 2002:
GSM world
• 3410 shipped in May 2002

– A SW engine: a subset of OpenGL
including full perspective (even textures)

– 3D screensavers (artist created content)

– FlyText screensaver (end-user content)

– a 3D game

In 2002 the first GSM phone with a 3D graphics engine shipped. It didn’t
have a nice color screen, but a 1-bit 96x65 display.

23

State-of-the-art in 2002: JapanState-of-the-art in 2002: Japan

• Gouraud shading,
semi-transparency,
environment maps

3d menu

C3003P
by Panasonic

KDDI Au 3D Launcher

©SAN-X+GREEN CAMEL

I-3D PolyGame
Boxing

@ Hi Vanguard・REZO, BNW

Ulala Channel J

©SEGA/UGA,2001 ©SEGA/UGA,2002

24

Fathammer’s
Geopod

on XForge

State-of-the-art in 2003:
GSM world
State-of-the-art in 2003:
GSM world
• N-Gage ships

• Lots of proprietary 3D engines
on various Series 60 phones

25

State-of-the-art in 2003: JapanState-of-the-art in 2003: Japan

• Perspective view,
low-level API

Aqua ModeAqua ModeAqua ModeRidge Racer

@ Namco

Mission Commander
Multi player Fps Game

© IT Telecom

26

Mobile 3D in 2004Mobile 3D in 2004

• 6630 shipped late 2004
– First device to have both

OpenGL ES 1.0 (for C++) and
M3G (a.k.a JSR-184, for Java) APIs

• Sharp V602SH in May 2004
– OpenGL ES 1.0 capable HW

but API not exposed

– Java / MascotCapsule API

27

2005 and beyond: HW2005 and beyond: HW

28

Mobile graphics evolution snapshotMobile graphics evolution snapshot

2D Software 3D Accelerated 3D

Spider-Man 2 3D: NY Subway
Sony Pictures

Spider-Man 2
Activision

Spider-Man 2: The Hero Returns
Sony Pictures

29

Mobile 3D APIsMobile 3D APIs

OpenGL ESOpenGL ES

Java ApplicationsJava Applications

Java UI APIJava UI APIM3G (JSR-184)M3G (JSR-184)

Operating System (Symbian, Linux, …)Operating System (Symbian, Linux, …)

Java Virtual MachineJava Virtual Machine

Native C/C++
Applications

Native C/C++
Applications

Graphics HardwareGraphics Hardware

The green parts show the content of today’s course. We will cover two mobile 3D
APIs, used by applications, either the so-called native C/C++ applications, or Java
midlets (the mobile versions of applets). The APIs use system resources such as
memory, display, and graphics hardware if available. OpenGL ES is a low-level API,
that can be used as a building block for higher level APIs such as M3G, or Mobile
3D Graphics API for J2ME, also known as JSR-184 (JSR = Java Standardization
Request).

30

Overview: OpenGL ESOverview: OpenGL ES

• Background: OpenGL & OpenGL ES

• OpenGL ES 1.0

• OpenGL ES 1.1

• EGL: the glue between OS and OpenGL ES

• How can I get it and learn more?

31

• The most widely adopted graphics standard
– most OS’s, thousands of applications

• Map the graphics process into a pipeline
– matches HW well

• A foundation for higher level APIs
– Open Inventor; VRML / X3D; Java3D; game engines

What is OpenGL?What is OpenGL?

modeling

projecting

clipping

lighting & shading

texturing

hidden surface

blending

pixels to screen

32

What is OpenGL ES?What is OpenGL ES?

• OpenGL is just too big for Embedded
Systems with limited resources
– memory footprint, floating point HW

• Create a new, compact API
– mostly a subset of OpenGL

– that can still do almost all OpenGL can

33

OpenGL ES 1.0 design targetsOpenGL ES 1.0 design targets

• Preserve OpenGL structure
• Eliminate un-needed functionality

– redundant / expensive / unused
• Keep it compact and efficient

– <= 50KB footprint possible, without HW FPU
• Enable innovation

– allow extensions, harmonize them
• Align with other mobile 3D APIs (M3G / JSR-184)

34

AdoptionAdoption

• Symbian OS, S60

• Brew

• PS3 / Cell architecture

Sony’s arguments: Why ES over OpenGL
• OpenGL drivers contain many features not needed

by game developers
• ES designed primarily for interactive 3D app devs
• Smaller memory footprint

35

OutlineOutline

• Background: OpenGL & OpenGL ES

• OpenGL ES 1.0

• OpenGL ES 1.1

• EGL: the glue between OS and OpenGL ES

• How can I get it and learn more?

36

OpenGL ES PipeOpenGL ES Pipe

• Here’s the
OpenGL ES
pipeline stages
– vertices

– primitives

– fragments

37

Vertex pipelineVertex pipeline

38

Primitive processingPrimitive processing

39

Fragment pipelineFragment pipeline

40

Functionality: in / out? (1/7)Functionality: in / out? (1/7)

• Convenience functionality is OUT
– GLU

(utility library)

– evaluators
(for splines)

– feedback mode
(tell what would draw without drawing)

– selection mode
(for picking, easily emulated)

– display lists
(collecting and preprocessing commands)

gluOrtho2D(0,1,0,1)
vs.
glOrtho(0,1,0,1,-1,1)

glNewList(1, GL_COMPILE)
myFuncThatCallsOpenGL()
glEndList()
…
glCallList(1)

41

Functionality: in / out? (2/7)Functionality: in / out? (2/7)

• Remove old complex functionality
– glBegin – glEnd (OUT); vertex arrays (IN)

– new: coordinates can be given as bytes

glBegin(GL_POLYGON);
glColor3f (1, 0, 0);
glVertex3f(-.5, .5, .5);
glVertex3f(.5, .5, .5);
glColor3f (0, 1, 0);
glVertex3f(.5,-.5, .5);
glVertex3f(-.5,-.5, .5);
glEnd();

static const GLbyte verts[4 * 3] =
{ -1, 1, 1, 1, 1, 1,

1, -1, 1, -1, -1, 1 };
static const GLubyte colors[4 * 3] =
{ 255, 0, 0, 255, 0, 0,

0,255, 0, 0,255, 0 };
glVertexPointer(3,GL_BYTE,0, verts);
glColorPointerf(3,GL_UNSIGNED_BYTE,

0, colors);
glDrawArrays(GL_TRIANGLE_STRIP,

0, 4);

42

Functionality: in / out? (3/7)Functionality: in / out? (3/7)

• Simplify rendering modes
– double buffering, RGBA, no front buffer access

• Emulating back-end missing functionality is
expensive or impossible
– full fragment processing is IN

alpha / depth / scissor / stencil tests,
multisampling,
dithering, blending, logic ops)

43

Functionality: in / out? (4/7)Functionality: in / out? (4/7)

• Raster processing
– ReadPixels IN, DrawPixels and Bitmap OUT

• Rasterization
– OUT: PolygonMode, PolygonSmooth, Stipple

44

Functionality: in / out? (5/7)Functionality: in / out? (5/7)

• 2D texture maps IN
– 1D, 3D, cube maps OUT

– borders, proxies, priorities, LOD clamps OUT

– multitexturing, texture compression IN (optional)

– texture filtering (incl. mipmaps) IN

– new: paletted textures IN

45

Functionality: in / out? (6/7)Functionality: in / out? (6/7)

• Almost full OpenGL light model IN
– back materials, local viewer,

separate specular OUT

• Primitives
– IN: points, lines, triangles

– OUT: quads & polygons

46

Functionality: in / out? (7/7)Functionality: in / out? (7/7)

• Vertex processing
– IN: transformations

– OUT: user clip planes, texcoord generation

• Support only static queries
– OUT: dynamic queries, attribute stacks

• application can usually keep track of its own state

47

Floats vs. fixed-pointFloats vs. fixed-point

• Accommodate both
– integers / fixed-point numbers for efficiency
– floats for ease-of-use and being future-proof

• Details
– 16.16 fixed-point: add a decimal point inside an int

– get rid of doubles

glRotatef(0.5f, 0.f , 1.f, 0.f);
vs.

glRotatex(1 << 15, 0 , 1 << 16, 0);

48

OutlineOutline

• Background: OpenGL & OpenGL ES

• OpenGL ES 1.0

• OpenGL ES 1.1

• EGL: the glue between OS and OpenGL ES

• How can I get it and learn more?

49

OpenGL ES 1.1: coreOpenGL ES 1.1: core

• Buffer Objects
allow caching vertex data

• Better Textures
>= 2 tex units, combine (+,-,interp), dot3 bumps, auto mipmap gen.

• User Clip Planes
portal culling (>= 1)

• Point Sprites
particles as points not quads, attenuate size with distance

• State Queries
enables state save / restore, good for middleware

50

Bump mapsBump maps

• Double win
– increase realism

– reduce internal bandwidth -> increase performance

51

OpenGL ES 1.1: optionalOpenGL ES 1.1: optional

• Draw Texture
fast drawing of pixel rectangles
using texturing units
(data can be cached),
constant Z, scaling

• Matrix Palette
vertex skinning
(>= 3 matrices / vertex, palette >= 9)

52

OutlineOutline

• Background: OpenGL & OpenGL ES

• OpenGL ES 1.0

• OpenGL ES 1.1

• EGL: the glue between OS and OpenGL ES

• How can I get it and learn more?

53

EGL glues OpenGL ES to OSEGL glues OpenGL ES to OS

• EGL is the interface between OpenGL ES
and the native platform window system
– similar to GLX on X-windows, WGL on Windows

– facilitates portability across OS’s (Symbian, Linux, …)

• Division of labor
– EGL gets the resources (windows, etc.) and

displays the images created by OpenGL ES

– OpenGL ES uses resources for 3D graphics

54

EGL surfacesEGL surfaces

• Various drawing surfaces, rendering targets
– windows – on-screen rendering

(“graphics” memory)

– pbuffers – off-screen rendering
(user memory)

– pixmaps – off-screen rendering
(OS native images)

55

EGL contextEGL context

• A rendering context is an abstract
OpenGL ES state machine
– stores the state of the graphics engine

– can be (re)bound to any matching surface

– different contexts can share data
• texture objects

• vertex buffer objects

• even across APIs (OpenGL ES, OpenVG, later others too)

56

Main EGL 1.0 functionsMain EGL 1.0 functions

• Getting started
– eglInitialize() / eglTerminate(), eglGetDisplay(),

eglGetConfigs() / eglChooseConfig(),
eglCreateXSurface() (X = Window | Pbuffer | Pixmap),
eglCreateContext()

• eglMakeCurrent(display, drawsurf, readsurf,
context)

– binds context to current thread, surfaces, display

57

Main EGL 1.0 functionsMain EGL 1.0 functions

• eglSwapBuffer(display, surface)
– posts the color buffer to a window

• eglWaitGL(), eglWaitNative(engine)
– provides synchronization between OpenGL ES

and native (2D) graphics libraries

• eglCopyBuffer(display, surface, target)
– copy color buffer to a native color pixmap

58

EGL 1.1 enhancementsEGL 1.1 enhancements

• Swap interval control
– specify # of video frames between buffer swaps

– default 1; 0 = unlocked swaps, >1 save power

• Power management events
– PowerMgmnt event => all Context lost

– Display & Surf remain, Surf contents unspecified

• Render-to-texture [optional]
– flexible use of texture memory

59

OutlineOutline

• Background: OpenGL & OpenGL ES

• OpenGL ES 1.0 functionality

• OpenGL ES beyond 1.0

• EGL: the glue between OS and OpenGL ES

• How can I get it and learn more?

60

SW ImplementationsSW Implementations

• Gerbera from Hybrid
– Free for non-commercial use

– http://www.hybrid.fi

• Vincent
– Open-source OpenGL ES library

– http://sourceforge.net/projects/ogl-es

• Reference implementation
– Wraps on top of OpenGL
– http://www.khronos.org/opengles/documentation/gles-1.0c.tgz

61

HW implementationsHW implementations

• There are many designs

• The following slides gives some idea
– rough rules of thumb

• 1-5 M Tri / sec

• 1 pixel / clock

• clock speeds 50MHz – 200+MHz

• power consumption should be < 100 mW

62

• Graphics processors

– G12: OpenVG 1.0

– G34: OpenGL ES 1.1
vertex shader

– G40: OpenGL ES 2.0, GLSL
OpenVG 1.0
vertex and pixel shader

– Flipquad antialiasing

– Max clock 200MHz

• Partners / Customers

– NEC Electronics

– Hybrid Graphics (drivers)

Bitboys

63

ATIATI

• Imageon 2300
– OpenGL ES 1.0
– Vertex and raster HW

• 32-bit internal pipe

• 16-bit color and Z buffers

• Integrated QVGA buffer

• Imaging / Video codecs

• Imageon 3D (for Qualcomm)
– OpenGL ES 1.1
– 3M Tri / s,100M Pix / s @ 100 MHz

• 2nd gen. Imageon 3D adds
– OpenGL ES 1.1 extension pack
– Vertex shader
– HyperZ
– Audio codecs, 3D audio

• Partners, customers
– Qualcomm
– LG SV360, KV3600
– Zodiac

64

CONFIDENTIAL

1st generation (Imageon 2300)
OpenGL ES 1.0 (1st conformant
implementation)

Vertex and raster HW

32-bit internal pipe, 16-bit color and Z buffers

Integrated QVGA buffer

Imaging / Video codecs

1 Mtri/s, 100 Mpix/s

2nd generation (Imageon 2380)
OpenGL ES 1.1

Vertex shader, HyperZ

Audio codecs, 3D audio

3.5 Mtri/s, 125 Mpix/s

3rd generation (to be announced)
OpenGL ES 2.0

Full HW OpenVG 1.1

Unified Shaders

OpenGL ES 2.0 and OpenVG cores are also
available as IP

AMD Handheld Graphics

65

Falanx

Mali 110
» OpenGL ES 1.1 + extensions
» 4x / 16x full screen anti-aliasing
» Video codecs (e.g., MPEG-4)
» 170-400k logic gates + SRAM
» 2.8M Tri / s, 100M Pix / s with 4xAA

Mali 200
» OpenGL ES 2.0, OpenVG, D3D

Mob.
» 5M Tri / s, 100M Pix / s, 11 instr. /

cycle
Partners / Customer
» Zoran

66

66666666

ARM® Mali™ Architecture
Compared to traditional immediate mode
renderer

80% lower per pixel bandwidth usage, even
with 4X FSAA enabled
Efficient memory access patterns and data
locality: enables performance even in high
latency systems

Compared to traditional tile-based renderer
Significantly lower per-vertex bandwidth
Impact of scene complexity increases is
substantially reduced

Other architectural advantages
Per frame autonomous rendering
No renderer state change performance
penalty
On-chip z / stencil / color buffers

minimizes working memory footprint
Acceleration beyond 3D graphics (OpenVG
etc.)

YESNAYESOpenVG 1.x

100NA275Fill rate Mpix / s

1M9M9MTriangles / s

200MHz275MHz275MHzMax CLK

YES

YES

4X / 16X

Mali200

4X / 16X4X / 16XAnti-Aliasing

YES

YES

MaliGP2

NO

YES

Mali55

OpenGL®ES
1.x

OpenGL®ES
2.x

67

© 2006 Digital Media Professionals Inc. All rights reserved.

Visualize the futureDMP Inc.

PICA200 graphics core
3D Features

OpenGLES 1.1
DMP’s proprietary “Maestro” extensions
• Very high quality graphics with easier

programming interface
•• PerPer--fragment lighting, fragment lighting,
•• ShadowShadow--mapping, mapping,
•• Procedural texture, Procedural texture,
•• Polygon subdivision (Geo shader), andPolygon subdivision (Geo shader), and
•• Gaseous object rendering.Gaseous object rendering.

Hardware Features
» Performance: 20Mtri/s, 400Mpixel/s@100MHz20Mtri/s, 400Mpixel/s@100MHz

» Core size: 500Kgate – 4Mgate
» Power consumption: 0.5-2mW/MHz
» Max. clock freq. 200MHz (90nm and 130nm)

www.dmprof.com

68

Imagination Technologies
POWERVR MBX & SGX 2D/3D Acceleration
IP5th Generation Tile Based Deferred Rendering

Market Proven Advanced Tiling Algorithms
Order-independent Hidden Surface Removal
Lowest silicon area, bandwidth and power
Excellent system latency tolerance

POWERVR SGX: OpenGL ES 2.0 in Silicon Now
Scalable from 1 to 8 pipelines and beyond
Programmable multi-threaded multimedia GPU
Optimal load balancing scheduling hardware
Vertex, Pixel, Geometry shaders + image processing

Partners/Customers
TI, Intel, Renesas, Samsung, NXP, NEC, Freescale,
Sunplus, Centrality & others unannounced

www.powervrinsider.com
Market-leading Ecosystem with more than 1650 members

POWERVR MBX: The de-facto standard for
mobile graphics acceleration, with >50 PowerVR

3D-enabled phones shipping worldwide

1M … 15.5M1.7M … 3.7MTriangles/Sec
50M … 500M135M … 300MPixels/Sec

1.0.1 and 1.11.0OpenVG
Mobile, 9L and 10.1MobileDirect3D
2.0, ES1.1 and ES2.0ES1.1OpenGL

PowerVR SGX
Family

PowerVR MBX
Family

Performance quoted at 100MHz for MBX, MBX Lite and for SGX510 to SGX545.
Peak SoC achievable performance not quoted, e.g. <50% Shader load for Tri/Sec.
Performance scales with clock speeds up to 200MHz and beyond.
Planned future cores will offer higher performance levels.

69

MitsubishiMitsubishi
• Z3D family

– Z3D and Z3D2 out in 2002, 2003

• Pre-OpenGL ES 1.0

• Embedded SRAM architecture

– Z3D3 in 2004

• OpenGL ES 1.0, raster and vertex HW

• Cache architecture

• @ 100 MHz: 1.5M vtx / s, 50-60 mW, ~250 kGates

– Z3D4 in 2005

• OpenGL ES 1.1

• Partners / Customers

– Several Japanese manufacturers

Z3D
First mobile 3D HW?

70

New Wave Digital Paradigm

3D Digital Innovation

GiPump™ NX1005
; Mobile 3D graphics acc. with camera control functions
- OpenGL ES 1.1 / GIGA / JSR184
- 5M poly/s, 80M pix/s @ 80MHz, JPEG codec (3M pixel), ~QVGA display
- Cellular phone, smart phone, etc.

GiPump™ NX2001
; 3D Graphics enhanced multimedia processor
- OpenGL ES 2.0 / 1.1 Ext. / JSR184 / D3DM
- 10M poly/s, 200M pix/s @ 200MHz, ~SVGA display
- PND, PMP, game device, mobile device, etc.

GiPump™ NX1009
; Economical mobile 3D graphics accelerator
- OpenGL ES 1.1 + Ext. / GIGA / JSR184
- 12.5M poly/s, 200M pix/s @ 100MHz, ~SVGA display, boost mode
- Cellular phone, Smart phone, etc.

GiPump™ NX1008
; Mobile 3D graphics acc. with stereoscopic display
- OpenGL ES 1.1 / GIGA / JSR184
- 5M poly/s, 80M pix/s @ 80MHz, ~QVGA display, stereoscopic display
- Cellular phone, smart phone, etc.

GiPump™ NX1007
; High end 3D graphics acc. for mobile
- OpenGL ES 1.1 + Ext. / GIGA / JSR184
- 12.5M poly/s, 200M pix/s @ 100MHz, ~SVGA display, PIP supports
- PND, PMP, game device, mobile device, etc.

Nexus Mobile PlatformTM

Gaming Device Platform
(OS: WinCE, Linux, RTOS,
etc.)
To: Game Device Maker

GiPump™ Series Service Solutions

GiPump™ Partners : Samsung, SKT, Other Device Manufactures

GiPump™ SDK
NXsdk with Emulator
NXsdk Shader+
NXm3g Engine
NX3D Engine & Tools

NX1008TKTM

3D Reference B/D
GiPump™ Integration Platform
To: Device Developer

* GiPump™ : Pronounced, “G”, “I”, “Pump”. It means “Graphics / Image Pump”.
* GIGA (Giga Instruction Giga Acceleration) : SK Telecom’s mobile 3D graphics platform
* PND (Personal Navigation Device)

71

GoForce 4800 DawnGoForce 4800 Dawn
GoForce 5500 handheld GPU

3D geometry and rasterization HW
OpenGL ES 1.1, D3D Mobile, OpenVG 1.0
1.3M tri / s, 100M pix / s (@ 100 MHz)
Programmable pixel micro shaders
40 bit signed non-int (overbright) color pipeline
Dedicated 2D engine (bitblt, lines, alpha blend)
Supersampled anti-aliasing, up to 6 textures
<50mW avg. dynamic power cons. for graphics
10MPxl camera support, XGA LCD, MPEG-4 video, audio

Partners / Customers
Motorola, Sony Ericsson, Samsung,
LG, Kyocera, O2, HTC, Marvell, Freescale, …

NVidia

72

Sony PSPSony PSP
• Game processing unit

– Surface engine

• tessellation of Beziers and splines

• skinning (<= 8 matrices), morphing (<= 8 vtx)

• HW T&L

• 21 MTri / s (@ 100 MHz)

– Rendering engine

• basic OpenGL-style fixed pipeline

• 400M pix / s (@ 100 MHz)

– 2MB eDRAM

• Media processing engine
– 2MB eDRAM

– H.264 (AVC) video up to 720x480 @ 30fps

73

• GSHARK-TAKUMI Family
– GP

• OpenGL ES 1.0
• 0.5M tri/s @100MHz, 170Kgate

– GT
• OpenGL ES 1.1
• 1.4M tri/s @100MHz, < 30mW

– G2
• OpenGL ES 1.1
• 5M tri/s @100MHz

• Partners / Customers
– NEC Electronics

TAKUMI
• Concepts & Architecture

– Small Gate Counts
– Low Power Consumption
– Vertex Processor (T&L)
– Dedicated 2D Sprite Engine
– Target Application

• Mobile Phone and Digital AV
Equipments such as DTV, STB,
DSC, PMP, etc.

74

ToshibaToshiba
• TC35711XBG

– Programmable shader

– Plan to support OpenGL ES2.0

– Large embedded memory for

• Color and Z buffer

• Caches for vertex arrays, textures

• Display lists (command buffer)

– 50M vtx / sec, 400M pix / sec (@ 100 MHz)

– WVGA LCD controller

– 13mm x 13mm x 1.2mm 449Ball BGA

75

Vivante GPU for Handheld
• OpenGL ES 1.1 & 2.0 and D3D 9.0
• Unified vertex & pixel shader
• Anti-Aliasing
• AXI/AHB interface
• GC500

– 3 mm2 die area in 65nm (1.8mm x 1.2mm)
– 10 MPolygons/s and 100 MPixel/s at 200 MHz
– 50mW GPU core power

• Scalable solution to 50 MPolygons/s
and 1 GPixels/s (GC1000, GC4000)

•• Silicon proven solutionSilicon proven solution
• Designed into multiple 65nm SoCs

76

SDKsSDKs

• Nokia S60 SDK (Symbian OS)
– http://www.forum.nokia.com

• Imagination SDK
– http://www.pvrdev.com/Pub/MBX

• NVIDIA handheld SDK
– http://www.nvidia.com/object/hhsdk_home.html

• Brew SDK & documentation
– http://brew.qualcomm.com

77

OpenGL ES 1.1 DemosOpenGL ES 1.1 Demos

78

Questions?Questions?

79

80

Using OpenGL ESUsing OpenGL ES

Jani Vaarala

Nokia

81

Using OpenGL ESUsing OpenGL ES

- Simple OpenGL ES example

- EGL configuration selection

- Texture matrix example

- Fixed point programming

- Converting existing code

82

“Hello OpenGL ES”“Hello OpenGL ES”

-This is what we are aiming for: single smooth shaded triangle

83

Hello OpenGL ES, EGL initializationHello OpenGL ES, EGL initialization

/* ===
* "Hello OpenGL ES" OpenGL ES code.
*
* Siggraph 2007 course on mobile graphics.
*
* Copyright: Jani Vaarala
* ===

*/

#include <GLES/gl.h>
#include <GLES/egl.h>

EGLDisplay display;
EGLContext context;
EGLSurface surface;
EGLConfig config;

-Here are the headers and basic EGL variables that we will be using

84

Hello OpenGL ES, EGL initializationHello OpenGL ES, EGL initialization

EGLint attrib_list[] =
{

EGL_BUFFER_SIZE, 16,
EGL_DEPTH_SIZE, 15,
EGL_SURFACE_TYPE, EGL_WINDOW_BIT,
EGL_NONE

};

void init_egl(void)
{

EGLint numOfConfigs;

display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
eglInitialize(display, NULL, NULL);
eglChooseConfig(display, attrib_list, &config, 1 , &numOfConfigs);
surface = eglCreateWindowSurface(display, config, WINDOW(), NULL);
context = eglCreateContext(display, config, EGL_NO_CONTEXT, NULL);
eglMakeCurrent(display, surface, surface, context);

}

-attrib_list defines attributes for the configuration that we want to use: at
least 15 bits in depth buffer and 16 bits in color buffer
-WINDOW() is a macro that is used here to indicate the place where the
windowing system specific window type goes into
-Basic EGL initialization can be done like this, but in real-world applications
also the error checking should be included and config selection may be a
little bit more involved

85

Hello OpenGL ES, OpenGL ES partHello OpenGL ES, OpenGL ES part

#include <GLES/gl.h>

static const GLbyte vertices[3 * 3] =
{

-1, 1, 0,
1, -1, 0,
1, 1, 0

};

static const GLubyte colors[3 * 4] =
{

255, 0, 0, 255,
0, 255, 0, 255,
0, 0, 255, 255

};

v0 (-1,1)

v1 (1, -1)

v2 (1, 1)

-Each vertex has different color (full R, full G, full B).

86

Hello OpenGL ES, OpenGL ES partHello OpenGL ES, OpenGL ES part

void init()
{

glClearColor (0.f, 0.f, 0.1f, 1.f);
glMatrixMode (GL_PROJECTION);
glFrustumf (-1.f, 1.f, -1.f, 1.f, 3.f, 1000.f);
glMatrixMode (GL_MODELVIEW);
glShadeModel (GL_SMOOTH);
glDisable (GL_DEPTH_TEST);
glVertexPointer (3, GL_BYTE, 0, vertices);
glColorPointer (4, GL_UNSIGNED_BYTE, 0, colors);
glEnableClientState (GL_VERTEX_ARRAY);
glEnableClientState (GL_COLOR_ARRAY);
glViewport (0, 0, GET_WIDTH(), GET_HEIGHT());

INIT_RENDER_CALLBACK(drawcallback);
}

-OpenGL ES setup code, sets up a vertex array and a color array
-INIT_RENDER_CALLBACK is a platform specific way to set up a render
callback to function drawcallback (called by timer for example)

87

Hello OpenGL ES, OpenGL ES partHello OpenGL ES, OpenGL ES part

void drawcallback(void)
{

glClear (GL_COLOR_BUFFER_BIT);
glLoadIdentity ();
glTranslatef (0.f, 0.f, -5.f);
glDrawArrays (GL_TRIANGLES, 0, 3);

eglSwapBuffers(display, surface);
}

- This is the render callback. We just clear the color buffer, translate
camera a bit and draw a triangle.

- Finally we call eglSwapBuffers() to copy the surface to the display

88

EGL config sortingEGL config sorting

…

Smaller6AtLeast0EGL_DEPTH_SIZE [15]

Smaller3AtLeast0EGL_BUFFER_SIZE [16]

SORT ORDERSORT
PRIORITY

SELECTION
RULE

DEFAULT
VALUE

ATTRIBUTE

- Selection rule: minimum requirement
- Sort priority: which attrib is sorted first
- Sort order: how attrib is sorted
- One way of sorting
- Not optimal for all applications

-EGL config sorting is quite complex
-Still it does not support all cases that the application might want

89

Example of sorted list of configsExample of sorted list of configs

152440

32323

323230

153211

32162

15165

EGL_DEPTH_SIZE
(Sort priority = 6)

EGL_BUFFER_SIZE
(Sort priority = 3)

EGL_CONFIG_ID

Sorted first, smaller comes first Sorted next, smaller comes first

Sorted last (if otherwise no unique order exists), smaller comes first

90

Example EGL config selectionExample EGL config selection

EGLConfig select_config(int type, int color_bits, int depth_bits, int stencil_bits)
{

EGLBoolean err;
EGLint amount, attrib_list[5*2]; /* fits 5 attribs */
EGLConfig best_config, configs[64]; /* max 64 configs considered */
EGLint *ptr;

ptr = &attrib_list[0];

/* Make sure that the config supports target surface type */
*ptr++ = EGL_SURFACE_TYPE;
*ptr++ = type;

/* For color, we require minimum of <color_bits> bits */
*ptr++ = EGL_BUFFER_SIZE;
*ptr++ = color_bits;

/* For depth, we require minimum of <depth_bits> bits */
if(depth_bits)
{

*ptr++ = EGL_DEPTH_SIZE;
*ptr++ = depth_bits;

}

-Here is an example showing how the configuration selection might work in real
world
-First we fill the attrib list with our required attributes

91

Real-world EGL config selectionReal-world EGL config selection

if(stencil_bits)
{

ptr[0] = EGL_STENCIL_SIZE;
ptr[1] = stencil_bits;
ptr[2] = EGL_NONE;

}
else
{

ptr[0] = EGL_NONE;
}

err = eglChooseConfig(display, &attrib_list[0], &configs[0], 64, &amount);

if(amount == 0)
{

/* If we didn't have get any configs, try without stencil */
ptr[0] = EGL_NONE;
err = eglChooseConfig(display, &attrib_list[0], &configs[0], 64, &amount);

}

-If there is a stencil requirement, we try to get config that has stencil
-If there is no config that matches stencil requirement, we try without (e.g., app
turns off stencil shadows because of no stencil support)

92

Real-world EGL config selectionReal-world EGL config selection

if(amount > 0)
{

/* We have either configs w/ or w/o stencil, not both. Find one with best AA */
int i,best_samples;
best_samples = 0;
best_config = configs[0];

for(i=0 ; i<amount ; i++)
{

int samp;
eglGetConfigAttrib(display, configs[i], EGL_SAMPLES, &samp);
if(samp > best_samples)
{

best_config = configs[i];
best_samples = samp;

}
}

}
else best_config = (EGLConfig)0; /* no suitable configs found */

return best_config;
}

-If we did get some configs (with or without stencil), we find the one with most
samples in multisampling mode
-For performance it might be wise to select config with 1 samples or 2 samples (in
our case we just want the best one)

93

Texture matrix exampleTexture matrix example

void appinit_glass(void)
{

GLint texture_handle;

/* View parameters */
glMatrixMode (GL_PROJECTION);
glFrustumf (-1.f, 1.f, -1.f, 1.f, 3.f, 1000.f);
glMatrixMode (GL_MODELVIEW);

/* Reset state */
glEnable (GL_DEPTH_TEST);
glClearColor (0.f, 0.f, 0.1f, 1.f);

/* Enable vertex arrays */
glEnableClientState (GL_VERTEX_ARRAY);
glEnableClientState (GL_TEXTURE_COORD_ARRAY);

-Here is another OpenGL ES example
-This one uses texture matrix for doing glTexEnv() type of things
-Normalized Vertex coordinates are used as texture coordinates
-Texture coordinates are transformed using the texture matrix to fake a glass-like
look (rotate + scale x,y,z into s,t)

94

Texture matrix exampleTexture matrix example

/* Setup texture */
glEnable (GL_TEXTURE_2D);

glGenTextures (1, texture_handle);
glBindTexture (GL_TEXTURE_2D, texture_handle);
glTexImage2D (GL_TEXTURE_2D, 0, GL_RGB, 256, 256, 0,

GL_RGB, GL_UNSIGNED_BYTE, texture_data);
glTexEnvi (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,

GL_MODULATE);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_LINEAR);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

GL_LINEAR);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,

GL_CLAMP_TO_EDGE);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,

GL_CLAMP_TO_EDGE);
}

-First we set up texture object
-Note that we use MODULATE as a TexEnv (will be modulated with default color)

95

Texture matrix exampleTexture matrix example

int render(float time)
{

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

/* draw background with two textured triangles */
glMatrixMode (GL_TEXTURE);
glLoadIdentity ();
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
glMatrixMode (GL_MODELVIEW);
glLoadIdentity ();
glColor4ub (255, 255, 255, 255);
glScalef (2.f, -2.f, 0.f);
glTranslatef (-0.5f, -0.5f, 0.f);
glVertexPointer (2, GL_BYTE, 0, back_coords);
glTexCoordPointer (2, GL_BYTE, 0, back_coords);
glDrawArrays (GL_TRIANGLE_STRIP, 0, 4);

-First we render the texture as a background
-Default color is WHITE -> with MODULATE the texels are copied 1:1 from texture

96

Texture matrix example, coordinatesTexture matrix example, coordinates

Texture ”normals”

Vertex coordinates

97

Texture matrix example, coordinatesTexture matrix example, coordinates

We just take the (x,y) of the texture coordinate output

98

Texture matrix example, coordinatesTexture matrix example, coordinates

99

Texture matrix example, coordinatesTexture matrix example, coordinates

In this example we use the same data for vertex and texture ”normals” as
the object is cut away from roughly tesselated sphere (all coordinates unit length)

This is NOT possible for general objects. You should use separate normalized
normals for other objects

This example

Generic case

100

Texture matrix exampleTexture matrix example

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
glFrustumf (-1.f, 1.f, -1.f, 1.f, 3.f, 1000.f);

glMatrixMode (GL_MODELVIEW);
glLoadIdentity ();
glTranslatef (0, 0, -5.f);
glRotatef (time*25, 1.f, 1.f, 0.f); /* (1) */
glRotatef (time*15, 1.f, 0.f, 1.f);

glMatrixMode (GL_TEXTURE);
glLoadIdentity ();
glTranslatef (0.5f, 0.5f, 0.f); /* [-0.5,0.5] -> [0,1] */
glScalef (0.5f, -0.5f, 0.f); /* [-1,1] -> [-0.5,0.5] */
glRotatef (time*25, 1.f, 1.f, 0.f); /* identical rotations! */
glRotatef (time*15, 1.f, 0.f, 1.f); /* see (1) */

-Next is the object
-We setup the modelview matrix so that it rotates when time goes by
-And we use exact same rotations in the texture matrix to match the modelview
-Also, we translate and scale the resulting x,y so that they are suitable as texture
coordinates (r component not used)

101

Texture matrix exampleTexture matrix example

/* use different color for the (glass) object vs. the background */
glColor4ub (255, 210, 240, 255);
glVertexPointer (3,GL_FIXED, 0, vertices);
glTexCoordPointer (3,GL_FIXED, 0, vertices);
glDrawArrays (GL_TRIANGLES, 0, 16*3);

}

- Finally we set the default color to kind of blueish red color (color of the glass) and
draw the object

102

Texture matrix exampleTexture matrix example

103

Fixed point programmingFixed point programming

- Why should you use it?
- Most mobile handsets don’t have a FPU

- Where does it make sense to use it?
- Where it makes the most difference

- For per-vertex processing: morphing, skinning, etc.

- Per vertex data shouldn’t be floating point

- OpenGL ES API supports 32-bit FP numbers

104

Fixed point programmingFixed point programming

- There are many variants of fixed point:
- Signed / Unsigned

- 2’s complement vs. Separate sign

- OpenGL ES uses 2’s complement

- Numbers in the range of [-32768, 32768 [

- 16 bits for decimal bits (precision of 1/65536)

- All the examples here use 16.16 fixed point

•Fixed point scale is 2^16 (65536, 0x10000).

105

Float to fixed and vice versaFloat to fixed and vice versa

- Convert from floating point to fixed point
#define float_to_fixed(a) (int)((a)*(1<<16)) or

#define float_to_fixed(a) (int)((a)*(65536))

- Convert from fixed point to floating point
#define fixed_to_float(a) (((float)a)/(1<<16)) or

#define fixed_to_float(a) (((float)a)/(65536))

SATURATION

106

Fixed point programmingFixed point programming

- Examples:
0x0001 0000 = 65536 = “1.0f”

0x0002 0000 = 2*65536 = “2.0f”

0x0010 0000 = 16*65536 = “16.0f”

0x0000 0001 = 1/65536 = “0.0000152587…”

0xffff ffff = -1/65536(-0x0000 0001)

107

Fixed point operationsFixed point operations

- Addition
#define add_fixed_fixed(a,b) ((a)+(b))

- Multiply fixed point number with integer
#define mul_fixed_int(a,b) ((a)*(b))

- MUL two FP numbers together
#define mul_fixed_fixed(a,b) \

(int)((((int64)a)*((int64)b)) >> 16)

- Note: int64 depends on the compiler -> you should replace that with the
platform/compiler 64-bit type (examples: int64, __int64, long long)

108

Fixed point operations and scaleFixed point operations and scale

Addition:

a & b = original float values

S = fixed point scale (e.g., 65536)

result = (a * S) + (b * S) = (a + b) * S

- Scaling term keeps the same
- Range of the result is 33 bits
- Possible overflow by 1 bit

109

Fixed point operations and scaleFixed point operations and scale

Multiplication:
a & b = original float values
S = fixed point scale (e.g., 65536)

result = (a * S) * (b * S) = ((a * b) * S^2)
final = ((a * b) * S^2) / S = (a * b) * S

- Scaling term is squared (S^2) and takes 32 bits
- Also the integer part of the multiplication takes 32 bits

=> need 64 bits for full s16.16 * s16.16 multiply

110

48-bit
64-bit

Fixed point programmingFixed point programming

>> 16 = RESULT

Intermediate overflow
• Higher accuracy (64-bit)
• Downscale input
• Redo range analysis

Result overflow (48 bits)
• Redo range analysis
• Detect overflow, clamp

*VALUE 1 VALUE 2
32-bit 32-bit

-Multiplying two 32-bit numbers with standard C “int” multiply gives you lower
32 bits from that multiplication.
-Intermediate value may need 64 bits (high 32-bits cannot be ignored in this
case).
-This can occur for example if you multiply two fixed point numbers together
(also two fixed point scales multiplied together at the same time).
-Solution 1: use 64-bit math for the intermediate, use 64-bit shifter to get the
result down.
-Solution 2: downscale on the input (just for this operation), for example
divide input operands by 2^4, take that into account in result.
-Solution 3: redo the range analysis.
-Also the result may overflow (even if internal precision of 64-bit would be
used for intermediate calculation).
-Solution 1: redo the ranges.
-Solution 2: clamp the results (it’s better to clamp than just overflow.
Clamping limits the resulting error, with ignored overflow the errors easily
become very large).

111

Fixed point programmingFixed point programming

- Division of integer by integer to a fixed point result
#define div_int_int(a,b) \

(int)((((int64)a)*(1<<16))/(b))

(a*S)/ b = (a/b)*S

- Division of fixed point by integer to a fixed point result
#define div_fixed_int(a,b) ((a)/(b))

- Division of fixed point by fixed point
#define div_fixed_fixed(a,b) \

(int)((((int64)a)*(1<<16))/(b))

(a*S*S)/(b*S) = (a/b)*S

Notes about overflows:
-MUL two FP numbers together can overflow in the intermediate calculation
(a*b), an example: 2.0 * 2.0 (intermediate is: 2*2*1^16*1^16, requires 35 bits
intermediate incl. sign bit).
-If the operation can be done with 32x32 -> 64-bit multiply, followed by 16-bit
shift, overflow only occurs if the result after the shift does not fit into 32-bit (in
that case either the range has to be changed or the destination should be
carried over in 64-bit number).
-Division of integer by integer can overflow if a is not in the range [-
32768,32767] (because multiplication of a by (1<<16) does not fit in to 32
bits).
-Division of fixed by integer cannot overflow, but results may become zero.
-Division of fixed by fixed may overflow if a is not in range]-1.0, 1.0[,
intermediate overflow.

112

Fixed point programmingFixed point programming

- Power of two MUL & DIV can be done with shifts
- a * 65536 = a << 16, a / 256 = a >> 8

- Fixed point calculations overflow easily

- Careful analysis of the range requirements is required

=>

Always add validation code to your fixed point code

113

Fixed point programmingFixed point programming

#if defined(DEBUG)
int add_fix_fix_chk(int a, int b)
{

int64 bigresult = ((int64)a) + ((int64)b);
int smallresult = a + b;
assert(smallresult == bigresult);
return smallresult;

}
#endif

#if defined(DEBUG)
define add_fix_fix(a,b) add_fix_fix_chk(a,b)
#else
define add_fix_fix(a,b) ((a)+(b))
#endif

-Do all of the fixed point operations with macros and not by direct calculus.
-Create DEBUG variants for every operation you do in fixed point (even
simplest ADD, MUL, …). When you are compiling debug builds, all
operations should assert that no overflows occur. If overflow assert is
triggered, something needs to be done (ignore if not big enough visual
impact, change ranges, etc.).

114

Fixed point math functionsFixed point math functions

- Complex math functions
- Pre-calculate for the range of interest

- An example: Sin & Cos
- Sin table between [0, 90°], fixed point angle (S = 2048)
- Generate other angles and Cos from the table
- Store in a short table (16-bit) as s0.16 (S = 32768)
- Range for shorts is [-32768,32767] ([-1.0, 1.0[for s0.16 FP)
- Equals to [-1.0, +1.0[for s0.16 FP (+1.0 not included !)
- Negative values stored in the table (can represent -1.0)

115

Sin table precalculationSin table precalculation

void calculate_table(short *out)
{
int i;

for(i=0;i<2048;i++)
{

float angle = (0.5f*PI*i)/2048.0;
out[i] = -(int)(sin(angle)*32768);

}
}

116

Sin functionSin function

inline int fp_sin(int angle)
{

int ph = angle & (2048 + 4096); /* phase */
int ang = angle & 2047; /* sub-angle */

/* return negated values (was stored negated) */
if(ph == 0) return –((int)table[ang]);
else if(ph == 2048) return –((int)table[2048-ang]);
else if(ph == 4096) return (int)table[ang];
else return (int)table[2048-ang];

}

117

How to use fp_sin()How to use fp_sin()

void do_something(int ang)
{

int i;

for(i=0; i<1000; i++)
{

int tmp;
tmp = (vin[i*3] * fp_sin(ang)) >> 15;
vout[i*3] = tmp;

}
}

- note: fp_sin returns integers
=> it can also return 32768 (1.0)

- it does not fit inside s0.16 fixed point number !

118

PerformancePerformance

• fp_sin() is rather complex

• Simple optimization: calculate 360 degrees

• Downside: takes more memory

• And: to handle 1.0 we have to use S = 16384

119

Sin table precalculation (360 deg)Sin table precalculation (360 deg)

void calculate_table(short *out)
{
int i;

for(i=0;i<2048*4;i++)
{

float angle = (2.f*PI*i)/2048.0;
out[i] = (int)(sin(angle)*16384;

}
}

120

Sin function (360 deg)Sin function (360 deg)

inline int fp_sin(int angle)
{
return ((int)table[angle & 8191]);

}

121

Example: Simple morphing (LERP)Example: Simple morphing (LERP)

• Simple fixed point morphing loop (16-bit data, 16-bit coeff)

#define DOLERP_16(a,b,t) (short)(((((b)-(a))*(t))>>16)+(a))

void lerpgeometry(short *out, const short *inA, const short *inB,
int count, int scale)

{
int i;

for(i=0; i<count; i++)
{

out[i*3+0] = DOLERP_16(inB[i*3+0], inA[i*3+0], scale);
out[i*3+1] = DOLERP_16(inB[i*3+1], inA[i*3+1], scale);
out[i*3+2] = DOLERP_16(inB[i*3+2], inA[i*3+2], scale);

}
}

-Morphing is done for 16-bit vertex data (16-bit vertices, 16-bit normals).
-This is done to make the fixed point math to fit inside of 32-bit integers.
-Standard 32-bit mul and addition is enough here.

122

Converting existing codeConverting existing code

- OS/device conversions
- Programming model, C/C++, compiler, CPU

- Windowing API conversion
- EGL API is mostly cross platform

- EGL Native types are platform specific

- OpenGL -> OpenGL ES conversion

123

Example: Symbian portingExample: Symbian porting

Programming model
- C++ with some changes (e.g., exceptions)

- Event based programming (MVC), no main / main loop

- Three level multitasking: Process, Thread, Active Objects

- ARM CPU
- Unaligned memory accesses will cause exception (unlike x86)

- OpenC (http://www.forum.nokia.com/openc)

124

Example: EGL portingExample: EGL porting

- Native types are OS specific
- EGLNativeWindowType (RWindow *)

- EGLNativePixmapType (CFbsBitmap *)

- Pbuffers are portable

- Config selection
- Select the color depth to be same as in the display

- Windowing system issues
- What if render window is clipped by a system dialog?

- Only full screen windows may be supported

- Even though Pbuffers are “portable” in the sense that they are OS
independent in the EGL API, there may be implementations that do not
support Pbuffers at all.

125

OpenGL portingOpenGL porting

• glBegin/glEnd wrappers
• _glBegin stores the primitive type
• _glColor changes the current per-vertex data
• _glVertex stores the current data behind arrays and increments
• _glEnd calls glDrawArrays with primitive type and length

_glBegin(GL_TRIANGLES);
_glColor4f(1.0,0.0,0.0,1.0);
_glVertex3f(1.0,0.0,0.0);
_glVertex3f(0.0,1.0,0.0);
_glColor4f(0.0,1.0,0.0,1.0);
_glVertex3f(0.0,0.0,1.0);

_glEnd();

-In the code above color is only specified twice, but in the vertex arrays it
needs to be specified for each vertex.
-_glVertex3f call copies the current color, normal, texcoord to the vertex
arrays even if those are not changed in the emulated code.

126

OpenGL portingOpenGL porting

• Display list wrapper
– Add the display list functions as wrappers

– Add all relevant GL functions as wrappers

– When drawing a list, go through the collected list

127

OpenGL portingOpenGL porting

void _glEnable(par1, par2)
{
if(GLOBAL()->iSubmittingDisplayList)
{

*(GLOBAL()->dlist)++ = DLIST_CMD_GLENABLE;
*(GLOBAL()->dlist)++ = (GLuint)par1;
*(GLOBAL()->dlist)++ = (GLuint)par2;

}
else
{

glEnable(par1,par2);
}

}

-This is a example of a wrapped glEnable() call. Internally it checks if the
display list is being built. If it is, we just collect the data from this function call
to the list for later execution.
-Note: Display Lists allow for all sorts of optimizations in _theory_ (like
precalculating things for occlusion culling, analyzing vertex ranges, …), but it
is hard to do in practice. For example, here we should perhaps analyze also
if the enable actually has any effect, or if it creates a “state block” that could
be tracked and the rendering optimized inside the display list code.
-Doing optimal display lists on these devices with small amount of memory is
tricky. If you really need performance for the emulated application, convert
the application to use vertex arrays instead.

128

OpenGL portingOpenGL porting

• Vertex arrays
– OpenGL ES supports only vertex arrays

– SW implementations get penalty from float data

– Use as small types as possible (byte, short)

– For HW it shouldn’t make a difference, mem BW

– With OpenGL ES 1.1 always use VBOs

-Memory usage is crucial. If your geometry fits into 8-bit without degradation
in quality, do it. It uses less memory and can save some CPU cycles from
transforms on the side (for example, ARM multiplication of 32x8 can be 2
cycles, whereas 32x32 can be 5 cycles).

129

OpenGL portingOpenGL porting

• No quads
– Convert a quad into 2 triangles

• No real two-sided materials in lighting
– If you really need it, submit front and back triangles

• OpenGL ES and querying state
– OpenGL ES 1.0 only supports static getters

– OpenGL ES 1.1 supports dynamic getters

– For OpenGL ES 1.0, create own state tracking if needed

130

131

DemoDemo

• Sequel to game One (Nokia)

132

Questions?Questions?

? ?

133

134

OpenGL ES on PyS60
Kari Pulli

Nokia Research Center

135

Python: Great for rapid prototypingPython: Great for rapid prototyping

• Python
– designed to be as small, practical,

and open as possible

– easy and fun OO programming

• sourceforge.net/projects/pyS60
– Python 2.2.2 on Symbian S60

– wrappers for phone SDK libraries

– can extend in Symbian C++

136

Python bindings to OpenGL ESPython bindings to OpenGL ES

• Almost direct bindings

• OpenGL ES functions that take in pointers
typically take in a Python list

• Next we’ll show a full S60 GUI program with
OpenGL ES

137

Import librariesImport libraries

import appuifw # S60 ui framework

import sys

from glcanvas import *

from gles import *

from key_codes import *

138

Application class, dataApplication class, data

class Hello:

vertices = array(GL_BYTE, 3,
[-1, 1, 0,

1,-1, 0,
1, 1, 0])

colors = array(GL_UNSIGNED_BYTE, 4,
[255, 0, 0, 255,
0, 255, 0, 255,
0, 0, 255, 255])

139

Initialize the applicationInitialize the application

def __init__(self): # class constructor
self.exiting = False # while !exit, run
self.frame, self.angle = 0, 0 # set variables
self.old_body = appuifw.app.body
try: # create surface

c = GLCanvas(redraw_callback = self.redraw,
resize_callback = self.resize)

appuifw.app.body = c
self.canvas = c

except Exception, e:
appuifw.note(u"Exception: %s" % (e))
self.start_exit()
return

appuifw.app.menu = [(u"Exit", self.start_exit)]
c.bind(EKeyLeftArrow, lambda:self.left())
c.bind(EKeyRightArrow, lambda:self.right())
self.initgl()

140

Keyboard and resize callbacksKeyboard and resize callbacks

def left(self):
self.angle -= 10

def right(self):
self.angle += 10

def resize(self):
if self.canvas:

glViewport(0, 0,
self.canvas.size[0],
self.canvas.size[1])

141

Main loopMain loop

def start_exit(self):
self.exiting = True

def run(self):
app = appuifw.app
app.exit_key_handler = self.start_exit
while not self.exiting:

self.canvas.drawNow()
e32.ao_sleep(0.01)

app.body = self.old_body
self.canvas = None
app.exit_key_handler = None

142

Initialize OpenGL ESInitialize OpenGL ES

def initgl(self):
glMatrixMode(GL_PROJECTION)
glFrustumf (-1.0, 1.0, -1.0, 1.0,

3.0, 1000.0)
glMatrixMode(GL_MODELVIEW)
glDisable (GL_DEPTH_TEST)
glShadeModel(GL_SMOOTH)
glClearColor(0.0, 0.0, 0.1, 1.0)
glVertexPointerb(self.vertices)
glColorPointerub(self.colors)
glEnableClientState(GL_VERTEX_ARRAY)
glEnableClientState(GL_COLOR_ARRAY)

143

Draw cycleDraw cycle

def redraw(self, frame=None):
if self.canvas:

glClear(GL_COLOR_BUFFER_BIT)
glLoadIdentity()
glTranslatef(0.0, 0.0, -5.0)
glRotatef (self.angle,

0.0, 0.0, 1.0)
glRotatef (self.frame,

0.0, 1.0, 0.0)
glDrawArrays(GL_TRIANGLES, 0,3)
self.frame += 1

144

Using the classUsing the class

appuifw.app.screen = 'full'

try:
app = Hello()

except Exception, e:
appuifw.note(u"Cannot start: %s" %

(e))

else:
app.run()

del app

145

146

High-performance OpenGL ES 1.x
Ville Miettinen

NVIDIA

147

Targeting the ”mobile platform”Targeting the ”mobile platform”

• CPU speed and available memory varies

– Current range ~30Mhz - 600MHz, ARM7 to ARM11, no FPUs

• Different resolutions

– QCIF (176x144) to VGA (640x480), antialiasing on higher-end
devices

– Color depths 4-8 bits per channel (12-32 bpp)

• Portability issues

– Different CPUs, OSes, Java VMs, C compilers, ...

– OpenKODE from the Khronos Group will help to some extent

148

Graphics capabilitiesGraphics capabilities

• General-purpose multimedia hardware
– Pure software renderers (all done using CPU & integer ALU)

– Software + DSP / WMMX / FPU / VFPU

– Multimedia accelerators

• Dedicated 3D hardware
– Software T&L + HW tri setup / rasterization

– Full hardware acceleration

• Performance: 50K – 2M tris, 1M – 100M pixels / sec
• Next gen: 30M+ tris, 1000M pixels / sec

149

Standards help somewhatStandards help somewhat

• Act as hardware abstraction layers
– Provide programming interface (API)

– Same feature set for different devices

– Unified rendering model

• Performance cannot be guaranteed

150

Scalability Scalability

• Successful application has to run on hundreds of
different phone models
– No single platform popular enough

• Same game play but can scale video and audio

• Design for lowest-end, add eye candy for high-end
– Scalability has to be built into the design

151

3D content is easy to scale3D content is easy to scale

• Separate low and high poly count 3D models

• Different texture resolutions & compressed formats

• Rendering quality can be scaled
– Texture filtering, perspective correction, blend functions,

multi-texturing, antialiasing

152

Special effectsSpecial effects

• Identify special effects
– Bullet holes, skid marks, clouds, ...

– Cannot have impact on game play
• Fog both game play and visual element

• Multiplayer games have to be fair

• Users can alter performance by controlling
effects

153

Tuning down the detailsTuning down the details

• Particle systems
– Number of particles, complexity, visuals

– Shared rendering budget for all particle systems

• Background elements
– Collapse into sky cubes, impostors

• Detail objects
– Models to have “important” and “detail” parts

154

ProfilingProfiling

• Performance differences often system
integration issues - not HW issues

• Measuring is the only effective way to find
out how changes in code affect performance

• Profile on actual target device if possible
• Public benchmark apps provide some idea of

graphics performance
• gDEBugger ES for gfx driver profiling

155

Identifying bottlenecksIdentifying bottlenecks

• Three groups: application code, vertex
pipeline, pixel pipeline
– Further partitioned into pipeline stages
– Overall pipeline runs as fast as its slowest stage

• Locate bottlenecks by going through each
stage and reducing its workload
– If performance changes, you have a bottleneck

• Apps typically have multiple bottlenecks

156

Pixel pipeline bottlenecksPixel pipeline bottlenecks

• Find out by changing rendering resolution
– If performance increases, you have a bottleneck

– Either texturing or frame buffer accesses

• Remedies
– Smaller screen resolution, render fewer objects,

use simpler data formats, smaller texture maps,
less complex fragment and texture processing

157

Vertex pipeline bottlenecksVertex pipeline bottlenecks

• Vertex processing or submission bottlenecks
– Find out by rendering every other triangle but using

same vertex arrays

• Remedies
– Submission: smaller data formats, cache-friendly

organization, fewer triangles
– Vertex processing: simpler T&L (fewer light

sources, avoid dynamic lighting and fog, avoid
floating-point data formats)

158

Application code bottlenecksApplication code bottlenecks

• Two ways to find out
– Turn off all application logic

– Turn off all rendering calls

• Floating-point code #1 culprit
• Use profiler

– HW profilers on real devices costly and hard to get

– Carbide IDE from Nokia (S60 and UIQ Symbian)

– Lauterbach boards

– Desktop profiling (indicative only)

159

Changing and querying the stateChanging and querying the state

• Rendering pipes are one-way streets

• Apps should know their own state
– Avoid dynamic getters if possible!

• Perform state changes in a group at the
beginning of a frame

• Avoid API synchronization
– Do not mix 2D and 3D libraries!

160

”Shaders””Shaders”

• Combine state changes into blocks (”shaders”)
– Minimize number of shaders per frame

– Typical application needs only 3-10 ”pixel shaders”

• Different 3-10 shaders in every application

• Enforce this in artists’ tool chain

• Sort objects by shaders every frame
– Split objects based on shaders

161

Complexity of shadersComplexity of shaders

• Software rendering: everything costs!
– Important to keep shaders as simple as possible

• Even if introduces additional state changes

• Example: turn off fog & depth buffering when rendering overlays

• Hardware rendering: Usually more important to
keep number of changes small

162

Model dataModel data

• Keep vertex and triangle data short and simple!
– Better cache coherence, less memory used

• Make as few rendering calls as possible
– Combine strips with degenerate triangles

• Weld vertices using off-line tool

• Order triangle data coherently

• Use hardware-friendly data layouts

– Buffer objects allow storing data on server

163

Transformation pipelineTransformation pipeline

• Minimize matrix changes
– Changing a matrix may involve many hidden costs

– Combine simple objects with same transformation

– Flatten and cache transformation hierarchies

• ES 1.1: Skinning using matrix palettes
– CPU doesn’t have to touch vertex data

• ES 1.1: Point sprites for particle effects

164

Rendering pipelineRendering pipeline

• Rendering order is important
– Front-to-back improves depth buffering efficiency

– Also need to minimize number of state changes!

• Use culling to speed up rendering pipeline
– Conservative: frustum culling & occlusion culling

• Portals and Potentially Visible Sets good for mobile

– Aggressive culling
• Bring back clipping plane in, drop detail & small objects

165

LightingLighting

• Fixed-function lighting pipelines are so 1990s
– Drivers implemented badly even in desktop space

– In practice only single directional light fast

– OpenGL’s attenuation model difficult to use

– Spot cutoff and specular model cause aliasing

– No secondary specular color

– Flat shading sucks

– Artifacts unless geometry heavily tessellated

166

Lighting (if you have to use it)Lighting (if you have to use it)

• Single directional light usually accelerated

• Pre-normalize vertex normals

• Avoid homogeneous vertex positions

• Turn off specular illumination

• Avoid distance attenuation

• Turn off distant non-contributing lights

167

Lighting: the fast wayLighting: the fast way

• While we’re waiting for OpenGL ES 2.0 drivers

– Pre-computed vertex illumination good if slow T&L

– Illumination using texturing

• Light mapping

• ES 1.1: dot3 bump mapping + texture combine

• Less tessellation required

– Combining with dynamic lighting: color material tracking

168

Environment mappingEnvironment mapping

Environment map taken in a Chinese restaurant (the stairs had a side rail with
spherical handles).

169

Starlancer by Microsoft. All illumination done using texture-based lighting effects.

170

Baked lighting (baked both into vertices and textures) combined with various
reflection-mapping effects. Images by Hybrid Graphics, rendered using a real-time
software
raserizer.

171

TexturesTextures

• Mipmaps always a Good Thing™
– Improved cache coherence and visual quality

– ES 1.1 supports auto mipmap generation

• Avoid modifying texture data

• Keep textures ”right size”, use compressed textures

• Different strategies for texture filtering & perspective
correction
– SW implementations affected

172

Textures (cont’d)Textures (cont’d)

• Multitexturing
– Always faster than doing multiple rendering passes

– ES 1.1: support at least two texturing units

– ES 1.1: TexEnvCombine neat toy

• Use small & compressed texture formats
• Texture atlases: combining multiple textures

– Reduces texture state changes

173

Textures and shots from Kesmai’s Air Warrior 4 (never published)

174

175

ES 2.0 OverviewES 2.0 Overview

Robert J. Simpson
AMD

176

ContentsContents

• The OpenGL ES 2.0 Pipeline

• API Overview

• GLSL ES 1.00 Overview

• Writing an ES 2.0 Application

• Examples

• Future Directions

177

Open GL Fixed Function pipelineOpen GL Fixed Function pipeline

APIAPI

Transform
and

Lighting

Transform
and

Lighting RasterizerRasterizerPrimitive
Assembly

Primitive
Assembly

Texture
Environment

Texture
Environment

Depth
Stencil

Depth
Stencil

Colour
Sum

Colour
Sum

Alpha
Test

Alpha
Test

FogFog

DitherDitherColour
Buffer
Blend

Colour
Buffer
Blend

Vertex
Buffer

Objects

Vertex
Buffer

Objects

Vertices

Triangles/Lines/Points

Primitive
Processing
Primitive

Processing

Frame BufferFrame Buffer

This shows the existing ES 1.1 pipeline. The boxes coloured orange represent the
functions that will be replaced by shaders in ES 2.0. The transform and lighting
block is replaced by the vertex shader. The texture environment, colour sum, fog
and alpha test are all replaced by the fragment shader.

178

Open GL Programmable pipelineOpen GL Programmable pipeline

APIAPI
Vertex
Shader

Vertex
Shader RasterizerRasterizerPrimitive

Assembly
Primitive
Assembly

Fragment
Shader

Fragment
Shader

Depth
Stencil

Depth
Stencil DitherDitherColour

Buffer
Blend

Colour
Buffer
Blend

Vertex
Buffer

Objects

Vertex
Buffer

Objects

Vertices

Triangles/Lines/Points

Primitive
Processing
Primitive

Processing

Frame BufferFrame Buffer

This shows how the vertex and fragment shaders fit into the ES 2.0 pipeline.

179

Programmer’s modelProgrammer’s model

Vertex
Shader

Vertex
Shader

Fragment
Shader

Fragment
Shader

Primitive
Assembly

& Rasterize

Primitive
Assembly

& Rasterize

Per-Sample
Operations

Per-Sample
Operations

Attributes
(8 * vec4)

Attributes
(8 * vec4)

Vertex Uniforms
(128 * vec4)

Vertex Uniforms
(128 * vec4)

Varyings
(8 * vec4)

Varyings
(8 * vec4)

Fragment Uniforms
(16 * vec4)

Fragment Uniforms
(16 * vec4)

The input to the pipeline is a set of attributes. Each vertex can have up to 8 attributes and each
attribute can be up to a 4-vector in size. Attributes are not shared between vertices. Note that for
each draw call (e.g. a triangle list or a triangle strip), all the vertices must have the same number and
type of attributes.

The vertex shader is run once for each vertex. The inputs to the vertex shader are the vertex
attributes and the vertex uniforms. Attributes are used to specify values that vary relatively frequently
such as position that usually varies per vertex. Uniforms are used to specify values that vary less
frequently such as transforms and light positions.

For each vertex processed, as set of value is output from the vertex shader to the rasterizer. The
number and types of values output does not need to be the same as the number and types input.

Up until this point, the values are per-vertex. The rasterizer inputs each triangle with its associated
vertex values and generates a set of fragments, one for each pixel of the triangle. The vertex input
values are interpolated across the triangle (taking into account the perspective) and the per-fragment
values that are output are known as ‘varyings’

The fragment shader operates in a similar manner to the vertex shader. The shader runs once for
each fragment input. It reads the incoming varyings and the fragment uniforms and outputs a colour
value.

This is the end of the programmable operations. After the fragment shader, the rest of the pipeline is
fixed function. The per-sample operations are depth-stencil, colour blend and dither. Depending on
the implementation, these may be performed at per-pixel resolution or may (in the case of multi-
sampling) be performed at a higher resolution.

180

Vertex ShaderVertex Shader

Attribute 0Attribute 0

UniformsUniforms TexturesTextures

Attribute 1Attribute 1

Attribute 2Attribute 2

Attribute 3Attribute 3

Attribute 4Attribute 4

Attribute 5Attribute 5

Attribute 6Attribute 6

Attribute 7Attribute 7

Varying 0Varying 0

Varying 1Varying 1

Varying 2Varying 2

Varying 3Varying 3

Varying 4Varying 4

Varying 5Varying 5

Varying 6Varying 6

Varying 7Varying 7

Temporary
variables

Temporary
variables

gl_Positiongl_Position

Vertex ShaderVertex Shader

gl_PointSizegl_PointSize

This shows the programmers view of the vertex shader. The (up to) 8 attributes are
input on the left. Uniforms can be read by the shader. In some implementations, the
vertex shader may also access textures. While the shader is running, it has access
to a number of temporary variables. Note that these variables cannot be shared
between vertices.

The output is a set of user-specified varyings. The total size must be less that 8 4-
vectors and there are a set of rules that describe how to calculate the space
required given a set of varyings. See the ESSL specification for details.

In addition there are some fixed function variables that the shader may write to. The
most important is the transformed position gl_Position. This value is used by the
rasterizer and (except in a few very special cases) should always be written to. The
gl_PointSize should be written to by the vertex shader for point primitives.

After primitive assembly the gl_FrontFacing flag (not shown) is set automatically
according to whether the triangle is front facing or back facing.

181

Fragment ShaderFragment Shader

UniformsUniforms TexturesTextures

Temporary
variables

Temporary
variables

gl_Positiongl_Position

gl_FragColorgl_FragColor

Varying 0Varying 0

Varying 1Varying 1

Varying 2Varying 2

Varying 3Varying 3

Varying 4Varying 4

Varying 5Varying 5

Varying 6Varying 6

Varying 7Varying 7

Fragment ShaderFragment Shader

gl_FragCoordgl_FragCoord

gl_FrontFacinggl_FrontFacing

gl_PointPositiongl_PointPosition

The fragment shader inputs the user-defined varyings, the fixed function variables
and the fragment uniforms. The shader can read textures. It also has a set of
temporary variables available. Like the vertex shader, these temporary variables
cannot be shared.

The output from the fragment shader is a colour value. The position of the fragment
is output automatically.

182

The Vertex ShaderThe Vertex Shader

• The vertex shader can do:
– Transformation of position using model-view and

projection matrices
– Transformation of normals, including

renormalization
– Texture coordinate generation and transformation
– Per-vertex lighting
– Calculation of values for lighting per pixel

In general, any operation that takes in a vertex and outputs a modified form of that
vertex, one at a time, can be performed by the vertex shader.

183

The Vertex ShaderThe Vertex Shader

• The vertex shader cannot do:
– Anything that requires information from more than

one vertex
– Anything that depends on connectivity.
– Any triangle operations (e.g. clipping, culling)
– Access colour buffer

The vertex shader does not have access to neighbouring vertices or any per-pixel
or per-fragment values.

184

The Fragment ShaderThe Fragment Shader

• The fragment shader can do:
– Texture blending
– Fog
– Alpha testing
– Dependent textures
– Pixel discard
– Bump and environment mapping

In general any operation that takes in a fragment and generates a colour can be
performed by the fragment shader.

185

The Fragment ShaderThe Fragment Shader

• The fragment shader cannot do:
– Blending with colour buffer

– ROP operations

– Depth or stencil tests

– Write depth

Certain operations are not possible due to the difficulties they cause with
implementations. For example, programmable blending operations require a read
before or during shader execution and this can incur a high silicon and/or
performance cost. Depth and stencil operations may be done at higher that pixel
resolution if multi-sampling is used and so requires a 3rd type of shader.
Programming these functions is generally less useful although it is possible it may
be introduced in a later version of the specification.

186

GLSL ES OverviewGLSL ES Overview

• Based on GLSL as used in OpenGL 2.0
– Open standard

• Pure programmable model
– Most fixed functionality removed.

• Not 100% backward compatible with ES1.x
– Embedded systems do not have the legacy requirements of the desktop

• No Software Fallback
– Implementations (usually) hardware or nothing
– Running graphics routines in software doesn’t make sense on embedded

platforms
• Optimized for use in Embedded devices

– Aim is to reduce silicon cost
– Reduced shader program sizes
– Reduced register usage
– Reduced numeric precision

GLSL ES (sometimes abbreviated to ESSL) is designed to be simple to use and
simple to implement. The main difference between the desktop and embedded
versions of the language is the removal of most of the fixed function from ESSL.
The interaction between the fixed and programmable functions can be quite
complex. The smaller size of embedded applications means that it will be easier to
port ES 1.1 applications to a pure programmable API than desktop apps.

187

GLSL ES OverviewGLSL ES Overview

• ‘C’ – like language
• Many simplifications

– No pointers
– Strongly typed. No implicit type conversion
– Simplified preprocessor

• Some graphics-specific additions
– Built-in vector and matrix types
– Built-in functions
– Support for mixed precisions
– Invariance mechanism.

• Differences from Desktop OpenGL
– Restrictions on shader complexity
– Fewer sampler modes

‘C’-like languages are generally easier for developers to learn, given the widespread used of
C/C++/Java. However a number of features have been removed as they complicate the compiler, are
difficult to implement efficiently in hardware and can be a common source of bugs. So the language
is strongly typed with no implicit type conversion. There are no pointers and no goto statements.

A number of graphics-specific additions have been made. There are new intrinsic types for vectors
and matrices, a comprehensive set of ‘helper’ functions for common graphics operations. There is
support for mixed precisions which allows more effective use to be made of the hardware. Not all
operations need to be float32 and full float32 is very expensive for mobile devices.

The invariance mechanism has been added to ESSL (and subsequently to desktop GLSL) in
recognition of the increasing sophistication of compiler technology (see later for details).

Desktop GL has the philosophy that applications will always run, even if that means emulating the GL
pipeline in software. In the embedded market, this does not make sense. Having an application that
takes seconds or minutes to render a frame is considered pointless. The philosophy for GL ES is that
applications should run fast enough or not at all. The ES working group is in the process of specifying
a set of parameters that developers will be able to use to determine if a given shader will run across
a range of implementations. Given the variety of implementations already in the market, this is a
difficult task and is unlikely to be 100% accurate. However it is considered very important that there is
portability across implementations.

188

GLSL ES OverviewGLSL ES Overview

• Comments
//
/* */

• Control
#if
#ifdef
#ifndef
#else
#elif
#endif
#error

• Operators
defined

• Macros
#
#define
#undef

• Extensions
#pragma
#extension

• Misc
#version
#line

The preprocessor is a simplified version of the c++ preprocessor. Note that as with
c++, the preprocessor is not a simple ‘search and replace’ function. Rather, it is
integrated with the tokenization of the source code. See the ESSL and c++
specifications for details.

#version and #extension have been added.

189

GLSL ES OverviewGLSL ES Overview

• Scalar
void float int bool

• Vector
– boolean: bvec2 bvec3 bvec4
– integer: ivec2 ivec3 ivec4
– floating point: vec2 vec3 vec4

• Matrix
– floating point mat2 mat3 mat4

• Sampler
sampler2D

• Containers
– Structures struct
– Arrays []

These intrinsic types are available and can be used in a similar way to int and float
in c++. Note there are several restrictions concerning arrays and structures.

190

GLSL ES Storage QualifiersGLSL ES Storage Qualifiers

• const
– Local constants within a shader.

• uniform
– ‘Constant shader parameters’

(light position/direction, texture units, …)
– Do not change per vertex.

• attribute
– Per-vertex values (position, normal,…)

• varying
– Generated by vertex shader
– Interpolated by the rasterizer to generate per pixel values
– Used as inputs to Fragment Shader
– e.g. texture coordinates

Constants are an integral part of shaders. They cannot be changed and are not
visible outside of the shader.

Uniforms are used for values that only need to be changed occasionally. They can
only be changed between draw calls and even then changes can be expensive.
Typically these are used for values that change per frame such as transforms, light
position etc. They can also be used to change the texture being used by a shader.

Attributes are used for values that change frequently, typically for values that
change per vertex.

Varyings are used as the interface between the vertex and fragment shaders.

191

Function parameter QualifiersFunction parameter Qualifiers

• Used to pass values in or out or both e.g.

bool f(in vec2 in_v, out float ret_v)
{

...
}

• Qualifiers:

in Input parameter. Variable can be modified
const in Input parameter. Variable cannot be modified.
out Output parameter.
inout Input and output parameter.

• Functions can still return a value
– But need to use a parameter if returning an array

In addition to return values, values may be passed out of functions using out or
inout.

192

Function Parameter QualifiersFunction Parameter Qualifiers

• Call by value ‘copy in, copy out’ semantics.
– Not quite the same as c++ references:

bool f(inout float a, b)
{

a++;
b++;

}

void g()
{

float x = 0.0;
f(x,x); // x = 1.0 not 2.0

}

When a function is called, all the (in and inout) actual parameters are evaluated and
the values copied to the formal parameters. When the function returns, the values
are copied back from the formal to the actual parameters. This is slightly different
from c++ references. In the above example, a and b are assigned the value 0.0 on
entry to the function f. Both have the value 1.0 when the function returns and this
value is copied twice into the actual parameter x. Using c++ references would result
in x being incremented twice and having a final value of 2.0

193

GLSL ES OverviewGLSL ES Overview

• Order of copy back is undefined
bool f(inout float a, b)
{

a = 1.0;
b = 2.0;

}

void g()
{

float x ;
f(x,x); // x = 1.0 or 2.0

// (undefined)
}

194

Precision QualifiersPrecision Qualifiers

• lowp float
– Effectively sign + 1.8 fixed point.
– Range is -2.0 < x < 2.0
– Resolution 1/256
– Use for simple colour blending

• mediump float
– Typically implemented by sign + 5.10 floating point
– -16384 < x < 16384
– Resolution 1 part in 1024
– Use for HDR blending.

Embedded devices need to make maximum use of the available hardware. The
single precision in desktop GL has been replaced by 3 precisions for the desktop.
Not all implementations will directly support all precisions, they may be mapped to a
higher precision. However developers are encouraged to specify lower precisions
when they are sufficient.

195

Precision QualifiersPrecision Qualifiers

• highp float
– Typically implemented by 24 bit float (16 bit mantissa)
– range ± 262

– Resolution 1 part in 216

– Use of texture coordinate calculation
• e.g. environment mapping

• single precision (float32)
– Not explicit in GLSL ES but usually available in the

vertex shader (refer to device documentation)

196

Precision QualifiersPrecision Qualifiers

• Precision depends on the operands:
lowp float x;
mediump float y;
highp float z = x * y;

(evaluated at medium precision)

• Literals do not have any defined precision
lowp float x;
highp float z = x * 2.0 + 1.2;

(evaluated at low precision)

Operations involving operands with different precisions are performed at the higher
precision. Literals and expressions containing only literals do not have implicit
precision. In these cases, the precision of the consuming expression is used to
specify the precision of the literals (see specification for details).

197

ConstructorsConstructors

• Replaces type casting
• No implicit conversion: must use constructors
• All named types have constructors available

– Includes built-in types, structures
– Excludes arrays

• Integer to Float:
int n = 1;
float x,y;
x = float(n);
y = float(2);

198

ConstructorsConstructors

• Concatenation:
float x = 1.0,y = 2.0;
vec2 v = vec2(x,y);

• Structure initialization
struct S {int a; float b;};
S s = S(2, 3.5);

199

Swizzle operatorsSwizzle operators

• Use to select a set of components from a vector
• Can be used in L-values

vec2 u,v;
v.x = 2.0; // Assignment to single

// component
float a = v.x; // Component selection
v.xy = u.yx; // swap components
v = v.xx; // replicate components
v.xx = u; // Error

• Component sets: Use one of
xyzw OR rgba OR stpq

Note that the maximum size of a vector is a vec4 so e.g. v.xyxyxy is illegal.

200

Indexing operatorIndexing operator

• Indexing operator
vec4 u,v;
float x = u[0]; // equivalent to u.x

• Must use indexing operator for matrices
mat4 m
vec4 v = m[0];
m.x; // error

Works the same way as c++. However the compiler will check that any constant
indices are within the array bounds.

201

GLSL ES OverviewGLSL ES Overview

• Operators
++ -- + - ! () []
* / + -
< <= > >=
== !=
&& ^^ ||
?:
= *= /= += -=

• Flow control
x == y ? a : b
if else
for while do
return break continue
discard (fragment shader only)

The discard operation terminates the fragment shader. This can be used to
implement e.g. alpha testing.

202

Built-in VariablesBuilt-in Variables

• Aim of ES is to reduce the amount of fixed
functionality
– Ideal would be a totally pure programmable model
– But still need some

• Vertex shader
vec4 gl_Position; // Write-only
float gl_PointSize; // Write-only

• Fragment shader
vec4 gl_FragCoord; // Read-only
bool gl_FrontFacing; // Read-only
vec2 gl_PointCoord; // Read-only
float gl_FragColor; // Write only

Although the philosophy of ES 2.0 is to remove fixed functionality, some still
remains. The rasterizer is a highly specialized piece of hardware and it is unlikely to
be replaced by a programmable unit in the near future. Consequently, there must be
a way for the vertex shader to specify the position of the transformed vertex to the
rasterizer. This is done using gl_Position. Likewise gl_PointSize for point primitives.

No triangle operations are currently programmable. However the result of back face
culling can be useful for 2-sided lighting in the fragment shader so the
gl_FrontFacing flag is readable by the fragment shader.

The output of the fragment shader, gl_FragColor is the final pre-defined variable.

203

Built-in FunctionsBuilt-in Functions

• General
pow, exp2, log2, sqrt, inversesqrt
abs, sign, floor, ceil, fract, mod,
min, max, clamp

• Trig functions
radians, degrees, sin, cos, tan,
asin, acos, atan

• Geometric
length, distance, cross, dot, normalize,
faceForward, reflect, refract

204

GLSL ES OverviewGLSL ES Overview

• Interpolations
mix(x,y,alpha)

x*(1.0-alpha) + y*alpha)
step(edge,x)

x <= edge ? 0.0 : 1.0
smoothstep(edge0,edge1,x)

t = (x-edge0)/(edge1-edge0);
t = clamp(t, 0.0, 1.0);
return t*t*(3.0-2.0*t);

• Texture
texture1D, texture2D, texture3D, textureCube
texture1DProj, texture2DProj, textureCubeProj

205

GLSL ES OverviewGLSL ES Overview

• Vector comparison (vecn, ivecn)
bvecn lessThan(vecn, vecn)
bvecn lessThanEqual(vecn, vecn)
bvecn greaterThan(vecn, vecn)
bvecn greaterThanEqual(vecn, vecn)

• Vector comparison (vecn, ivecn, bvecn)
bvecn equal(vecn, vecn)
bvecn notEqual(vecn, vecn)

• Vector (bvecn)
bvecn any(bvecn)
bvecn all(bvecn)
bvecn not(bvecn)

• Matrix
matrixCompMult (matn, matn)

206

Invariance: The ProblemInvariance: The Problem

• Mathematical operations are not precisely
defined

• Same code may produce (slightly) different
results

• Two cases to consider:
– Invariance within a shader

– Invariance between shaders

207

InvarianceInvariance

• Consider a simple transform in the vertex
shader:

x’ = ax + by + cz + dw
But how is this calculated in practice?

- There may be several possible code
sequences

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

′
′
′
′

w
z
y
x

ponm
lkji
hgfe
dcba

w
z
y
x

208

InvarianceInvariance

e.g.
MUL R1, a, x
MUL R2, b, y
MUL R3, c, z
MUL R4, d, w
ADD R1, R1, R2
ADD R3, R3, R4
ADD R1, R1, R3

or
MUL R1, a, x
MADD R1, b, y
MADD R1, c, z
MADD R1, d, w

These instruction sequences perform equivalent mathematical operations but due to
the limited precision of the hardware, the result will be different. Usually the
differences are small but they can be significant.

209

InvarianceInvariance

• Three reasons the result may differ:
– Use of different instructions
– Instructions executed in a different order
– Different precisions used for intermediate results (only

minimum precisions are defined)

• But it gets worse...

210

InvarianceInvariance

• Modern compilers may rearrange your code
– Values may lose precision when written to a register
– Sometimes it is cheaper to recalculate a value rather than

store it in a register.
But will it be calculated the same way?

e.g.
uniform sampler2D tex1, tex2;
...
const vec2 pos = a + b * c;
vec4 col1 = texture2D(tex1, pos);
...
vec4 col2 = texture2D(tex2, pos); // is this

// the same
// value?

gl_FragColor = col1 – col2;

This compiler technique is known as ‘rematerialization’ and is sometimes used to
save registers. Registers are in short supply, especially in the fragment shader and
spilling a value to external memory is usually not an option due to the significant
performance cost.

211

InvarianceInvariance

• Solution is in two parts:
– invariant keyword specifies that specific variables are

invariant e.g.

invariant varying vec3 LightPosition;

Currently can only be used on certain variables

– Global switch to make all variable invariant

#pragma STDGL invariant(all)

An alternative to this approach would be to fully specify the precision and order of
operations. This would reduce the scope for compiler optimizations in the many
cases where invariance is not important.

212

InvarianceInvariance

• Invariance flag controls:
– Invariance within shaders
and
– Invariance between shaders.

• Usage
• Turn on invariance to make programs ‘safe’ and easier to

debug
• Turn off invariance to get the maximum optimization from

the compiler.

Unless invariance is known to be an issue, the developer is recommended to start
with invariance turned off. If problems occur which might be due to (lack of)
invariance, the #pragma STDGL invariant(all) can be used to quickly check if this is
the case. Only then should the developer consider using the invariant qualifier.

213

Writing an application - OverviewWriting an application - Overview

• Initialize EGL

• Setup shader, pipeline state

• Create vertex buffers, textures

• Bind buffers

• Draw

EGL is the interface to the window system for the OS.

214

Writing an App – Initialization Writing an App – Initialization

• Set up EGL

• Compile and Link shaders

• Create and bind Textures

• Bind (or get) attributes

• Set up uniforms

• Create Vertex Buffers

• Map buffer data

Looking at the intial steps in more detail. After initializing EGL, all the input
parameters to the shaders are initialized. This corresponds to the types of data
mentioned before i.e.:

Source code
Textures
Attributes
uniforms

215

Writing an App – EGL InitializationWriting an App – EGL Initialization

EGLDisplay egl_display =
eglGetDisplay(EGL_DEFAULT_DISPLAY);

int ok = eglInitialize(egl_display,
&majorVersion,
&minorVersion)

eglGetDisplay gets a connection to the display device being used.
EGL_NO_DISPLAY is returned if there is no matching display.

eglInitialize initializes the display and returns the version of EGL.

216

EGL InitializationEGL Initialization

Set up attributes for EGL context
EGLint attr[MAX_EGL_ATTRIBUTES];

attr[nAttrib++] = EGL_RED_SIZE;
attr[nAttrib++] = 5;
...

attr[nAttrib++] = EGL_DEPTH_SIZE;
attr[nAttrib++] = 16;
attr[nAttrib++] = EGL_STENCIL_SIZE;
attr[nAttrib++] = 0;

...

217

EGL Initialization (cont)EGL Initialization (cont)

eglChooseConfig(egl_display,
attrib_list,
&egl_config,
1,
&num_configs);

eglCreateWindowSurface(egl_display,
egl_config,

NativeWindowType (hWnd),
NULL);

eglChooseConfig returns a list of all EGL frame buffer configurations that match
specified attributes. In the above example, the value ‘1’ is used to force the API to
return a maximum of one configuration.

eglCreateWindowSurface creates a new EGL window surface.
EGL_NO_SURFACE is returned if the call fails.

218

EGL Initialization: Creating a contextEGL Initialization: Creating a context

context = eglCreateContext(egl_display,
egl_config,
EGL_NO_CONTEXT,
NULL);

eglMakeCurrent(egl_display,
egl_surface,
egl_surface,
egl_context);

eglCreateContext creates a new EGL rendering context. EGL_NO_CONTEXT is
returned if the call fails. The EGL_NO_CONTEXT is used to specify the surface is
not being shared (to simplify this example).

eglMakeCurrent attaches an EGL rendering context to the EGL surface

219

Compiling and using shadersCompiling and using shaders

glCreateProgramObject

glAttachObject

glAttachObject

glLinkProgram

glUseProgramObject

glCreateShaderObject

glShaderSource

glCompileShader

glDeleteObject

glCreateShaderObject

glShaderSource

glCompileShader

glDeleteObjectglDeleteObject

Vertex
Shader

Fragment
Shader

This shows the flowchart for compiling and linking shaders. GL is based on objects
and each object must be explicitly created and deleted.

glShaderSource specifies the source code to be compiled. In principle, the two
shaders are compiled separately and then linked together in a similar way to source
files for a c++ program. However it should be appreciated that most of the
compilation may actually occur at link time since this is when all the information
about the program is available to the compiler.

220

Compiling and Linking ShadersCompiling and Linking Shaders

• Create objects
program_handle = glCreateProgram();

// Create one shader of object of each type.

GLuint vertex_shader_handle

= glCreateShader (GL_VERTEX_SHADER);

GLuint fragment_shader_handle

= glCreateShader (GL_FRAGMENT_SHADER);

And here is example code showing how the functions are used.

221

Compiling ShadersCompiling Shaders

• Compile vertex shader (and fragment shader)
char* vert_source = ...

const char* vert_gls[1] = {vert_source};

glShaderSource(vertex_shader_handle,
1,
vert_gls,
NULL);

glCompileShader(vertex_shader_handle);

GLint vertCompilationResult = 0;

glGetShaderiv(vertex_shader_handle,
GL_COMPILE_STATUS,
&vertCompilationResult);

222

Linking ShadersLinking Shaders

• Attach shaders to program object and link
glAttachShader(program_handle,

vertex_shader_handle);

glAttachShader(program_handle,
fragment_shader_handle);

glLinkProgram (program_handle);

• Note that many compilers will only report errors at
link time.

223

Setting up AttributesSetting up Attributes

• Can bind attributes before linking e.g.
glBindAttribLocation (prog_handle, 0, “pos");

• Or get attribute location after linking:
GLint p;

p = glGetAttribLocation (prog_handle, “pos");

• Can do a combination.

Attributes can be specified by the user or left to the driver. If the application can
benefit from having the attributes in a particular order then the
glBindAttributeLocation should be used. Otherwise it is usual to use
glGetAttribLocation.

224

Setting up TexturesSetting up Textures

• Texture samplers are Uniforms in GLSL ES

• First Generate ID and specify type (cube map)
uint32 Id;

glGenTextures(1, &Id);

glActiveTexture(GL_TEXTURE0);

glBindTexture(GL_TEXTURE_CUBE_MAP, Id);

glGenTextures generates the texture _names_ not the actual textures.

The glActiveTexture call is used to specify which texture unit subsequent calls will
affect. GL_TEXTURE0 refers to texture unit 0 (units 0 to 7 are available).

glBindTexture specifies the type of texture (in this case a cube map) and associates
a name with the texture.

225

Setting up Textures (cont)Setting up Textures (cont)

glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X,
0,
GL_RGBA,
width,
height,
0,
GL_RGBA,
GL_UNSIGNED_BYTE,
image [0].pixels);

glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_X, ...
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Y, ...
glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, ...
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Z, ...
glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, ...

Having specified the texture stage and type of texture, glTexImage2D is the call
used to specify the actual texture data.

Since we are dealing with a cube map, there are 6 separate calls, one for each of
the faces of the cube map.

226

Setting up UniformsSetting up Uniforms

• Must do this after glUseProgram:
glUseProgram(prog_handle);

• Use glGetUniformLocation e.g.
GLint loc_sky_box =

glGetUniformLocation (prog_handle,"skyBox“);

• Can then set value e.g.
GLint texture_unit = 0;
glUniform1i (loc_sky_box,texture_unit);

The current (active) program is first specified with glUseProgram. The program is
then queried for the locations of the uniforms so that they can be initialized.

227

Setting up Attribute BuffersSetting up Attribute Buffers

• Create buffer names
GLuint bufs[1];

glGenBuffers (1, bufs);

• Create and initialize buffer
glBindBuffer (GL_ARRAY_BUFFER,
bufs[0]);

glBufferData (GL_ARRAY_BUFFER,
size_bytes, p_data, GL_STATIC_DRAW);

The setting up of attributes is similar to the way textures are set up. Names must be
generated for all the attributes. The glBindBuffer specifies the name of the buffer to
use and then the actual buffer data is specified using glBufferData.

228

Setting up Attribute Buffers (cont)Setting up Attribute Buffers (cont)

• Specify format:
glBindBuffer(GL_ARRAY_BUFFER, bufs[0]);

glVertexAttribPointer(0, // index
4, // size
GL_FLOAT,// type
GL_FALSE,// norm
0,
NULL);

The glBufferData call doesn’t say anything about the format of the data, it is just a
byte array at this point. The glVertexAttribPointer is used to specify the format. In
this case we are specifying vector-4 floats for attribute index 0.

Note the extra glBindBuffer is not necessary unless GL_ARRAY_BUFFER has
been bound to another buffer.

229

Drawing the frame Drawing the frame

• Clear frame buffer

• Set render state

• Enable array

• DrawArray

This shows the minimum that must be done at draw time. The frame buffer is
usually cleared at the start of each frame. Any fixed function render state must be
set up and then the scene can be drawn.

230

DrawingDrawing

• Enable array and Draw
glEnableVertexAttribArray(0);

glBindBuffer (GL_ARRAY_BUFFER,0);

glDrawArrays (GL_TRIANGLE_STRIP,0,
n_vertices);

glEnableVertexAttribArray must be called for each attribute
used in a draw call. In this example we are just enabling
attribute 0.

The glBindBuffer with a parameter 0 is used to unbind the
buffer.

The glDrawArrays call does the actual drawing.

231

Example: Water demoExample: Water demo

This is a simple demo showing how to implement reflections in water. Although
similar techniques can be implemented with ES 1.1, there are some subtleties that
require shaders.

232

SkyboxSkybox

• Geometry is a
sphere

• Use position to
access a cube map

The technique used here is to position the viewer inside a sphere. A cube map is
mapped onto the sphere. The cube map is used in two ways: firstly as the skybox
and secondly to provide something to reflect in the water.

233

Cube MapCube Map

The cube map is stored a 6 separate images.

234

SkyboxSkybox

• Can use position to
access cube map

• Don’t need to
normalize.

• No need for
separate normals

Cube map

Mesh

The skybox is a simple sphere and the cube map can be accessed very simply
using the position of the vertices in the sphere. No need for separate normals.

235

Sky box: Vertex shaderSky box: Vertex shader

uniform mat4 view_proj_matrix;

uniform vec4 view_position;

attribute vec4 rm_Vertex;

varying vec3 vTexCoord;

void main(void)

{

vec4 newPos = vec4(1.0);

newPos.xyz = rm_Vertex.xyz + view_position.xyz;

gl_Position = view_proj_matrix * vec4(newPos.xyz, 1.0);

vTexCoord = rm_Vertex.xyz;

}

The vertex shader performs only a simple transform. The view position is separated
from the rest of the matrix in this example although this is not necessary.

Note that the texture coordinates are simply the original vertex positions.

236

Sky box: Fragment Shader Sky box: Fragment Shader

precision highp float;

uniform samplerCube skyBox;

varying vec3 vTexCoord;

void main(void)

{

gl_FragColor =

textureCube(skyBox,vTexCoord);

}

All the fragment shader does is a texture lookup.

237

Water: Reflection MappingWater: Reflection Mapping

Original
normal

Perturbed
normal

Actual
geometry

Geometry we are
trying to emulate

The viewer (camera) is on the left. The water is drawn as a flat surface (i.e. there is
no geometry representing the ripples). To emulate the ripples, the normal is
perturbed and this is used to modify the reflection vector.

238

Approximating Fresnel ReflectionApproximating Fresnel Reflection

Greater angle of
incidence

= less reflection

Smaller angle of
incidence

= more reflection

This is where we leave the world of fixed function. In order to correctly render
reflections, the amount of light reflected depends on the angle of incidence. The
lower the angle, the more light is reflected.

239

WaterWater

• Geometry is a
simple grid

• Uses the same
cubemap as the
skybox

The water is drawn as a flat surface

240

Water RipplesWater Ripples

• Use noise texture
for bump map.

• Exact texture not
important
– Try experimenting

For the ripple effect a noise texture is used. In this example no attempt is made to
simulate the way ripples move. Rather the noise texture is moved across the water
with a constant velocity.

241

Water: Vertex ShaderWater: Vertex Shader

uniform vec4 view_position;

uniform vec4 scale;

uniform mat4 view_proj_matrix;

attribute vec4 rm_Vertex;

attribute vec3 rm_Normal;

varying vec2 vTexCoord;

varying vec3 vNormal;

varying vec3 view_vec;

Declaration of all the uniforms and varyings.

242

Water: Vertex Shader (cont)Water: Vertex Shader (cont)

void main(void)

{

vec4 Position = rm_Vertex.xyzw;

Position.xz *= 1000.0;

vTexCoord = Position.xz * scale.xz;

view_vec = Position.xyz -
view_position.xyz;

vNormal = rm_Normal;

gl_Position = view_proj_matrix * Position;

}

This is just a simple transform. The water rectangle is scaled up but this could
equally be done outside the shader.

243

Water: Fragment ShaderWater: Fragment Shader

uniform sampler2D noise;

uniform samplerCube skyBox;

uniform float time_0_X;

uniform vec4 waterColor;

uniform float fadeExp;

uniform float fadeBias;

uniform vec4 scale;

uniform float waveSpeed;

varying vec2 vTexCoord;

varying vec3 vNormal;

varying vec3 vViewVec;

Declaration of all the uniforms and varyings.

244

Water Fragment Shader (cont)Water Fragment Shader (cont)

void main(void)

{

vec2 tcoord = vTexCoord;

tcoord.x += waveSpeed * time_0_X;

vec4 noisy = texture2D(noise, tcoord.xy);

// Signed noise

vec3 bump = 2.0 * noisy.xyz - 1.0;

bump.xy *= 0.15;

// Make sure the normal always points upwards

bump.z = 0.8 * abs(bump.z) + 0.2;

The x component of the texture is changed at constant speed to emulate the
moving of the ripples.

The noise texture is signed so must be mapped onto a positive range.

The various factors used are best found by experimenting. Care should be taken to
make sure the normal is always pointing upwards. Only small perturbations are
required for a good effect.

245

Water Fragment Shader (cont)Water Fragment Shader (cont)

// Offset the surface normal with the bump

bump = normalize(vNormal + bump);

// Find the reflection vector

vec3 reflVec = reflect(vViewVec, bump);

vec4 refl = textureCube(skyBox, reflVec.yzx);

The bump vector is used to perturb the normal.

This modified normal is then used to find the reflection vector which in turn is used
to access the same texture cubemap that was used for the skybox.

246

Water Fragment Shader (cont)Water Fragment Shader (cont)

float lrp =

1.0 - dot(-normalize(vViewVec), bump);

// Interpolate between the water color and

// reflection

float blend = fadeBias + pow(lrp, fadeExp);

blend = clamp(blend ,0.0, 1.0);

gl_FragColor = mix(waterColor, refl, blend);

}

Finally the reflected colour is blended with the water colour. When the bump vector
moves the normal towards the viewer, this increases the angle of incidence. The
shader therefore decreases the ‘blend’ value which increases the contribution of the
water colour.

Since there is a fair amount of ‘cheating’ going on in this example, it is important to
constrain certain values to prevent artefacts. Hence the blend factor is clamped to
the range 0..1

247

Programming TipsProgramming Tips

• Check for errors regularly
• Use e.g.

assert(!glError ());

• But remember glError () gets the last error:
... // error here
Glint error = glError ();
...
assert(!glError ()); // No error

The glError() reads the last error code. If there has only been one error, subsequent
calls to glError() will return 0. It is therefore easy to miss errors if glError() is used
incorrectly.

Debugging GL applications can be a challenge when writing your first application
and it is easy to introduce errors. Be sure to check every value returned and always
check for errors.

248

The coordinate systemThe coordinate system

• Coordinate system is:

• Right handed before projection
• Increasing z is towards the viewer.

• Left handed after projection
• Increasing z is away from the viewer.

The coordinate system often confuses newcomers.

249

Matrix ConventionMatrix Convention

• Matrices are column-major
• column index varies more slowly

• Vectors are columns
• But this is purely convention
• Only the position in memory is important

• Translation specified in elements 12,13,14

250

The projection matrixThe projection matrix

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

∗∗−
−
+−

−
+

−
∗

−
+

−
∗

0.00.10.00.0
0.00.0

0.00.0
0.00.0

0.2)(

0.2

0.2

nearfar
nearfar

nearfar
nearfar

bottomtop
bottomtop

bottomtop
near

leftright
leftright

leftright
near

• You need to provide a projection matrix e.g.

• near and far are both positive

251

Performance TipsPerformance Tips

• Keep fragment shaders simple
– Fragment shader hardware is expensive.
– Early implementations will not have good performance

with complex shaders.
• Try to avoid using textures for function lookups.

– Calculation is quite cheap, accessing textures is
expensive.

– This is more important with embedded devices.

252

Performance Tips (cont)Performance Tips (cont)

• Minimize register usage
– Embedded devices do not support the same number of

registers compared with desktop devices. Spilling
registers to memory is expensive.

• Minimize the number of shader changes
– Shaders contain a lot of state
– May require the pipeline to be flushed
– Use uniforms to change behaviour in preference to

loading a new shader.

253

Future DirectionsFuture Directions

• Sample Shaders
– Enables alpha testing at per-sample resolution
– Enables more of the fixed function pipeline to be

removed.
– Allows more programmability when using multi-

sampling.
– e.g. Read and write depth and stencil

254

Future DirectionsFuture Directions

• Object (Geometry) Shaders
– Programmable tessellation
– Higher order surfaces
– Procedural geometry
– Possibility of accelerating many more algorithms

e.g. shadows, occlusion culling.

255

Future ES Pipeline?Future ES Pipeline?

APIAPI

Vertex
Shader

Vertex
Shader RasterizerRasterizer

Fragment
Shader

Fragment
Shader

Vertex
Buffer

Objects

Vertex
Buffer

Objects

Sample
Shader

Sample
Shader

Object
Shader

Object
Shader

Uniform
Shader

Uniform
Shader

Primitive
Assembly

Primitive
AssemblyPrimitive

Processing
Primitive

Processing

Frame BufferFrame Buffer

256

257

M3G IntroM3G Intro

Kari Pulli

Nokia Research Center

258

Mobile 3D Graphics APIsMobile 3D Graphics APIs

OpenGL ES

M3G (JSR-184)

Java applications

Graphics Hardware

Native C/C++
Applications

259

Why Should You Use Java?Why Should You Use Java?

• Largest and fastest growing installed base
– 1200M phones running Java by June 2006

– The majority of phones sold today support Java

• Better productivity compared to C/C++
– Much fewer opportunities to introduce bugs

– Comprehensive, standardized class libraries

260

Java Will Remain SlowerJava Will Remain Slower

Benchmarked on an ARM926EJ-S processor with hand-optimized Java and assembly code

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Vertex
transformation

Image
downsampling

Assembly
KVM
Jazelle™
HotSpot

But of course there are problems too. Java has a reputation of being slow,
and that’s certainly true for mobile phones.
To give you an idea, this graph here compares three different Java virtual
machines against assembly code.

The tallest bars represent ARM assembly code, with relative performance of
1.0. No special CPU features, such as SIMD instructions, were used. If they
were, the difference to Java would be much larger.

First, we have the KVM, which was used in most mobile phones until
recently. Native code is 10-20x faster.

Then we have Jazelle, which is a hardware accelerator from ARM. Big
improvement, but native code is still 3-4x faster.

Finally we have a HotSpot VM from Sun. It matches Jazelle in these
benchmarks, but in real life, it’s a disaster. The compiler and the compiled
code together take up so much RAM that you can only keep the most
frequently and most recently used pieces of code in cache. So, when you
encounter a new monster in an action game, the compiler kicks in and the
game freezes for half a second. Developers have to use some ugly tricks to
work around these problems.

Ahead-of-time (AOT) compilers are not included in this benchmark. AOT

261

M3G Design PrinciplesM3G Design Principles

• Move all graphics processing to native code
– Not only rasterization and transformations

– Also morphing, skinning, and keyframe animation

– All data on native side to avoid Java-native traffic

#1#1#1 No Java code along critical pathsNo Java code along critical pathsNo Java code along critical paths

So with that background in mind, let’s see what our main design principles
were.
The most important thing of course is to free the apps from doing
rasterization and transformations in Java. That’s simply too slow.
But when we have those in native code, then other things become the
bottlenecks. So, we decided to go for a retained mode, scene graph API and
keep all scene data on the native side. We also decided to include all
functionality that can be generalized well enough. As a result, we have
things like morphing, skinning and keyframe interpolation in the API.

262

M3G Design PrinciplesM3G Design Principles

• Do not mandate hardware-only features
– Such as per-pixel mipmapping or per-pixel fog

• Do not try to expand the OpenGL pipeline
– Such as with hardcoded transparency shaders

#2#2#2 Cater for both software and hardwareCater for both software and hardwareCater for both software and hardware

Secondly, we wanted the API to work well on software-based handsets,
which form the vast majority even today, as well as the hardware-
accelerated ones.

We had a rule that features that cannot be done efficiently in software will
not be required or even included. Almost anything that is computed “per
pixel” falls into that category. Thus, it suffices to select a mipmap level on a
per-triangle basis, rather than per-pixel. The same applies for fog. Bilinear
and trilinear texture filtering are also optional.

On the other hand, we had a rule that no feature would be included that
cannot be easily implemented on fixed-function hardware, even if it would be
a useful feature and easy to do in software. Various hardcoded effects for
e.g. transparency and reflection were proposed, but rejected on that basis.

263

M3G Design PrinciplesM3G Design Principles

• Address content creation and tool chain issues
– Export art assets into a compressed file (.m3g)

– Load and manipulate the content at run time

– Need scene graph and animation support for that

• Minimize the amount of “boilerplate code”

#3#3#3 Maximize developer productivityMaximize developer productivityMaximize developer productivity

Third, we didn’t want to leave content creation and tool chain issues hanging
in the air. We wanted to have a well-defined way of getting stuff out from
3dsmax and other tools, and manipulating that content at run time. That’s of
course another reason to have scene management and animation features
in the API. We also defined a file format that matches the features one-to-
one.
Furthermore, we wanted the API to be at a high enough level that not much
“boilerplate” code needs to be written to get something done.

264

M3G Design PrinciplesM3G Design Principles

#4#4#4 Minimize engine complexityMinimize engine complexityMinimize engine complexity

#5#5#5 Minimize fragmentationMinimize fragmentationMinimize fragmentation

#6#6#6 Plan for future expansionPlan for future expansionPlan for future expansion

Here are some more design issues that we had to keep in mind.

Number four, minimize engine complexity. This meant that a commercial
implementation should be doable in 150k, including the rasterizer.

Number five, minimize fragmentation. This means that we wanted to have a
tight spec, so that you don’t have to query the availability of each and every
feature. There are no optional parts or extensions in the API, although
texture filtering and some other rendering quality hints were left optional. For
instance, perspective correction.

And finally, we wanted to have a compact API that can be deployed right
away, but so that adding more features in the future won’t cause too much
ugly legacy. Several features that seemed likely to be soon deprecated were
dropped on that basis (e.g. logic ops and points). Some predictions went
wrong: for example, lines have not yet been replaced by triangles…

265

Why a New Standard?Why a New Standard?

• OpenGL ES is too low-level
– Lots of Java code and function calls needed

– No support for animation and scene management

• Java 3D is too bloated
– A hundred times larger (!) than M3G

– Still lacks a file format, skinning, etc.

Okay, so why did we have to define yet another API, why not just pick an
existing one?

OpenGL ES would be the obvious choice, but it didn’t fit the Java space very
well, because you’d need a lot of that slow Java code to get anything on the
screen. Also, you’d have to do animation yourself, and keep all your scene
data on the Java side. Basically you’d spend more time writing your code,
and yet the code would run slower in the end. That might change in the
future, when Java VMs become faster, but don’t hold your breath.

The other choice that we had was Java 3D. At first it seemed to match our
requirements, and we gave it a serious try. But then it turned out that the
structure of Java 3D was simply too bloated, and we just couldn’t simplify it
enough to fit out target devices. Besides, even though the Java 3D is
something like a hundred times larger than M3G, it still lacks crucial things
like a file format and skinning. It’s also too damn difficult to use.

So we decided to re-invent the wheel. Let’s see how it works.

266

267

M3G API
Overview
M3G API
Overview

Tomi Aarnio

Nokia Research Center

268

ObjectivesObjectives

• Get an idea of the API structure and features

• Learn practical tricks not found in the spec

After this session you should have a good idea of what features you can find
in the API, and have some tricks up your sleeve on how to use those
features effectively on real devices.

269

PrerequisitesPrerequisites

• Fundamentals of 3D graphics

• Some knowledge of OpenGL ES

• Some knowledge of scene graphs

270

M3G API OverviewM3G API Overview

Getting started
Rendering

Scene graph

Performance tips

Deformable meshes

Keyframe animation

Demos

Let’s first take a look at the M3G programming model, then continue with the
features in a bottom-up order.

271

Programming ModelProgramming Model

• Not an “extensible scene graph”
– Rather a black box – much like OpenGL
– No interfaces, events, or render callbacks
– No threads; all methods return only when done

M3G is a fairly simple, monolithic API. It’s not the usual “extensible scene
graph”, but rather a black box. There are no rendering callbacks, no events,
no interfaces, and no background threads. This means that you can’t add
your own custom objects into the scene graph and expect the engine to call
your draw() routine in the middle of the rendering traversal. In this respect,
M3G is very much like OpenGL: you don’t expect callbacks from
glDrawElements, either.

272

Programming ModelProgramming Model

• Scene update is decoupled from rendering
– render Draw the scene, no side-effects
– animate Update the scene to the given time
– align Re-orient target cameras, billboards

Also in the good black-box tradition, when you tell the API to render
something, it does just that, with no side-effects. It doesn’t change the scene
graph. When you need to change something, you call animate() or align() or
you use the individual set methods.

273

Graphics3D
3D graphics context
Performs all rendering

World
Scene graph root node

Loader
Loads individual objects
and entire scene graphs

Key ClassesKey Classes

Mesh
Encapsulates triangles,
vertices and appearance

274

Graphics3D: How to UseGraphics3D: How to Use

• Bind a target to it, render, release the target

void paint(Graphics g) {

myGraphics3D.bindTarget(g);

myGraphics3D.render(world);

myGraphics3D.releaseTarget();

}

So how do you use it? It’s as easy as 1-2-3: bind a target, render, release
the target. As shown here.

The “Graphics” object represents the frame buffer in Java MIDP.

In the debug build you should also catch any exceptions after each bind,
render, and release call.

275

Rendering StateRendering State

• Graphics3D contains global state
– Frame buffer, depth buffer
– Viewport, depth range

• Most rendering state is in the scene graph
– Vertex buffers, textures, matrices, materials, …
– Packaged into Java objects, referenced by meshes
– Minimizes Java-native data traffic, enables caching

276

M3G API OverviewM3G API Overview

Getting started

Rendering
Scene graph

Performance tips

Deformable meshes

Keyframe animation

Demos

277

Renderable ObjectsRenderable Objects

Mesh
Made of triangles
Base class for meshes

Sprite3D
2D image placed in 3D space
Always facing the camera

278

Sprite3DSprite3D

• 2D image with a position in 3D space
– Scaled mode for billboards, trees, etc.

– Unscaled mode for text labels, icons, etc.

– Too much overhead for particle effects

Image2D

Sprite3D Appearance

Image2D

CompositingMode

Fog

279

MeshMesh

• One VertexBuffer, containing VertexArrays

• 1..N submeshes (IndexBuffer + Appearance)

Mesh VertexBuffer coordinates

normals

colors

texcoords

IndexBuffer

Appearance

VertexArraysVertexArrays

280

IndexBuffer TypesIndexBuffer Types

Im
plicit

Byte Short Strip Fan List

Point sprites

Points

Lines

Triangles

Relative to OpenGL ES 1.1

The set of rendering primitives was reduced to a minimum: triangle strips
with 16-bit indices (equivalent to glDrawElements) or implicit indices
(glDrawArrays).

On hindsight, triangle lists should’ve been included, since they are easier to
use and are not necessarily any slower than strips.

Point sprites are missing for a good reason: The M3G spec had been
publicly available for almost a year before point sprites were added into
OpenGL ES.

281

VertexBuffer TypesVertexBuffer Types

*Colors

FloatByte Short Fixed

PointSizes

Normals

TexCoords

Vertices

4D3D2D

* OpenGL ES only supports RGBA colors

Floating point vertex arrays were excluded for performance and code size
reasons. To compensate, there are floating point scale and bias terms for
vertex and texcoord arrays. They cause no overhead, since they can be
implemented with the modelview or texture matrix.

Homogeneous 4D coordinates were dropped to get rid of nasty special
cases in the scene graph, and to speed up skinning, morphing, lighting and
vertex transformations in general.

282

Vertex and Index Buffer ObjectsVertex and Index Buffer Objects

• Vertices and indices are stored on server side
– Similar to OpenGL Buffer Objects

– Reduces data traffic from Java to native

– Allows caching, bounding box computation, etc.

283

Appearance ComponentsAppearance Components

CompositingMode

Material colors for lighting
Can track per-vertex colors

PolygonMode

Fog

Texture2D

Material
Blending, depth buffering
Alpha testing, color masking

Winding, culling, shading
Perspective correction hint

Fades colors based on distance
Linear and exponential mode

Texture matrix, blending, filtering
One Texture2D for each unit

Functionally related blocks of rendering state are grouped together.
Appearances as well as individual Appearance components can be shared
by arbitrary number of meshes.

This saves memory space, reduces garbage collection, and allows
implementations to quickly sort objects based on their rendering state.

284

Fragment PipelineFragment Pipeline

Alpha Test Depth TestFog Blend

Texture
Blend

Texel
Fetch

Texture
Blend

Frame
Buffer

Depth
Buffer

Colored
Fragment

Texel
Fetch

CompositingMode

Texture2D

Fog

Here is a high-level view of the M3G/OpenGL fragment pipeline, and how
some of the Appearance components map onto that. The other components
would map to the transformation & lighting pipeline in a similar way.

285

M3G API OverviewM3G API Overview

Getting started

Rendering

Scene graph
Performance tips

Deformable meshes

Keyframe animation

Demos

286

Scene GraphScene Graph

SkinnedMesh

Group

Group

Group

Mesh

Sprite

Light

World

Group Camera

Group MorphingMesh

Not allowed!

Scene graph nodes can’t have more than one parent, so the scene graph is
actually just a tree.

287

Shared Node ComponentsShared Node Components

SkinnedMesh Mesh

World

Mesh Camera

Appearance Appearance

Texture2D

Even though nodes can’t be instanced, their component objects can.
Textures, vertices, and all other substantial data is in the components, and
only referenced by the nodes.

In this example, the Mesh and MorphingMesh share a common Appearance,
which in turn shares a Texture2D with another Appearance.

288

Node TransformationsNode Transformations

• From this node to the parent node

• Composed of four parts
– Translation T

– Orientation R

– Non-uniform scale S

– Generic 3x4 matrix M

• C = T R S M Group

Group

Group

Mesh

Sprite

C

CC

C C

World

289

Other Node FeaturesOther Node Features

• Automatic alignment
– Aligns the node’s Z and/or Y axes towards a target

– Recomputes the orientation component (R)

• Inherited properties
– Alpha factor (for fading in/out)

– Rendering enable (on/off)

– Picking enable (on/off)

• Scope mask

290

Content ProductionContent Production

DCC tool

Exporter

Intermediate
Format (e.g.
COLLADA)

Optimizer &
Converter

Delivery
Formats

(.m3g, .png)

M3G Loader

Runtime Scene Graph

291

M3G File FormatM3G File Format

• Small size, easy to decode

• Matches 1:1 with API features

• Stores individual objects, entire scenes

• ZLIB compression of selected sections

• Can reference external files – e.g. textures

• Highly portable – no extensions

292

M3G API OverviewM3G API Overview

Getting started

Rendering

Scene graph

Performance tips
Deformable meshes

Keyframe animation

Demos

293

Use the Retained ModeUse the Retained Mode

• Render a World instead of separate objects
– Minimizes Java code and method calls
– Allows view frustum culling, etc.

• Put co-located objects into Groups
– Speeds up hierarchic view frustum culling

M3G engines generally perform shader state sorting and view frustum culling
in retained mode.

However, any culling done by the engine is very conservative. The engine
does not know which polygon mesh is a wall that’s going to stay where it is,
for instance. If you have a scene that could be efficiently represented as a
BSP tree, you can’t expect the engine to figure that out. You need to
construct the tree yourself, and keep it in the application side.

294

Simplify Node PropertiesSimplify Node Properties

• Transformations
– Favor the T R S components over M

– Avoid non-uniform scales in S

– Use auto-alignment sparingly

• Keep the alpha factor at 1.0

295

Optimize Rendering OrderOptimize Rendering Order

•Appearance.setLayer(int layer)

– Defines a global ordering for submeshes
– Within each layer, opaque objects come first

• Use layers for…
– Making sure that overlays are drawn first
– Making sure that distant objects are drawn last
– Multipass effects (e.g. for lighting)

Objects should be generally rendered in a front-to-back order to minimize
overdraw. Overlays should therefore be drawn first, and distant objects such
as sky boxes last. The layer index, defined in Appearance, allows you to
enforce the right ordering when you’re using the retained mode.

Multipass rendering means that the same submesh is drawn several times
with different Appearance settings. We might apply a base texture with
diffuse lighting in the first pass, followed by an ambient occlusion map in the
second pass, and a dynamic specular highlight in the third pass.

296

Optimize TexturingOptimize Texturing

• Multitexturing is faster than multipass
– Transformation and setup costs cut by half

• Use mipmaps to save memory bandwidth
– Tradeoff: 33% extra memory consumption

• Combine small textures into a texture atlas

297

Use Perspective CorrectionUse Perspective Correction

• Much faster than increasing triangle count
– Nokia: 2% fixed overhead, 20% in the worst case

• Pitfall: Quality varies by implementation
– Refer to quality scores at www.jbenchmark.com

298

Reduce Object CountReduce Object Count

• Per-Mesh processing overhead is high

• Per-submesh overhead is also fairly high

• Merge
– Meshes that are close to each other

– submeshes that have a common Appearance

299

Avoid Dynamic GeometryAvoid Dynamic Geometry

• VertexArray.set(…) can be slow
– Java array contents must be copied in

– May also trigger bounding box updates, etc.

– Replace with morphing or skinning where possible

• IndexBuffers have no set(…) method at all
– new IndexBuffer(…) per frame is not a good idea

– Switch between predefined IndexBuffers instead

300

Beware of ExportersBeware of Exporters

• Exported content is not always optimal
– Lighting enabled, but overwritten by texture

– Lighting disabled, normal vectors still included

– Alpha blending enabled, but alpha always 1.0

– 16-bit vertices when 8 bits would be enough

– Perspective correction always enabled

– …

• Always review the exported scene tree!

301

Hardware vs. SoftwareHardware vs. Software

• Shading state
– SW: Minimize per-pixel operations

– HW: Minimize shading state changes

• Mixing 2D and 3D rendering
– SW: No performance penalty

– HW: Substantial penalty (up to 3x)

Most OpenGL ES performance tips given by Ville in the earlier presentation
apply also for M3G applications.

302

Layering 2D and 3DLayering 2D and 3D

2D backdrop

3D background
2D spectators

3D field

2D players

2D overlays

~7 layers of
2D and 3D!

Playman Beach Volley © RealNetworks, Inc.

The current practice is to mix 2D and 3D quite liberally. Playman Beach Volley by
Mr. Goodliving, Ltd., is a good example: there are something like 7 layers of 2D and
3D stacked on top of each other. This gives a pretty neat, cartoonish look, and does
not require a high-end handset.

Unfortunately, high-end hardware-accelerated devices generally do not perform well
with this kind of content, because the 2D routines are running on the CPU, and
synchronizing the results of 2D and 3D rendering may require extra frame buffer
copying. You’ll be better off doing pure 3D on HW accelerated devices.

303

Use Picking with CautionUse Picking with Caution

• myWorld.pick(…) can be very slow

• Restrict the pick ray to
– meshes in a specific Group

– meshes with a specific scope mask

• Use simplified geometry for picking
– setPickingEnable(true)

– setRenderingEnable(false)

304

Particle EffectsParticle Effects

• Point sprites – not available

• Sprite3D – much too slow

• Put all particles in one Mesh
– One particle == two triangles

– Animate by VertexArray.set(…)

3
5

4

1

2 6

Particles glued
into a tri-strip

So how should you implement a particle system, given that points and point
sprites are not supported?

The first idea that comes to mind is to use Sprite3D. However, that would
make every particle an independent object, each with its own modelview
matrix, texture, and other rendering state. This implies a separate OpenGL
draw call and lots of overhead for each particle.

It is more efficient to represent particles as textured quads, all glued into one
big triangle strip that can be drawn in a single call. To make the particles
face the viewer, set up automatic node alignment for the Mesh that encloses
the particle system.

At run time, just update the particles’ x, y, z coordinates and colors in their
respective VertexArrays.

305

Easy Terrain RenderingEasy Terrain Rendering

• Split the terrain into tiles (Meshes)

• Put the meshes into a scene graph

• The engine will do view frustum culling

When splitting the terrain, keep in mind that the per-mesh overhead can be
surprisingly high – especially on hardware accelerated platforms where the
actual rasterization is fast. The optimal tile size varies by device, but any
less than 100 polygons per mesh will most likely be counterproductive.

Since the modelview matrix of each tile will be unique, small rounding errors
in the vertex pipeline may cause cracks between tiles. A simple solution is to
make the tiles overlap each other a bit.

306

Terrain Rendering with LODTerrain Rendering with LOD

• Preprocess into a quadtree
– leaf node == Mesh

– inner node == Group

• Use setRenderingEnable
based on the view frustum

307

M3G API OverviewM3G API Overview

Getting started

Rendering

Scene graph

Performance tips

Deformable meshes
Keyframe animation

Demos

308

Deforming MeshesDeforming Meshes

SkinnedMesh
Skeletally animated mesh

MorphingMesh
Vertex morphing mesh

309

MorphingMeshMorphingMesh

• Traditional vertex morphing animation
– Can morph any vertex attribute(s)

– A base mesh B and any number of morph targets Ti

– Result = weighted sum of morph deltas

• Change the weights wi to animate

()∑ −+=
i

iiw BTBR

310

MorphingMeshMorphingMesh

Base Target 1
eyes closed

Target 2
mouth closed

Animate eyes
and mouth

independently

311

SkinnedMeshSkinnedMesh

• Articulated characters without cracks at joints
• Stretch a mesh over a hierarchic “skeleton”

– The skeleton consists of scene graph nodes
– Each node (“bone”) defines a transformation
– Each vertex is linked to one or more bones

– Mi are the node transforms – v, w, B are constant

∑=
i

iii vwv BM'

In the equation,
• v is the vertex position in the SkinnedMesh node’s coordinates
• Bi is the fixed at-rest transformation from SkinnedMesh to bone Ni

• Mi is the dynamic transformation from bone Ni to SkinnedMesh
• wi is the weight of bone Ni (the weights are normalized)
• 0 ≤ i ≤ N, where N is the number of bones associated with v
• v’ is the final position in the SkinnedMesh coordinate system

312

SkinnedMeshSkinnedMesh

Neutral pose, bones at rest

313

SkinnedMeshSkinnedMesh

Bone B rotated 90 degrees

The empty dots show where the vertex would end up if it were associated
with just one of the bones, respectively.

As the vertex is weighted equally by bones A and B, the final interpolated
vertex lies in between the empty dots.

314

SkinnedMeshSkinnedMesh

Mesh SkinnedMesh

315

M3G API OverviewM3G API Overview

Getting started

Rendering

Scene graph

Performance tips

Deformable meshes

Keyframe animation
Demos

316

Animation ClassesAnimation Classes

KeyframeSequence

AnimationController

AnimationTrack
A link between sequence,
controller and target

Object3D

Base class for all objects
that can be animated

Controls the playback of
one or more sequences

Storage for keyframes
Defines interpolation, looping

317

AnimationController

Animation ClassesAnimation Classes

Identifies
animated
property on
this object

Object3D

AnimationTrack

KeyframeSequence

318

KeyframeSequence:
Interpolation Modes
KeyframeSequence:
Interpolation Modes

LI
N

E
A

R
S

TE
P

time

S
P

LI
N

E

…plus SLERP and SQUAD for quaternions

319

AnimationController:
Timing and Speed
AnimationController:
Timing and Speed

world timet

sequence time

Diagram courtesy of Sean Ellis, ARM

0 d

• Maps world time into sequence time

• Can control any number of sequences

320

AnimationController

AnimationAnimation

4. Apply value to
animated property 0 dsequence time

1. Call animate(worldTime)

s
v

2. Calculate
sequence time
from world time

3. Look up value at
this sequence time

Object3D

AnimationTrack

KeyframeSequence

Diagram courtesy of Sean Ellis, ARM

321

AnimationAnimation

Tip: Interpolate quaternions as ordinary 4-vectors
– Supported in HI Corp’s M3G Exporter

– SLERP and SQUAD are slower, but need less keyframes

– Quaternions are automatically normalized before use

322

M3G API OverviewM3G API Overview

Getting started

Rendering

Scene graph

Performance tips

Deformable meshes

Keyframe animation

Demos

323

SummarySummary

• M3G enables real-time 3D on mobile Java
– Minimizes Java code along critical paths

– Designed for both software and hardware

• OpenGL ES features at the foundation

• Animation & scene graph layered on top

30’000 devices sold during this presentation

324

DemosDemos

325

2D

3D

Playman Winter Games –
RealNetworks
Playman Winter Games –
RealNetworks

Perspective
and depth

Perspective
and depth

Side view onlySide view only

326

Playman World Soccer –
RealNetworks
Playman World Soccer –
RealNetworks

• 2D/3D hybrid

• Cartoon-like
2D figures in
a 3D scene

• 2D particle
effects etc.

327

Tower Bloxx –
Digital Chocolate
Tower Bloxx –
Digital Chocolate

• Puzzle/arcade
mixture

• Tower building
mode is in 3D, with
2D overlays and
backgrounds

• City building mode
is in pure 2D

328

Mini Golf Castles –
Digital Chocolate
Mini Golf Castles –
Digital Chocolate
• 3D with 2D

background
and overlays

• Skinned
characters

• Realistic ball
physics

329

Rollercoaster Rush –
Digital Chocolate
Rollercoaster Rush –
Digital Chocolate
• 2D backgrounds

• 3D main scene

• 2D overlays

330

Q&AQ&A

Thanks:
Sean Ellis (ARM)

Kimmo Roimela (Nokia)
Markus Pasula (RealNetworks)
Sami Arola (Digital Chocolate)

331

332

M3G in the Real
World

M3G in the Real
World

Mark Callow

Chief Architect

333

An M3G GameAn M3G Game

Copyright 2007, Digital Chocolate Inc.

334

Rollercoaster Rush 3D™Rollercoaster Rush 3D™

335

AgendaAgenda

• J2ME game development

• Tools

• COFFEE BREAK

• The structure of a MIDlet

• A walkthrough a sample game

• Why mobile game development is hard

• Publishing your content

A MIDlet is a J2ME applet.

336

AgendaAgenda

• J2ME game development

• Tools

• COFFEE BREAK

• The structure of a MIDlet

• A walkthrough a sample game

• Why mobile game development is hard

• Publishing your content

337

Game Development ProcessGame Development Process

• Traditional Java Game

Assets

Game logic Compile Java MIDlet JAR file

Images Sounds Music Other

D
istribute

Screen Image: Boulder Dash®-M.E.™

Game Platform

Sound

2D Graphics

Network

Other

Proprietary

Diagram courtesy of Sean Ellis, ARM.

Package

We begin with a quick look at the various steps involved in creating a traditional
Java game. We have a game platform such as MIDP 2 embedded in the mobile
device. We need to write our game code targeted for this platform and compile it to
a MIDlet. We package this into a JAR file together with the game’s assets such as
images, sounds and music. Finally we distribute the game package to the
customers.

I’ll be discussing each of these steps.

338

M3G Game Development ProcessM3G Game Development Process

• How M3G Fits

Assets

Game logic Compile Java MIDlet Package JAR file

Images Sounds Music Other3D World

Expanded
game logic

Game Platform

Sound

2D Graphics

Network

Other

Proprietary

3D Graphics

D
istribute

Diagram courtesy of Sean Ellis, ARM.
Screen Image: Boulder Dash®-M.E.™Screen Image: Sega/Wow Entertainment RealTennis.™

Now what does M3G bring to the party? First and foremost of course, 3D graphics
is added to the game platform. This means your assets will include 3d models or a
3d scene.

You will also need to expand your game logic.

Effective use of 3D influences all aspects of a game’s design and must be
considered from the beginning of the design process.

339

Development Team StructureDevelopment Team Structure

Planner/Producer

DesignersProgrammers

We have just seen that we need to create both artistic assets and program code.
This means there is a need for both designers and programmers in the
development team. Both teams will be guided by a Planner or Producer who plans
the game and makes the overall decisions in consultation with the client.

It is important to enable the designers and programmers to work as independently
as possible. This requires careful planning and keeping the programming side as
general as possible. Artists must be able to make and artistic decisions and show
them for approval without having to get a programmer to make code changes.

For example, whenever you need an opening door on a game level, the program
should simply run a key-framed door opening animation which will be provided by
the designer along with the style of door. Doing the animation programmatically
would mean that the programmer would need to be involved when the designer
decides to change from a sliding door to an exploding door.

340

AgendaAgenda

• J2ME game development

• Tools

• COFFEE BREAK

• The structure of a MIDlet

• A walkthrough a sample game

• Why mobile game development is hard

• Publishing your content

341

Tools AgendaTools Agenda

• Tools
– Creating your assets

– Programming tools & development platforms

For any real m3g application, some art assets have to be created before the
program can do anything useful. So we’ll look first at creating the assets and then at
the programming.

342

Assets
3D World

Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

D
istribute

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

Creating Your Assets: ImagesCreating Your Assets: Images

• Textures & Backgrounds

Images

Image EditorImage Editor with PNG with PNG
output. E. g:output. E. g:

••Adobe FireworksAdobe Fireworks

••Adobe PhotoshopAdobe Photoshop

Textures and background images can be provided as PNG format files or the image
data can be included directly in an M3G file. We recommend creating these assets
in PNG format. PNG compresses better than plain zlib.

Some M3G plug-ins for 3d modeling tools automatically convert texture maps to
PNG format. If so, you can use any texture map format supported by your modeling
tool.

Do not use GIF files. Some M3G implementations appear to support GIF files as an
accidental side-effect of the underlying MIDP implementation. Do not be fooled. The
spec. does not require GIF support and many implementations do not support the
format.

343

Creating Your Assets: SoundsCreating Your Assets: Sounds

• Audio Tools

Assets
3D World

Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

D
istribute

Audio Production Tool; e. g.Audio Production Tool; e. g.

••Sony Sound ForgeSony Sound Forge®®

Commonly Used Formats:Commonly Used Formats:

••WAV, AU, MP3, SMAFWAV, AU, MP3, SMAF

Sounds

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

The J2ME (MIDP 2.0) specification does require support of any particular sound
format. The formats listed here are commonly used.

SMAF (Synthetic music Mobile Application Format) is a Yamaha invented format
directly supported by chips used in many handheld portable devices. The file
extension is .mmf. SMAF files can contain both recorded audio and synthesizer
sequences.

344

• Music Tools

Creating Your Assets: MusicCreating Your Assets: Music

Assets
3D World

Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

D
istribute

MIDI Sequencer; e. g.MIDI Sequencer; e. g.

••Steinberg Steinberg CubaseCubase

Formats:Formats:

••SMAF, MIDI, SMAF, MIDI, cMIDIcMIDI, , MFiMFi

Music

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

cMIDI is compact MIDI which reduces the range of allowed MIDI data thereby
reducing the file size.

MFi (Melody Format for i-Mode) is supported on all i-Mode phones worldwide. As
with SMAF, MFi can hold both MIDI-like data (cMIDI) and custom samples.

For all of your audio , you will mostly be dealing with hardware designed for ring
tones. It is important that you understand the capabilities of the chip in your target
phone.

345

Creating Your Assets: 3d ModelsCreating Your Assets: 3d Models

• Modeling Tools

Assets
3D World

Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

D
istribute

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

3D World

3d Modeler with M3G plug3d Modeler with M3G plug--in; e.g.in; e.g.

••LightwaveLightwave

••MayaMaya

••3d studio max3d studio max

••Softimage|XSISoftimage|XSI

A list of available M3G plug-ins is given at the end of this presentation.

346

Export 3d Model to M3GExport 3d Model to M3G

The plug-ins usually provide a way to set various M3G related parameters and save
them with the DCC tool file. For example in the bottom right corner of this picture of
HI’s 3d Studio Max plug-in, you can see a utility for setting M3G node attributes.

When you are exporting the file a dialog appears that lets you specify various
parameters for the export, such as what lighting to export, whether to sample
controllers or use the controller keys specified in max and which camera should be
the active camera.

347

M3G File ViewerM3G File Viewer

This is HI’s M3G file viewer. It uses the same M3G engine as is found in many
mobile phones.

HI’s plug-ins actually export an intermediate text format called H3T rather than M3G.
A converter is provided for converting H3T to M3G. Have an intermediate file in
editable text format can be very useful. The M3GViewer can display both H3T and
M3G files.

348

Demo: On a Real PhoneDemo: On a Real Phone

349

Tips for Designers 1Tips for Designers 1

• TIP: Don’t use GIF files
– The specification does not require their support

• TIP: Create the best possible quality audio & music
– It’s much easier to reduce the quality later than increase it

• TIP: Polygon reduction tools & polygon counters
are your friends
– Use the minimum number of polygons that conveys your

vision satisfactorily

Since we are looking at the tools for creating 3D model assets, this is a good time
for some tips for designers.

Don’t use GIF.

As mentioned earlier, when designing sound it is important to be aware of the
capabilities of the target phone. Since these vary widely, it is best to create the
original audio assets at the best possible quality.

Polygon reduction.

350

Tips for Designers 2Tips for Designers 2

• TIP: Use light maps for lighting effects
– Usually faster than per-vertex lighting

– Use luminance textures, not RGB

– Multitexturing is your friend

• TIP: Try LINEAR interpolation for Quaternions
– Faster than SLERP

– But less smooth

Tomi already mentioned use of linear interpolation for quaternions in his
presentation.

351

Tips for Designers 3Tips for Designers 3

• TIP: Favor textured quads over Background &
Sprite3D
– Background and Sprite3D will be deprecated in M3G 2.0

– Were intended to speed up software renderers

– but implementation is complex, so not much speed up and
no speed up at all with hardware renderers

– Nevertheless Sprite3Ds are convenient to use for 2D
overlays and Backgrounds are convenient when
background scrolling is required.

• LIMITATION: Sprites not useful for particle systems

Sprites may not be faster than textured quads when a GPU is
used for rendering.

352

Tools AgendaTools Agenda

• Tools
– Creating your assets

– Programming tools & development platforms

353

Program DevelopmentProgram Development

Assets
3D World

Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

D
istribute

Compile Java MIDletExpanded
game logic Package JAR file

• Edit, Compile, Package

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

TraditionalTraditional

•• WTK, shell, editor, make, WTK, shell, editor, make, javacjavac, , preverifierpreverifier

Integrated Development EnvironmentIntegrated Development Environment

•• Eclipse + Eclipse + EclipseMEEclipseME

•• Borland JBuilder + J2ME Wireless ToolkitBorland JBuilder + J2ME Wireless Toolkit

•• NetBeans IDE + Mobility PackNetBeans IDE + Mobility Pack

For the edit, compile build cycle you can use a traditional pipeline with a command
line shell, programmer’s editor, make and the standard java compiler from JDK
1.4.x or 1.5.x.
You can run the resulting MIDlet class in the emulator that comes with the Sun
Java™ Wireless Toolkit for CLDC. (WTK). We see more of WTK in a moment.

Alternatively you can use a full IDE such as Borland’s JBuilder, NetBeans (5.5 at
time of writing) + NetBeans Mobility Pack or Eclipse with eclipseme.

NetBeans and Eclipse are free, Open-Source Integrated Development
Environments for software developers. The IDE runs on many platforms including
Windows, Linux, Solaris, and the MacOS.

The NetBeans Mobility Pack for CLDC/MIDP adds everything to the IDE you need
to create, test and debug applications for the Mobile Information Device Profile
(MIDP) 2.0, and the Connected, Limited Device Configuration (CLDC) 1.1. You can
easily integrate third-party emulators, including WTK, for a robust testing
environment. In the same way, Eclipseme adds J2ME support to Eclipse.

354

Assets
3D World

Program DevelopmentProgram Development

• Test & Debug
Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

Game Platform

Sound

2D Graphics

Network

Proprietary

3D Graphics

D
istribute

Operator/Maker supplied SDKOperator/Maker supplied SDK

••EmulatorEmulator

••SimulatorSimulator

••Real deviceReal device

Screen Image: Sega/Wow Entertainment RealTennis.™

For testing and debugging you need to use an SDK supplied by either the operator
or the handset maker. These SDKs contain an “emulator”, usually a PC application
that provides the functional environment of the real device. In at least one case,
Sony Ericsson, the SDK includes a way to link to a real handset allowing
applications to be tested and debugged on the real device. This is the ideal
arrangement.

The Sun Java™ Wireless Toolkit for CLDC, mentioned earlier, includes a generic
emulator for MIDP/CLDC. Several operators (e.g. Vodafone Global, Sprint,
Softbank) and handset makers (e.g. Sony Ericsson) make their SDK’s by
customizing WTK even though the JVM, MIDP & 3D renderer implementations in
WTK are often not those used in the real phones.

This is a common problem with “emulators”. They can be quite different from the
real devices and there is typically no relationship between performance in an
“emulator” and performance on the real device.

355

Java Wireless Toolkit 2.5.1 for CLDCJava Wireless Toolkit 2.5.1 for CLDC

KToolBar

Handset Emulator

This shows the Sun Java™ Wireless Toolkit 2.5.1 for CLDC mentioned in previous
slides. It is a simple toolkit for building and running MIDP applications. You need to
use an external editor for editing the source and there is no support for debugging
except for skid marks (System.out.print). You can use KToolBar to build and run
your MIDlet with the push of a button, saving you from having to write a make file
and type long commands at the command line.

Demonstrate compiling & running!!!

Two problems must be noted with the WTK version 2.2 emulator. It will load GIF
files as textures. This is permitted but not required by the M3G spec. As I noted
earlier, you should avoid GIF files. Second it will fail to load M3G files with
KeyframeSequence values encoded as shorts. They must be encoded as floats to
keep WTK happy. As of this writing, I do not know if these problems have been
fixed in more recent versions.

The download URLs for Wireless Toolkit 2.5.1 and many other WTK-based SDK’s
are given on the SDK slides at the end of the presentation. WTK 2.5.1, released in
June is the first version available for Linux as well as Windows.

356

NetBeans + Mobility Pack + SE SDKNetBeans + Mobility Pack + SE SDK

This shows NetBeans 5.5 with the Mobility Pack and Sony Ericsson’s WTK-based
SDK. NetBeans can be use for both Java and C/C++ applications. Within the IDE
you can build, run and debug your Java code.

The emulator in Sony Ericsson’s SDK, in common with many others, can be used to
run and debug MIDlets that you are developing with NetBeans. You can also use
NetBeans or Eclipse to debug MIDlets running on a real SE phone.

Demonstrate Platform Manager, changing code, building & debugging.

You will get lots of notices from Windows Firewall as the debuggers and proxies
connect up.

Instructions for connecting phones for SE’s “On Device Debug”, are somewhat
lacking. You must remove the Sony Ericsson PC Suite from your PC unless you can
find some way to turn it off. When PC Suite is running it hides all the ports and
therefore the device from the debug connection proxy.

357

Java ME DebuggingJava ME Debugging

JPDA Debugger

Debug Agent

KVM in Emulator

Socket Connection
JavaDebugWireProtocol

Socket Connection
KvmDebugWireProtocol

Debug Agent

KVM on Device

Connection Proxy

E
m

ulator

O
n D

evice

NetBeans
Eclipse, JBuilder

Serial Connection
SerialLineIP

JPDA Debugger

To make KVM run with JPDA-compatible debugger IDEs without a huge memory
overhead, a Debug Agent (also known as debug proxy) is interposed between the
KVM and the JPDA-compatible debugger. The Debug Agent performs some of the
debug commands on behalf of the JVM and allows many of the memory-consuming
components of a JPDA-compliant debugging environment to be processed on the
development workstation instead of the KVM. This reduces the memory overhead
that the debugging interfaces have on the KVM and target devices. Communication
between the Debug Agent and the KVM uses the KDWP, which is a strict subset of
the JDWP.

Here we first see the processes involved in debugging on an emulator and then on
a real device.

358

AgendaAgenda

• J2ME game development

• Tools

• COFFEE BREAK

• The structure of a MIDlet

• A walkthrough a sample game

• Why mobile game development is hard

• Publishing your content

359

AgendaAgenda

• J2ME game development

• Tools

• COFFEE BREAK

• The structure of a MIDlet

• A walk through a sample game

• Why mobile game development is hard

• Publishing your content

360

• Derived from MIDlet,
• Overrides three methods

• And that’s it.

The Simplest MIDletThe Simplest MIDlet

Canvas.paint() performs rendering
using Graphics3D
object.

MIDlet.StartApp()

[initialize]
[request redraw]

MIDlet.destroyApp()

[shut down]
Ｔｉｄｙ ｕｐ； exit
MIDlet.

Create canvas; load
world.

We’ve looked at creating assets and at tools to use for writing and
debugging the programs. What does an actual program look like?

Here we’ll look at the structure of a MIDlet, beginning with the simplest
possible example? It’s a class derived from MIDlet that overrides just 3
methods.

startApp just creates a canvas for display and loads the world to display; it
requests a redraw which results in the overridden paint method being called
which renders a view to the screen.

destroyApp does some tidying up. And that’s it.

Of course, that’s not very interesting. We don’t get any updates, and the
display is static, but it shows the absolute basics. By modifying the world and
repainting, you can easily create animated 3D scenes. Let’s have a look at
the structure of a MIDlet with an update loop.

361

A More Interesting MIDletA More Interesting MIDlet
MIDlet.StartApp()

Create canvas; load
world, start update
thread

draw

Canvas.paint()

performs rendering
using Graphics3D
object

initialize

user input

scene update

request
redraw

wait

shut down

Get any user input via
Canvas.commandListener

Game logic, animate,
align if necessary

Wait to ensure
consistent
frame rate

MIDlet.destroyApp()
Ｔｉｄｙ ｕｐ；
exit MIDlet

Exit request

Update loop.

Runnable.run()

Read user input,
update scene

Flow-chart courtesy of Sean Ellis, ARM

Here’s the diagram updated to shown the main update loop. The MIDlet
implements the Runnable interface, which means providing one more
method, run() which contains the update loop.

The update loop reads user input, updates the scene, requests a redraw and
then waits until the next frame is scheduled. Waiting ensures a consistent
frame rate.

362

MIDlet PhasesMIDlet Phases

• Initialize

• Update

• Draw

• Shutdown

Let’s look at each of these phases in more detail.

363

InitializeInitialize

• Load assets: world, other 3D objects, sounds, etc.

• Find any objects that are frequently used

• Perform game logic initialization

• Initialize display

• Initialize timers to drive main update loop

Initialization gets us into a state where we can start the game.

First, we load all the assets we need, both for the 3D scene and any other UI
elements, music, sounds, etc.

We should then look up any frequently used objects in the World, to save
time in the main game loop. For example, we can find the player’s object,
any non-player characters, etc. Of course, we need to initialize anything that
the actual game logic requires (monster strengths, high-score tables,
network connections to other players, or whatever).

Then we initialize the display, and the timers we use to drive the main
update loop, and kick off our first update.

364

UpdateUpdate

• Usually a thread driven by timer events

• Get user input

• Get current time

• Run game logic based on user input

• Game logic updates world objects if necessary

• Animate

• Request redraw

The update is usually attached to timer and other events. Obviously, we
need to respond to the user, so getting any input from them is the first thing
to do, and get the current time. We get the current time once to avoid
problems if the various steps here take significant time.

The next thing to do is to run the game logic based on the user input. While
this will be different for each game, the net effect of this is that it updates the
state of objects in the world as necessary. Opened a door? Rotate the door
object. Picked up a health bonus? Make it invisible, update your health,
change size of health bar. Call animate to ensure that any animations
actually run, then request a redraw.

365

Update TipsUpdate Tips

• TIP: Don’t create or release objects if possible

• TIP: Call system.gc() regularly to avoid long
pauses

• TIP: cache any value that does not change every
frame; compute only what is absolutely necessary

If at all possible, don’t create or release objects in the main loop. If you do have to
do this, call system.gc() regularly to ensure that you don’t get large garbage
collections that ruin the flow of the game. Cache any values that are not changing
every frame in order to avoid unnecessary recomputation.

366

DrawDraw

• Usually on overridden paint method

• Bind Graphics3D to screen

• Render 3D world or objects

• Release Graphics3D

– …whatever happens!

• Perform any other drawing (UI, score, etc)

• Request next timed update

After each update, we request a redraw. This usually results in a call to an
overridden paint method on a canvas. This is fairly simple – we just need to
bind the Graphics3D to the screen, render the world, and release it.
Remember that there is only one Graphics3D so we need to release it
whatever happens! (The best way to do this is in a finally clause.) Then we
can do any 2D UI drawing (score, health, etc) and request another update in
an appropriate amount of time.

367

Draw TipsDraw Tips

• TIP: Don’t do 2D drawing while Graphics3D is
bound

One restriction is that you can’t do 2D drawing while the Graphics3D is bound to the
screen, so you have to do it either before or after (or both).

368

ShutdownShutdown

• Tidy up all unused objects

• Ensure once again that Graphics3D is released

• Exit cleanly

• Graphics3D should also be released during
pauseApp

On shutdown, we just need to tidy up. It’s usually friendly to ensure that the
Graphics3D really has been released before exiting. This should also
happen if a call is made to pauseApp, since the new application that is taking
over the screen may also need to use 3D.

369

MIDlet ReviewMIDlet Review

draw

Graphics3D object
performs rendering

initialize

user input

scene update

request
redraw

wait

shut down

Get any user input,
network play, etc.

Game logic,
animate, align if
necessary

Wait to ensure
consistent
frame rate

Release assets,
tidy up

Exit request

Update loop.

Don’t create/destroy
objects if possible

Throttle to consistent
frame rate

Keep paint() as simple
as possible

Be careful with threads

Diagram courtesy of Sean Ellis, ARM

Set up display, load
assets, find commonly
used objects, initiate
update thread.

So, here’s a diagram recapping what we have learned.

Note that if nothing is happening, we don’t need to continually redraw the
screen – this will reduce processor load and extend battery life. Similarly,
simple scenes on powerful hardware may run very fast; by throttling the
framerate to something reasonable, we extend battery life and are more
friendly to background processes.

Let’s look at a real example

370

AgendaAgenda

• J2ME game development

• Tools

• COFFEE BREAK

• The structure of a MIDlet

• A walkthrough a sample game

• Why mobile game development is hard

• Publishing your content

371

Demo: GhostHuntDemo: GhostHunt

Let’s have a look at the MIDlet in action before diving into the code.

372

GhostHunt ModelsGhostHunt Models

Whack the ghosts & their houses with this plasma ball using this plasma racquet.
Occasionally you will receive a power up and the racket changes to this. There are
obstacles in the form of crosses. The game takes place on this simple stage.

All models were created in Lightwave and exported to separate M3G files.

373

GhostHunt AssetsGhostHunt Assets

Here are all the assets both 2D & 3D used by GhostHunt. Each asset is in a
separate file.

374

GhostHuntGhostHunt

• Loads data from .m3g and .png files

• Arrow keys move a “plasma” racquet side to side
to hit a “plasma” ball

• Ball hits deform ghost houses and make the
ghosts disappear

• Uses Immediate mode

• Uses 2D for sky and scores

GhostHunt uses Immediate mode so as to easily have full control over all the
objects.

The course notes for this course on the official DVD have a walkthrough of a
Retained mode example, UsingM3G instead of GhostHunt. An attachment to the
course notes contains source code for both UsingM3G and GhostHunt. The course-
notes attachment also contains HI’s M3G Tutorial which is also retained-mode
based. Please study UsingM3G or M3G Tutorial at your leisure to learn about using
Retained mode.

375

GhostHunt FrameworkGhostHunt Framework

• MainApp.java – MIDlet specialization;
handles initialization & data loading; contains
run thread

• SubApp.java – canvas specialization

• Math2.java – math library

376

GhostHunt: initializationGhostHunt: initialization
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.m3g.*;

class MainApp extends MIDlet implements CommandListener {
MainApp() {
exit_command = new Command("Exit" , Command.EXIT , 0);
select_command = new Command("Debug", Command.SCREEN, 0);

/* Create canvas */
subapp = new SubApp ();
subapp.addCommand (exit_command);
subapp.addCommand (select_command);
subapp.setCommandListener (this);

SystemInit ();
prog_number = PROG_SPLASH;
WorkInit ();
GameInit ();
DataLoad ();

}

Here’s the MainApp constructor. The interesting parts will be highlighted in green as
we step through:

<Click to animate> First, soft key commands for exit and debug are set up;

<Click> At these 4 lines the canvas is created, the soft key commands are added
and MainApp is set up as the listener for those commands.

<Click> This function loads the data. The preceding initialization functions simply
initialize a bunch of instance variables. There is nothing worth studying so we’ll
move on and look at data loading.

377

GhostHunt: loading dataGhostHunt: loading data

DataLoad() {
try {
image [TITLE_SP] = Image.createImage ("/title.png");
…

} catch (Exception e) {
System.out.println ("------------- SP Load");
ApplicationEnd ();

}

try {
load_data [RACKET_DATA] = Loader.load("/racket.m3g");

} catch (Exception e) {
…

}
mesh [RACKET_DATA] = (Mesh)load_data [RACKET_DATA][0];
vbuf [RACKET_DATA] = mesh [RACKET_DATA].getVertexBuffer();
ibuf [RACKET_DATA] = mesh [RACKET_DATA].getIndexBuffer(0);
app [RACKET_DATA] = mesh [RACKET_DATA].getAppearance(0);
…

}

<Click> All of the MIDP images are loaded with Image.createImage.

<Click> Notice that exceptions generated due to a loading error are caught and the
MIDlet is terminated.

<Click> M3G Loader.load is used to load all .m3g files. All returned Object3Ds are
stored in the load_data array.
<Click> Again notice that exceptions are caught.

<Click> After a successful load, the mesh is stored in the global array of meshes
and references to the mesh’s various components, are stored in other appropriate
arrays.

378

GhostHunt: MIDlet functionsGhostHunt: MIDlet functions

public void startApp () {
thread = new Thread () {
public void run () {
GameStart ();

}
};
// Call the new thread’s run method.
thread.start ();

}

public void pauseApp ()
{

thread = null;
}

public void destroyApp (boolean unconditional)
{

ApplicationEnd();
}

Here are the overrides of startApp(), pauseApp() & destroyApp.

startApp activates the Game Start thread and saves a reference to the thread in an
instance variable.

pauseApp & destroyApp are very simple. pauseApp kills the Game Start thread.
When the MIDlet manager wants to resume the MIDlet, it calls startApp.

DestroyApp requests the MIDlet to exit. If unconditional is true, the MIDlet must exit.

379

GhostHunt: GameStart threadGhostHunt: GameStart thread

void GameStart () {
Thread thisThread = Thread.currentThread();
Display.getDisplay (this).setCurrent (subapp);
while (thread == thisThread) {
prev_time = now_time;
do {
now_time = System.currentTimeMillis ();

} while ((now_time - prev_time) < SYSTEM_SPEED);
loop_rate = (now_time - prev_time) / SYSTEM_SPEED;
if (loop_rate > 5.0f) { /* More than loop rate limit */
loop_rate = 5.0f;

}
/* do game stuff here … */

try {
Thread.sleep (1);

} catch (InterruptedException e) {
ApplicationEnd ();

}
}

}

This is the GameStart thread, the MIDlet’s heart.

<Click>We have an infinite loop which exits when the instance variable thread no
longer contains a reference to the current thread that is saved before the loop is
entered. This is the recommended way to kill off a thread in MIDP as it avoid issues
with thread interruption.

<Click> At the end of the loop, it sleeps to give other threads a chance to run.

<Click>The loop throttles itself to the predefined SYSTEM_SPEED to provide
somewhat predictable performance on different hardware and implementations. and
maintains the scene update rate (loop rate) even when drawing is slow.

<Click> At the heart of the loop here, the game functions, which are shown on the
next slide, are called.

380

GhostHunt: “do game stuff here ...”GhostHunt: “do game stuff here ...”

void GameStart () {
…
switch (prog_number) {

case PROG_SPLASH: /* Splash */
SplashProg ();
break;

case PROG_TITLE: /* Title */
TitleProg ();
break;

case PROG_GAME: /* Game */
GameProg ();
break;

}
…

}

This is the code that sits at the comment do game stuff here … on the
preceding slide. It simply calls a function appropriate to the current stage as
indicated by prog_number. SplashProg would draw the splash screen, if we had one.
Instead it simply advances prog_number to PROG_TITLE.

TitleProg watches for the Fire key, while blinking the letters “PUSH START” on and
off. After the fire key has been pressed, it does some game initialization and
advances prog_number to PROG_GAME.

<Click> GameProg is the real meat. It uses key input to move the plasma racquet,
animates all the other objects, computing collisions on the way and then draws the
scene.

381

GhostHunt: TitleProgGhostHunt: TitleProg

void TitleProg ()
{
key_dat = subapp.sys_key; /* Get keypresses */

if ((key_dat & KEY_FIRE) != 0) /* it is fire key */
{
racket_tx = 0.0f;
racket_tz = 0.0f; /* for initializing camera */
WorkInit ();
GameInit ();
…
prog_number = PROG_GAME;

}

/*------ Updating------*/
start_loop++;

/*------ Drawing ------*/
subapp.repaint ();

}

We’ll look at TitleProg as it is relatively simple, making it easy to see the relationship
with our Canvas override SubApp.

<Click> First of all any key presses are retrieved from our canvas, subapp. These
are checked for the Fire key. Then the “scene” is updated.
<Click> In this case, scene update consists of incrementing the loop counter for
blinking the letters “Push Start”.
Finally the “scene” is drawn by calling supapp’s repaint method <Click>.

The structure of GameProg is identical. Of course the key handling is different and
“scene” update is much more complex. We’ll come back to GameProg later.

First we’ll look at SubApp.

382

SubApp: GhostHunt’s CanvasSubApp: GhostHunt’s Canvas

public class SubApp extends Canvas {
int cnt;
static int keydata [] = { UP, LEFT, RIGHT, DOWN, FIRE };
int length = keydata.length;

static int sys_key = 0;

synchronized public void paint (Graphics graphics) { }

…

protected void keyPressed (int key) { }

protected void keyRepeated (int key) { }

protected void keyReleased (int key) { }
}

The Canvas deals with painting the scene and capturing key presses. The key
methods of SubApp are shown on this slide. All the other methods are in the service
of the paint() method.

<Click> You will recall that paint() is called by the system after the MIDlet has
called the repaint() method and repaint is called by MainApp.TitleProg and
MainApp.GameProg.

383

GhostHunt: key handlingGhostHunt: key handling

static int keydata [] = { UP, LEFT, RIGHT, DOWN, FIRE };

protected void keyPressed (int key) {
for (cnt = 0; cnt < length; cnt++) { /* Search key data. */
if (getGameAction (key) == keydata [cnt]) {
sys_key |= (1 << cnt);

}
}

}

protected void keyReleased (int key) {
for (cnt = 0; cnt < length; cnt++) { /* Search key data. */
if (getGameAction (key) == keydata [cnt]) {
sys_key &= (~(1 << cnt));

}
}

}

Before looking at paint(), we’ll take a quick look at how key presses are handled.
The key press is converted to the corresponding MIDP game action <Click> and if
that action exists in our keydata array, the corresponding bit <Click> is set in
sys_key. Please study the details for yourselves.

384

SubApp paint MethodSubApp paint Method

synchronized public void paint (Graphics graphics) {
/*------ select drawing process ------*/

switch (MainApp.prog_number)
{
case MainApp.PROG_SPLASH:

SplashDraw (graphics); /* Splash */
break;

case MainApp.PROG_TITLE:
TitleDraw (graphics); /* Title */
break;

case MainApp.PROG_GAME:
GameDraw (graphics); /* Game */
break;

}

Math2.Rand ();
}

The paint method is pretty simple. The drawing method appropriate to the stage of
the game is called and the random number generator is forced to update its seed.

SplashDraw doesn’t do anything and TitleDraw uses standard MIDP drawing. Since
we’re focused on M3G, we’ll look at GameDraw.

385

GameDrawGameDraw

void GameDraw (Graphics graphics)
{

…
graphics.drawImage (MainApp.image[MainApp.BG_SP], 0, 0,
Graphics.TOP | Graphics.LEFT); /* 2D background sprite */

MainApp.g3d.bindTarget (graphics);
MainApp.g3d.clear (MainApp.background);

/*------ camera setup ------*/
…
/*------ draw 3D objects ------*/
…

MainApp.g3d.releaseTarget ();

/*------ draw score, items etc. in 2D ------*/
…

}

GameDraw first draws <Click> a 2D background sprite – which is the sky.
Then it binds <Click> the Graphics3D instance to the MIDP graphics target and
begins 3D drawing. The first step <Click> is to clear the buffers by calling
Graphics3D.clear(). MainApp.background is set to only clear the depth buffer. We
avoid spending time clearing the color buffer because (a) the sky has already
been drawn and (b) our Ground object will fill the rest of the buffer.

GameDraw then draws the rest of the 3D objects, <Click> releases the Graphics3D
and draws the score, acquired items and performance data using 2D drawing.

This combination of 2D & 3D works very well when a software renderer underlies
M3G but, as was noted earlier, may be less than optimal when a GPU underlies
M3G.

386

GameDraw: camera set-upGameDraw: camera set-up

MainApp.ctrans.setIdentity();
MainApp.ctrans.postTranslate(MainApp.camera_tx,

MainApp.camera_ty,
MainApp.camera_tz);

MainApp.ctrans.postRotate(MainApp.camera_ry,
0.0f, 1.0f, 0.0f);

MainApp.ctrans.postRotate(MainApp.camera_rx,
1.0f, 0.0f, 0.0f);

MainApp.ctrans.postRotate(MainApp.camera_rz,
0.0f, 0.0f, 1.0f);

MainApp.g3d.setCamera(MainApp.camera, MainApp.ctrans);

To set up the camera, GameDraw <Click> sets the camera transform for the
current position and orientation of the camera. GhostHunt calculates the orientation
by computing a rotation around each axis.

Then it sets its camera <Click> and this transform into the Graphics3D instance.

Remember that in Immediate mode, the camera’s node transform is ignored.

387

GameDraw: draw 3d objectsGameDraw: draw 3d objects
for (count = 0; count != MainApp.GHOST_MAX; count++)
{

if (MainApp.ghost_draw_flag [count] != 0) {
data = count * 2;
x = MainApp.ghost_xz [data + 0];
z = MainApp.ghost_xz [data + 1];
r = MainApp.ghost_r [count];
trans = MainApp.trans[MainApp.GHOST_M + count];

trans.setIdentity ();
trans.postTranslate (x, 0.0f, z);
trans.postRotate (r, 0.0f, 1.0f, 0.0f);
trans.postScale (MainApp.ghost_scale [count],

MainApp.ghost_scale [count],
MainApp.ghost_scale [count]);

MainApp.g3d.render (MainApp.vbuf [MainApp.GHOST_DATA],
MainApp.ibuf [MainApp.GHOST_DATA],
MainApp.app [MainApp.GHOST_DATA],
trans);

}
}

Here we see how the ghosts are drawn. The drawing of all other objects is very
similar.

All MainApp variables are set by GameProg which we saw being called regularly by
the Game Start thread. We’ll study this in a minute.

<Click> Loop through each possible ghost checking a flag to see if it should be
drawn.
Retrieve <Click> position and rotation information from the arrays of ghost data in
MainApp, set up <Click> our transform, and <Click> draw the submesh that we
saw loaded earlier.

If you look at the source code, you will notice that the last 3D object drawn is the
Ground object. This is an optimization to ensure that pixels at the locations of
foreground objects are drawn only once (not counting times when more than 1
foreground object occupies the same pixel locations).

388

GameProgGameProg
void GameProg() {

key_dat_old = key_dat; /*---- Get key data ----*/
key_dat = subapp.sys_key;

CameraWorldSet ();
if (Math2.DistanceCalc2D (0.0f, 0.0f, ball_tx,
ball_tz) > 1.5f) {
CameraSet (15.0f * (1.0f / loop_rate));

}

if (freeze_time == 0) /* The Game is not frozen */ {
/*------- do game calculations ------*/
…

}
EffectProg ();
subapp.repaint ();
…

}

At last, we can look at the actual game processing. I’m going to focus on the 3D
parts. There are many other parts to GameProg that I will not show today. Please
study the source code.

<Click> CameraWorldSet calculates the camera position and orientation so it has a
good view of the racquet and the ball.
<Click> CameraSet is called when the ball is far away in order to smooth the
camera rotation so the viewer doesn’t become seasick.
If the game is not in a frozen state then <Click> game calculations are performed.

Finally <Click> EffectProg is called to handle effects like making ghosts and ghost
houses disappear, and then
<Click> the canvas is told to repaint itself.

389

GameProg: do game calculationsGameProg: do game calculations
RacketProg (key_dat, key_dat_old); /*-- Plasma Racket --*/

if (racket_break_flag != 1) /*- Racket not destroyed -*/
BallProg ();

GhostProg ();

if (racket_break_flag != 1) /*- Racket not destroyed -*/ {
BallHit (); /*--- Collision Decision ---*/
RacketBreakCheck ();

}

house = HouseCheck (); /*------ Final Check ------*/
if (house == 0) /* All ghost houses are destroyed. */ {
/*------ make all remaining ghosts disappear ------*/
…
freeze_time = (int)(MOJI_CLEAR_WAIT * (1.0f/loop_rate));
moji_number = MOJI_CLEAR;

}
}

Here is the heart of the game calculations. We only have time to look at a couple of
items.

We’ll begin with <Click> BallProg and then look at <Click> BallHit.

390

BallProg: compute new ball positionBallProg: compute new ball position
void BallProg () {
…
ball_speed_rate = ball_speed * loop_rate;

dis = Math2.DistanceCalc2D(ball_tx, ball_tz, 0.0f, 0.0f);
pd = Math2.DistanceCalc2D(ball_tx2, ball_tz2, 0.0f, 0.0f);
if ((dis > 2.0f) && pd > dis)) /* Homing is necessary */ {
angle = Math2.AngleCalc (ball_tx, ball_tz, 0.0f, 0.0f);
if (Math2.DiffAngleCalc (angle, ball_vec) > 0.0f) {
ball_vec -= (0.6f * loop_rate);

} else {
ball_vec += (0.6f * loop_rate);

}
}
Math2.RotatePointCalc (ball_speed_rate, ball_vec);
ball_tx2 = ball_tx; /* Save the previous coordinates */
ball_tz2 = ball_tz;
ball_tx += Math2.calc_x;
ball_tz += Math2.calc_y;

}

BallProg computes <Click> a new ball position based on the ball speed and
direction vector.

<Click> The new position is saved in MainApp instance variables.

<Click> Before computing a new position, BallProg checks to see if the ball is
moving too far away from the player.

<Click> If so, the ball’s direction vector is adjusted here.

391

BallHitBallHit
void BallHit () {
…
/*------ racket collision detection ------*/
…
/*------ ghost house collision detection ------*/
…
/*------ ghost collision detection ------*/
…
/*------ obstacle (cross) collision detection ------*/
…
/*------ warp hole collision detection ------*/
…
/*------ check for outside the field ------*/
…

}

BallHit checks for collisions between the ball and all the game objects, the racquet,
ghosts, ghost houses etc. They are all quite similar.

We’ll look at just one: <Click> racquet collision.

392

BallHit: racket collision detectionBallHit: racket collision detection
void BallHit () {
… /* final static int Math2.ANGLE = 360 */
dist = Math2.DistanceCalc2D (racket_tx, racket_tz

ball_tx, ball_tz);
if (dist <= BALL_RACKET_DISTANCE) {
angle = Math2.AngleCalc (ball_tx, ball_tz, racket_tx,

racket_tz);
diff = Math2.DiffAngleCalc(angle, ball_vec

+ (Math2.ANGLE/2.0f));
if (Math2.Absf (diff) > (Math2.ANGLE / 4.0f)) {
/* Feasible angle for collision */
ball_vec = angle + (diff * -1.0f);

Math2.RotatePointCalc (ball_speed_rate, ball_vec);
ball_tx = ball_tx2 + Math2.calc_x;
ball_tz = ball_tz2 + Math2.calc_y;

}
}
…

}

<Click> First the distance between the ball and the racquet is calculated.

<Click> If close enough for a possible collision, the angle between ball & racquet is
compared with the ball vector.

<Click> If the angle is sufficient, a collision is deemed to have happened and the
new ball vector is computed.

393

Room for improvement?

394

Improvement 1: simpler drawingImprovement 1: simpler drawing
for (count = 0; count != MainApp.GHOST_MAX; count++)
{

if (MainApp.ghost_draw_flag [count] != 0) {
…
MainApp.g3d.render (MainApp.vbuf [MainApp.GHOST_DATA],

MainApp.ibuf [MainApp.GHOST_DATA],
MainApp.app [MainApp.GHOST_DATA],
trans);

MainApp.g3d.render (MainApp.mesh[MainApp.GHOST_DATA],
trans)

}
}

If you recall, ProgDraw() uses the sub-mesh variant of Graphics3D.render(). This
requires that many arguments must be passed across the KVM Native Interface
(KNI) and also that references to all of the mesh components be stored in the Java
heap.

In this case, the same result <Click> can be achieved by using the node variant of
Graphics3D.render().

Could GhostHunt use the world variant of Graphics3D.render()? Yes it could. It
would not result in much performance gain in this case as a graph of this game’s
scene would have only a single level.

395

Improvement 2: no busy waitingImprovement 2: no busy waiting
while (thread == thisThread) {

prev_time = now_time;
do {
now_time = System.currentTimeMillis ();

} while ((now_time - prev_time) < SYSTEM_SPEED);
loop_rate = (now_time - prev_time) / SYSTEM_SPEED;
if (loop_rate > 5.0f) { /* More than loop rate limit */

loop_rate = 5.0f;
}

/* do game stuff here … */
try {

Thread.sleep (1);
} catch (InterruptedException e) {

ApplicationEnd ();
}

}

You will recall that the run loop in GameStart did busy waits. We can modify it so
that it sleeps which is usually more system friendly.

396

Improvement 2: no busy waitingImprovement 2: no busy waiting
while (thread == thisThread) {

prev_time = now_time;
do {
now_time = System.currentTimeMillis ();

} while ((now_time - prev_time) < SYSTEM_SPEED);
now_time = System.currentTimeMillis();
long sleep_time = SYSTEM_SPEED + prev_time - now_time;
if (sleep_time < 0)

sleep_time = 1; /* yield anyway so other things can run */
try {

Thread.sleep(sleep_time);
} catch (InterruptedException e) {

ApplicationEnd ();
}
if (thread != thisThread) return;
now_time = System.currentTimeMillis ();
loop_rate = (now_time - prev_time) / SYSTEM_SPEED;
if (loop_rate > 5.0f) { /* More than loop rate limit */

loop_rate = 5.0f;
}

/* do game stuff here … */
}

In current CLDC & CDC implementations, only one application at a time can run so
what this buys you is battery friendliness. However CLDC & CDC will soon feature
multi-tasking virtual machines (MVM) so will become even more important to not
busy wait.

Note 1: it is necessary to check the variable “thread” to see if the main thread
requested an exit while this thread was sleeping because variables used by /* do
game stuff here … */ may have been freed. We could use Thread.interrupt() to
terminate the thread but that is not supported in CLDC 1.0 and old habits die hard.

Note 2: the “thread” check should be right after the sleep for best performance but
then I would have had to modify the animation on these slides. That is too painful
given the unbelievable number of bugs and misfeatures in this part of PowerPoint.

397

Programming TricksProgramming Tricks

• Use per-object fog to highlight objects

• Use black fog for night time

• Draw large background objects last

• Draw large foreground objects first

• Divorce logic from representation

You always knew there was a reason for per-object Fog!!

Note: When rendering in Retained mode (World, Group) most implementations will
attempt to sort the submeshes into the most effective order for the underlying
renderer.

One tip that works well is to divorce the logic from the representation. Instead of
rotating a door object to open it, just start the “Open Door” animation. This creates
fewer dependencies between the assets and the logic, and allows the asset
designers to use rotating, sliding, dilating or exploding doors as they see fit.

398

AgendaAgenda

• J2ME game development

• Tools

• COFFEE BREAK

• The structure of a MIDlet

• A walkthrough a sample game

• Why mobile game development is hard

• Publishing your content

399

Why Mobile Game Development is
Hard
Why Mobile Game Development is
Hard
• Device Fragmentation
• Device Fragmentation
• Device Fragmentation

– Porting platforms and tools are available:
• www.tirawireless.com, www.javaground.com

– Porting and testing services are available:
• www.tirawireless.com

– For some self-help using NetBeans see
• J2ME MIDP Device Fragmentation Tutorial with Marv The

Miner

The number one problem developers face is device fragmentation.

The second problem is … <Click> and the third problem is … <Click>

Fragmentation occurs because operators, handset makers and even infrastructure
vendors are struggling to differentiate their wares to fend off looming
commoditization and because of poor standards and implementations. The result is
that content makers have to make sometimes hundreds of SKUs (Stock Kontrol
Units) of a single game.

This is an interesting paper on how to alleviate some of the problems when using
NetBeans. J2ME MIDP Device Fragmentation Tutorial with Marv The Miner -
http://www.netbeans.org/kb/articles/tutorial-j2mefragmentation-40.html

400

Why Mobile Game Development is
Hard
Why Mobile Game Development is
Hard

• Severe limits on application size
– Download size limits

– Small Heap memory

• Small screens

• Poor input devices

• Poor quality sound

• Slow system bus and memory system

Download size limits are increasing thanks to 3G but 256k is still a common size
limit.

Poor Input Devices: Input devices are typically limited to the 12 key-pad plus a
navigation array and a few extra buttons. Yes, game console style pads are coming
but they are still the rare exception.

401

Why Mobile Game Development is
Hard
Why Mobile Game Development is
Hard
• No floating point hardware

• No integer divide hardware

• Many tasks other than application itself
– Incoming calls or mail

– Other applications

• Short development period

• Tight $100k – 250k budget

402

MemoryMemory

• Problems
①Small application/download size

②Small heap memory size

• Solutions
– Compress data ①
– Use single large file ①
– Use separately downloadable levels ①
– Limit contents ②

– Optimize your Java: combine classes, coalesce var’s,
eliminate temporary & local variables, … ②

Let’s look at some of the issue in detail and see some solutions.

…

There is a > 70 byte overhead per file in the JAR file, an overhead which is
dependent on the path length. Also zip compression does not work across files.

At least one tool is available for automatic optimization of heap and file sizes:
Innaworks mBooster: http://www.innaworks.com/mBooster.html. People from this
company gave an interesting talk at GDC 2007 on “Pushing the size and
performance of JavaME games on today’s handsets”. Unfortunately I’ve not been
able to find the slides on-line.

Note that in some implementations Loader.load(“/img.png”) will load the image file
via a MIDP image because native code is unable to read from a java stream. This
requires more memory during loading. In such cases, use a .m3g file containing an
Image2D instead.

403

PerformancePerformance

• Problems
① Slow system bus & memory

② No integer divide hardware

• Solutions
– Use smaller textures ①
– Use mipmapping ①

– Use byte or short coordinates and key values ①
– Use shifts ②
– Let the compiler do it ②

404

User-Friendly OperationUser-Friendly Operation

• Problems
– Button layouts differ

– Diagonal input may be impossible

– Multiple simultaneous button presses not recognized

• Solutions
– Plan carefully

– Different difficulty levels

– Same features on multiple buttons

– Key customize feature

What is most important in the game is the operation, which functions as a
communication line between the player and the game. Even within the same group
of handsets, the sense of operation differs by how the buttons are placed, which as
a result changes the difficulty of the game itself. These issues must be considered
very carefully from the planning stage.

When porting onto other types of handsets, game operation is one of the items
that generates problems in the development. For example, diagonal input may have
worked on the original handset whereas it may be unavailable on the handset to
which the game is being ported. Also there are some cases where handsets fail to
recognize more than one button being pressed at the same time.

I cannot provide you with an overall solution; however, I would like to introduce you
some examples of how HI coped with these issues in our past content.
1) Types of handset can be discerned to diversify the difficulty of the contents.
2) Let the player play at a lower difficulty level when diagonal input is ineffective by
keeping a diagonal input flag in the program. When the diagonal input becomes
effective, then the game can switch to its normal level of the difficulty.
3) Allocate the same features, such as “jump” and “attack” to multiple buttons or
embed a key customize feature.

With these countermeasures, the problems can be alleviated to an extent.
Depending on the types of the game, there may be more efficient ways to solve the
problem. This is where planners and programmers can leverage their ideas.

405

Many Other TasksMany Other Tasks

• Problem
– Incoming calls or mail

– Other applications

• Solution
– Create library for each handset terminal

406

AgendaAgenda

• J2ME game development

• Tools

• COFFEE BREAK

• The structure of a MIDlet

• A walkthrough a sample game

• Why mobile game development is hard

• Publishing your content

407

Publishing Your Content AgendaPublishing Your Content Agenda

• Publishing your content
– Preparing contents for distribution

– Getting published and distributed

408

Preparing for Distribution:
Testing
Preparing for Distribution:
Testing
• Testing on actual handsets essential

– May need contract with operator to obtain tools
needed to download test MIDlets to target handset.

– May need contractor within operator’s region to
test over-the-air aspects as handset may not work
in your area

• Testing services are available
– e.g. www.tirawireless.com

409

Preparing for Distribution:
Signing
Preparing for Distribution:
Signing
• Java has 4 security domains:

– Manufacturer Operator

– 3rd Party Untrusted

• Most phones will not install untrusted MIDlets
– If unsigned MIDlets are allowed, there will be limits

on access to certain APIs

• Operators will not allow untrusted MIDlets in
their distribution channels

J2ME phones can have multiple trusted 3rd party domains.

Examples of API access limitations:
• no access to the phone book
• certain API requests will have to be authorized by the user each time they

are called

410

Preparing for Distribution:
Signing
Preparing for Distribution:
Signing
• Your MIDlet must be certified and signed

using a 3rd party domain root certificate

• Method varies by operator and country
– Many makers and operators participate in the Java

Verified Program to certify and sign MIDlets for
them

• To get certification, MIDlet must meet all
criteria defined by JVP and must pass testing

URL is www.javaverified.com

After successful testing the JVP signs the MIDlet and returns your signed MIDlet to
you.

Native applications using OpenGL need to go through similar programs such as
True BREW.

411

Publishing Your Content AgendaPublishing Your Content Agenda

• Publishing your content
– Preparing contents for distribution

– Getting published and distributed

The following section is useful for all mobile game developers not just J2ME/M3G
developers.

412

Publishing Your Content:
Distribution Channels
Publishing Your Content:
Distribution Channels
• Game deck

– e.g. “More Games button”

• Off deck, in portal
– e.g. Cingular’s Beyond MEdia Net

• Off deck, off portal
– Independent of operator

– Premium SMS or web distribution

413

Distribution Channels:
Game Deck
Distribution Channels:
Game Deck
• Customers find you easily

– but many carriers only allow a few words of text to
describe and differentiate the on-deck games

• Operator does billing
– No credit worries

• Operator may help with marketing
– or they may not

• Shelf space limited

Due to the limited shelf space and the small content acquisition teams at the
operators, virtually the only way to get “on deck” is to work with a publisher who is
already “on deck”.

414

Distribution Channels:
off Deck, in Portal
Distribution Channels:
off Deck, in Portal
• Hard to find you. Need viral marketing

– Customers must enter search terms in operator’s
search box

– or find URL in some other way

• Operator does billing, may help with
marketing

• May be able to get here without a publisher

415

Distribution Channels:
off Deck, off Portal
Distribution Channels:
off Deck, off Portal
• Very hard for customers to find you

– Only 4% of customers have managed to buy from the game deck!

• You have to handle billing
– Typical game prices of $2 - $6 too low for credit cards. Must offer

subscription service for CC billing.

– Nobody is going to enter your url then billing information on a 9-
key pad and very few people will use a PC to buy games for their
phone.

– Premium SMS or advertiser funded are about the only ways.

• You take all the risks
• Some handsets/carriers do not permit off-portal

downloads

This is a hard row to hoe.

Don’t even think about non-over-the-air distribution for mobile. It’s not the way
mobile works especially in markets like Japan where far more people have “keitai
denwa” than have PCs. Also MIDlet downloads from PC’s are disabled in many
handsets.

Furthermore some operators disable MIDlet downloads from anywhere but their
own portals.

The best way to get wide distribution is to team up with an operator-approved
publisher.

416

Publishing Your Content
Billing Mechanisms
Publishing Your Content
Billing Mechanisms
• One-time purchase via micropayment

– Flat-rate data? Larger, higher-cost games

• Subscription model via micropayment
– Episodic games to encourage loyalty

– Game arcades with new games every month

• Sending Premium SMS
– Triggers initial download

– Periodically refills scarce supplies

Let’s look at some of the billing mechanisms in place …

The subscription model is not popular in Europe, in part due to some sleazy
marketing practices by some unscrupulous portals that would slam consumers with
unwanted subscriptions.

Games are often adapted to the billing mechanisms in order to generate billable
events, for example premium SMS games that require periodic refills of scarce
supplies.

Micropayments are small payments charged to the customer’s phone bill. Because
it increases ARPU, operators, of course, prefer the subscription model.

417

Operator Revenue Share 1999 - 2004Operator Revenue Share 1999 - 2004

9

90

10
4.5 20 25 25

12
50 60

35 30

%

DoCoMo Orange
WAP

SKT AT&T Sprint
PCS

Verizon
"GIN"

Vodafone
Live

Orange
World

Cingular SKT 3G

Operator VM Vendor Qualcomm

Source: www.roberttercek.com

What is the operators’ revenue share for providing deck space, billing services and,
perhaps, marketing? Here are some numbers.

Orange France, needless to say, doomed many European publishers to bankruptcy

Sprint later raised their share to 30 - 35%

Verizon GIN is Verizon’s Get it Now service based on BREW.

Vodafone live provides free airtime on browsing for games.

“Some carriers take 60% but they genuinely act as the retailer and create excellent
results through their investment in marketing. Others take 35-40% and leave the
publishers to do most of the marketing.” attributed to the GM of a European game
publisher.

418

Going On-DeckGoing On-Deck

• Find a publisher and build a good relationship with
them

• Japan: Square Enix, Bandai Networks, Sega WOW,
Namco, Infocom, etc.

• America: Bandai America, Digital Chocolate, EA
Mobile, MForma, Sorrent

• Europe: Digital Chocolate, Superscape, Macrospace,
Upstart Games

If you choose to go for the on-deck route, find a publisher already on the operator’s
deck and build a good relationship with them.

As with books, a good publisher should help with marketing as well as distribution.

419

Going Off-DeckGoing Off-Deck

• There are off-deck distribution services:
– thumbplay, www.thumbplay.com

– playphone, www.playphone.com

– gamejump, www.gamejump.com free advertiser
supported games

• These services may be a good way for an
individual developer to get started

Show one of the web sites!!

This concludes the main agenda.

420

Other 3D Java Mobile APIsOther 3D Java Mobile APIs

Mascot Capsule Micro3D Family APIs

• Motorola iDEN, Sony Ericsson, Sprint, etc.

– com.mascotcapsule.micro3d.v3 (V3)

• Vodafone KK JSCL

– com.j_phone.amuse.j3d (V2), com.jblend.graphics.j3d (V3)

• Vodafone Global

– com.vodafone.amuse.j3d (V2)

• NTT Docomo (DoJa)

– com.nttdocomo.opt.ui.j3d (DoJa2, DoJa 3) (V2, V3)

– com.nttdocomo.ui.graphics3D (DoJa 4, DoJa 5) (V4)

(Vx) - Mascot Capsule Micro3D Version Number

For sake of completeness, I’ll mention some other 3D Java APIs you will find on
various mobile devices. These are all based on HI’s MascotCapsule Micro3D
Engine. MascotCapsule Micro3D Version 3 pre-dates M3G by 1 year. Version 4
supports M3G. The APIs above are found on many handsets.

421

Mascot Capsule V3 Game DemoMascot Capsule V3 Game Demo

Copyright 2006, by Interactive Brains, Co., Ltd.

Just because it’s a really cool game…

422

SummarySummary

• Use standard tools to create assets

• Many J2ME SDKs and IDEs are available

• Basic M3G MIDlet is relatively easy

• Programming 3D Games for mobile is hard

• Getting your content marketed, distributed and sold
is a huge challenge

423

ExportersExporters

3ds max
– Simple built-in exporter since 7.0

– www.digi-element.com/Export184/

– www.mascotcapsule.com/M3G/

– www.m3gexporter.com

Maya
– www.mascotcapsule.com/M3G/

– www.m3gexport.com

Softimage|XSI
– www.mascotcapsule.com/M3G/

Cinema 4D
– www.tetracon.de/public_main_modul

.php?bm=&ses=&page_id=453&doc
ument_id=286&unit=441299c9be098

Lightwave
– www.mascotcapsule.com/M3G/

Blender
– http://www.nelson-games.de/bl2m3g/

Not a typo

vapourware?

m3gexport.com under Maya is NOT a typo.

Cinema4D plug-in appears to be vapourware.

424

The first Softbank URL is for the downloading the
documentation. The second is for downloading the emulators.
Softbank developer support is all in Japanese.

You need to complete a simple registration before you can
download the SDK but the web page is in Japanese. There
are 2 SDKs. MEXA (Mobile Entertainment eXtension API)
and JSCL (J-Phone Specific Class Libraries) Both are based
on Sun’s Wireless Toolkit (WTK). You’ll need the MEXA SDK
for M3G. Look for “MEXA SDK” and click on the link which
says “ツール”. You can click through the Privacy Policy and
License by clicking the button labeled “同意する” (agree).

The SDK also contains Mascot Capsule V3 support –
com.jblend.graphics.j3d.

Eclipse plug-ins are available for both the MEXA & JSCL
SDKs.

SDKsSDKs

• Motorola iDEN J2ME SDK
– idenphones.motorola.com/iden/developer/developer_tools.jsp

• Nokia Series 40, Series 60 & J2ME
– www.forum.nokia.com/java

• Softbank MEXA & JSCL SDKs
– developers.softbankmobile.co.jp/dp/tool_dl/java/tech.php

– developers.softbankmobile.co.jp/dp/tool_dl/java/emu.php

425

SDKsSDKs

• Sony Ericsson
– developer.sonyericsson.com/java

• Sprint Wireless Toolkit for Java
– developer.sprintpcs.com

• Sun Java Wireless Toolkit 2.5.1 for CLDC
– http://java.sun.com/products/sjwtoolkit/index.html

• Vodafone VFX SDK
– via.vodafone.com/vodafone/via/Home.do

Version 2.5.1 of Sun’s Java Wireless Toolkit (WTK), released in June 07, is the first
version available for Linux as well as Windows.

The Sony Ericsson, Sprint and Vodafone SDKs are all based on WTK.

Vodafone global requires you become a partner of Via Vodafone in order to obtain
the SDK. You have to submit a questionnaire about your content and business plan
before they will even talk to you. Very unfriendly! However since the SDK is just
WTK with Vodafone skins for the emulator windows and support for some additional
Vodafone specific APIs, you can go a long way without it.

Softbank’s MEXA SDK is an easier-to-obtain alternative to Vodafone’s. Because
Softbank used to be Vodafone KK, they have handsets with Vodafone VSCL APIs,
and their SDK still contains support for them.

426

IDE’s for Java MobileIDE’s for Java Mobile

• Eclipse Open Source IDE
– www.eclipse.org & eclipseme.org

• JBuilder 2005 Developer
– www.borland.com/jbuilder/developer/index.html

• NetBeans
– www.netbeans.info/downloads/index.php

– www.netbeans.org/products/

• Comparison of IDE’s for J2ME
– www.microjava.com/articles/J2ME_IDE_Comparison.pdf

The open source Eclipse IDE is largely written in Java and has many java
development tools. The additional EclipseME component is needed for Java ME
development.

Like Eclipse, NetBeans is free. It seems to have replaced Sun Java Studio.

All of these IDE’s rely on Sun’s Wireless Toolkit or other UEI-compliant wireless
toolkit for platform emulation.

The “Comparison of IDE’s” paper, written in 2002, is a little out of date now.

427

Other ToolsOther Tools

• Macromedia Fireworks
– www.adobe.com/products/fireworks/

• Adobe Photoshop
– www.adobe.com/products/photoshop/main.html

• Sony SoundForge
– www.sonymediasoftware.com/products/showproduct.asp?PID=96

1

• Steinberg Cubase
– www.steinberg.de/33_1.html

• Yamaha SMAF Tools
– smaf-yamaha.com/

428

Other ToolsOther Tools

• Java optimizer - Innaworks mBooster
– www.innaworks.com/mBooster.html

• Porting Platforms
– www.tirawireless.com

– www.javaground.com

429

ServicesServices

• MIDlet verification & signing
– www.javaverified.com

• Porting & testing
– www.tirawireless.com

• Off deck distribution
– www.thumbplay.com
– www.playphone.com
– www.gamejump.com

430

犬友 (Dear Dog) Demo犬友 (Dear Dog) Demo

While I take your questions, I’ll leave a final demo running. We created this to show
the richness that is technically possible with M3G. When we first made this
animation in late 2003, it was too big to load into a real phone. There are several
phones today that can load it but the frame rate is not good – most likely due to the
skinning being done in software.

431

Thanks to: Koichi Hatakeyama; HI’s
MascotCapsule Version 4 Development

Team; Sean Ellis; JSR-184 & JSR-297 Expert
Groups

Demonstrate dog animation

432

433

M3G 2.0
Sneak Preview
M3G 2.0
Sneak Preview

Tomi Aarnio

Nokia Research Center

434

What is M3G 2.0?What is M3G 2.0?

• Mobile 3D Graphics API, version 2.0
– Java Specification Request 297

– Successor to M3G 1.1 (JSR 184)

• Work in progress
– Early Draft is out for review (www.jcp.org)

– Developer feedback is much appreciated!

435

Who’s Behind It?Who’s Behind It?

Hardware vendors
• AMD, ARM

• NVIDIA, PowerVR

Device makers
• Nokia, Sony Ericsson

• Motorola, Samsung

Platform providers
• Sun, Ericsson

• HI, Aplix, Acrodea

Developers
• Digital Chocolate

• RealNetworks

• Superscape

Graphics hardware vendors, device vendors and platform providers are well
represented in the Expert Group.

We could use more contribution from developers, though.

436

M3G 2.0 PreviewM3G 2.0 Preview

Design
Fixed functionality

Programmable shaders

New high-level features

Summary, Q&A

437

Design Goals & PrioritiesDesign Goals & Priorities

Target all devices
1. Programmable HW

2. No graphics HW

3. Fixed-function HW

One of our main design goals is to support the whole range of devices that will be
coming out in 2008 and later.
•Devices with programmable shaders are the first priority, because we really want
that hardware to be accessible from Java.
•Devices without any 3D acceleration are the second priority, because they are
shipping in huge volumes.
•Finally, fixed-function hardware will ship in large volumes for years to come, and
we want to leverage that hardware better than M3G 1.1 does.

438

Why Not Shaders Only?Why Not Shaders Only?

Fixed Function
Hardware

No Graphics Hardware

Shader
Hardware

Dev
ice

 sa
les

 in
 20

10
?

Programmable graphics hardware will be a “must have” for gaming devices, but only
“nice to have” for the rest. In fact, this applies to graphics hardware in general.

We can’t afford to ignore the majority of devices that will only have fixed-function
hardware or “software acceleration”.

439

Shaders and Fixed FunctionalityShaders and Fixed Functionality

M3G 2.0

OpenGL ES 2.0

OpenGL ES 1.1

Some of our target devices will run on OpenGL ES 1.1, others on 2.0, so we have to
accommodate both.

440

Shaders and Fixed FunctionalityShaders and Fixed Functionality

M3G 2.0

OpenGL ES 2.0

OpenGL ES 1.1

Man
da

tor
y

Man
da

tor
y

Opti
on

al

Opti
on

al

Of course, it’s impossible to run shaders on fixed-function hardware, and impractical
on the CPU, so we have to leave them optional. The fixed-function part is not
optional, though.

High-end devices will therefore implement the whole of M3G 2.0, including both
shaders and fixed functionality. Lower-end devices will omit shaders and a few other
things.

441

Design Goals & PrioritiesDesign Goals & Priorities

Target all devices
1. Programmable HW

2. No graphics HW

3. Fixed-function HW

Enable reuse of
1. Assets & tools (.m3g)

2. Source code (.java)

3. Binary code (.class)

Besides targeting all devices, we also want to keep the standard backwards
compatible.
•Being able to reuse art assets and tools is the most important thing in this respect.
•The ability to reuse existing source code is nice to have, but not an absolute
requirement.
•Binary compatibility is less important, because applications are generally rebuilt for
every device that comes out.

442

Backwards Compatible – Why?Backwards Compatible – Why?

• Device vendors can drop M3G 1.1
– Rather than supporting both versions (forever)

– Cuts integration, testing & maintenance into half

• Developers can upgrade gradually
– Rather than re-doing all code, art, and tools

Why is it so important to keep the API backwards compatible?

First of all, it allows device vendors to drop M3G 1.1 immediately. Otherwise, the old
version would have to be dragged along for an eternity. The old engine would take
up extra ROM and RAM, but more importantly, it would be a maintenance burden.
Rather than integrating and testing one 3D engine with every new piece of software
or hardware, you’d have to do it for two separate engines!

Secondly, it allows developers to upgrade to 2.0 at their own pace. For instance,
they can dress up an existing M3G 1.1 title for 2.0 handsets by adding a few shader
effects, rather than doing a completely new version. Even if they do decide to write
a new version from scratch, they can still benefit from existing assets and tools.

Finally,

443

Backwards Compatible – How?Backwards Compatible – How?

M3G 2.0

AdvancedM3G 2.0 Core

M3G 1.1

444

M3G 2.0

Advanced

Backwards Compatible – How?Backwards Compatible – How?

M3G 2.0 Core

M3G 1.1

Man
da

tor
y

Man
da

tor
y

Opti
on

al

Opti
on

al

445

Serving the Low End…Serving the Low End…

M3G Core

OpenGL ES 1.1

Basic Content

CPU

No graphics
hardware!

446

…the Mid Category……the Mid Category…

M3G Core

OpenGL ES 1.1

Basic Content

Fixed Function Graphics Hardware

Enhanced Content

Runs unmodified on
mid-range devices

447

…and the High End…and the High End

M3G Core

OpenGL ES 2.0

M3G Advanced

Premium Content

Programmable Graphics Hardware

Basic Enhanced

Makes real use of
shaders, etc.

Still runs
unmodified

448

The DownsidesThe Downsides

• Must support fixed functionality on ES 2.0
– Extra implementation burden

• The API is not as compact as it used to be
– A pure shader API could have ~20% fewer classes

• Need to drag along obsolete features
– Flat shading, Sprite3D, Background image

– Can be deprecated, but not totally removed

This “all-in-one” approach has some drawbacks, too.
•Implementing the fixed-function pipe with shaders is non-trivial. For instance, you
will likely have to generate new shaders at run time.
•The API gets bigger and more complicated than if it were fixed-function-only or
shader-only.
•Backwards compatibility requires that we drag along obsolete features.

449

Core vs. AdvancedCore vs. Advanced

• High-level features are common to both
– Scene graph

– Animation

• The differences are in rendering
– Core OpenGL ES 1.1

– Advanced OpenGL ES 2.0

450

PackagesPackages

• javax.microedition.m3g

– Contains the entire Core Block

– Also some Advanced features, e.g. cube maps

• javax.microedition.m3g.shader
– Only present in Advanced implementations

451

What’s in the Core?What’s in the Core?

• Everything that’s in M3G 1.1

• Everything that’s in OpenGL ES 1.1
– Except for useless or badly supported stuff

– Such as points, logic ops, stencil, full blending

• New high-level features

With the introduction of point sprites, ordinary points have become fairly useless.
They no longer exist in OpenGL ES 2.0, so they were not included in M3G. The
same applies for logic ops, except that they were never really useful in the first
place.

Stencil buffering would be very useful, but is not well supported by existing fixed-
function hardware, so it was deferred to the Advanced Block.

There are also known issues with some source/destination blending modes on
certain pieces of existing hardware. Also, the blending modes in OpenGL ES 1.1
have annoying limitations, such as the lack of separate blending functions for color
and alpha. As a result, the M3G Core Block only contains a small set of predefined
modes that are guaranteed to work everywhere, while the Advanced Block includes
the full set of ES 2.0 blending modes (without the ugly restrictions).

452

What’s in the Advanced Block?What’s in the Advanced Block?

• Everything that’s in OpenGL ES 2.0
– Vertex and fragment shaders

– Cube maps, advanced blending

– Stencil buffering

Stencil buffering and the full set of frame buffer blending modes are only supported
in the Advanced Block.

453

M3G 2.0 PreviewM3G 2.0 Preview

Design

Fixed functionality
Programmable shaders

New high-level features

Summary, Q&A

454

M3G 2.0 Core vs. 1.1M3G 2.0 Core vs. 1.1

• Better and faster rendering

• More convenient to use

• Fewer optional features

455

Point SpritesPoint Sprites

• Ideal for particle effects

• Much faster than quads

• Consume less memory

• Easier to set up

Image copyright AMD

456

Better Quality TexturingBetter Quality Texturing

• Upgraded the baseline
– At least two texture units

– At least 1024x1024 maximum size

• Mandated optional features
– Perspective correction

– Mipmapping

– Bilinear filtering

457

Bump MappingBump Mapping

• Fake geometric detail

• Feasible even w/o HW

Image copyright AMD

458

Bump Mapping + Light MappingBump Mapping + Light Mapping

• Bump map modulated
by projective light map

Image copyright AMDImage copyright AMD

459

Texture CombinersTexture Combiners

• Precursor to fragment shaders
– Can do a lot more than bump and light mapping

– Not very easy to use, though

Image copyright AMD

460

Floating-Point Vertex ArraysFloating-Point Vertex Arrays

• float (32-bit)

– Easy to use, good for prototyping

– Viable with hardware acceleration

• half (16-bit)

– Savings in file size, memory, bandwidth

– Trivially expanded to float if necessary

• byte/short still likely to be faster

Half-float (FP16) vertex arrays are also useful at the API level even if there’s no
hardware support:
•They reduce file size compared to 32-bit float arrays.
•They can be easily supported in software implementations.
•When supported, they are faster and need less memory.
•They can be trivially expanded to float if necessary.

461

Triangle ListsTriangle Lists

• Much easier to set up than strips
– Good for procedural mesh generation

– Avoid the expensive stripification

• No performance penalty
– Can be even faster with good vertex ordering

– Assuming a vertex cache

462

Primitives – M3G 1.xPrimitives – M3G 1.x

Im
plicit

Byte Short Strip Fan List

Point sprites

Points

Lines

Triangles

Relative to OpenGL ES 1.1

463

Primitives – M3G 2.0Primitives – M3G 2.0

Im
plicit

Byte Short Strip Fan List

Point sprites

Points

Lines

Triangles

Relative to OpenGL ES 1.1

Points, triangle fans, and line loops were not added, as their use cases are
very limited.

Also, points are not supported by OpenGL ES 2.0.

464

VertexBuffer Types – M3G 1.xVertexBuffer Types – M3G 1.x

*Colors

FloatByte Short Fixed

PointSizes

Normals

TexCoords

Vertices

4D3D2D

* OpenGL ES 1.1 only supports RGBA colors

465

VertexBuffer Types – M3G 2.0VertexBuffer Types – M3G 2.0

* Colors

Float
HalfByte Short Fixed

PointSizes

Normals

TexCoords

Vertices

4D3D2D

* OpenGL ES 1.1 only supports RGBA colors

466

Deprecated FeaturesDeprecated Features

• Background image
– Use a sky box instead

• Sprite3D
– Use textured quads or point sprites instead

• Flat shading
– Can’t have this on OpenGL ES 2.0!

467

Deprecated Features Cont’dDeprecated Features Cont’d

• Two-sided lighting
– Requires duplicated geometry on OpenGL ES 2.0

• Local camera lighting (a.k.a. local viewer)
– Only a hint that was poorly supported

• Less accurate picking
– Skinning and morphing not taken into account

468

M3G 2.0 PreviewM3G 2.0 Preview

Design

Fixed functionality

Programmable shaders
New high-level features

Summary, Q&A

469

Shading LanguageShading Language

• GLSL ES v1.00
– Source code only

– Binary shaders would break the Java sandbox

• Added a few preprocessor #pragma’s
– To enable skinning, morphing, etc.

– Apply for vertex shaders only

470

The Shader PackageThe Shader Package

Shader
Program

Shader
Uniforms

VertexShader

FragmentShader

Shader
Appearance

Shader
Uniforms
Shader

Uniforms

Compiled on
construction
Compiled on
construction

Linked on
construction,
validated on

first use

Linked on
construction,
validated on

first use

ShaderAppearance includes a ShaderProgram and a set of ShaderUniforms.

VertexShader and FragmentShader are compiled on construction. ShaderPrograms
are linked on construction.

Each ShaderUniform object can contain an arbitrary number of shader variables.
The shader variables can be user-defined or bound to a scene graph property (such
as a node transformation, a camera projection matrix, or a light intensity).

471

Why Multiple ShaderUniforms?Why Multiple ShaderUniforms?

• So that uniforms can be grouped
– Global constants – e.g. look-up tables

– Per-mesh constants – e.g. rustiness

– Per-frame constants – e.g. time of day

– Dynamic variables – e.g. position, orientation

• Potential benefits of grouping
– Java object reuse – less memory, less garbage

– Can be faster to bind a group of variables to GL

472

A Fixed-Function Vertex ShaderA Fixed-Function Vertex Shader

• A small example shader

• Replicates the fixed-function pipeline using
the predefined #pragma’s

473

Necessary DeclarationsNecessary Declarations

#pragma M3Gvertex(myVertex)

#pragma M3Gnormal(myNormal)

#pragma M3Gtexcoord0(myTexCoord0)

#pragma M3Gcolor(myColor)

#pragma M3Gvertexstage(clipspace)

varying vec2 texcoord0;

varying vec4 color;

Names & roles for
vertex attributes

Names & roles for
vertex attributes

Transform all the
way to clip space

Transform all the
way to clip space

Variables to pass to
the fragment shader
Variables to pass to

the fragment shader

474

The Shader CodeThe Shader Code

void main() {

m3g_ffunction();

gl_Position = myVertex;

texcoord0 = myTexCoord0.xy;

color = myColor;

}

Does morphing,
skinning, lighting,
texture transform

Does morphing,
skinning, lighting,
texture transform

Results passed to the
fragment shader

Results passed to the
fragment shader

475

M3G 2.0 PreviewM3G 2.0 Preview

Design

Fixed functionality

Programmable shaders

New high-level features
Summary, Q&A

476

Scene GraphScene Graph

• Added automatic render-to-texture

• Otherwise mostly unchanged

• Some convenience methods
– Can use quaternions instead of axis/angle

– Can enable/disable animations hierarchically

477

File FormatFile Format

• Updated to match the new API
– File structure remains the same

– Same parser can handle both old & new

• Better compression for
– Textures (ETC, JPEG)

– SkinnedMesh, IndexBuffer

478

Multichannel Keyframe SequencesMultichannel Keyframe Sequences

• N channels per KeyframeSequence object
– Same number of keyframes in all channels

– Shared interpolation mode

– Shared time stamps

• Huge memory savings with skinning
– M3G 1.1: two Java objects per bone

– M3G 2.0: two Java objects per mesh

479

Things Under ConsiderationThings Under Consideration

• Bounding volumes (provided by user)
• Texture compression (run-time encoding)
• Combined morphing and skinning

• Less likely to be included
– Texture generation

– Collision detection

– Particle systems

– Mesh modifiers

480

M3G 2.0 PreviewM3G 2.0 Preview

Design

Fixed functionality

Programmable shaders

New high-level features

Summary, Q&A

481

SummarySummary

• M3G 2.0 will replace 1.1, starting next year
– Existing code & assets will continue to work

– Developers can upgrade at their own pace

• Several key improvements
– Expanded fixed-function feature set

– Programmable shaders to the mass market

– Better performance across all device categories

482

Q&AQ&A

Thanks:
M3G 2.0 Expert Group

Dan Ginsburg (AMD)

Kimmo Roimela (Nokia)

483

484

Closing & SummaryClosing & Summary

• We have covered
– OpenGL ES

– M3G

485

Khronos API familyKhronos API family

Embedded Media Acceleration APIs
2D/3D Vector 2D

Streaming Media Enhanced Audio

OS portability API

3D Authoring

Dynamic Media
Authoring

Dynamic Media Authoring Standards

Cross platform 2D/3D

Cross-platform graphics
authoring/acceleration

Ecosystem

Safety Critical 2D/3D

486

• An open interchange format
– to exchange data between

content tools

– allows mixing and
matching tools for
the same project

– allows using desktop
tools for mobile content

Physics

Scene Graph

Materials

Animation

Textures

Meshes

Shader FX

487

Collada conditioningCollada conditioning

• Conditioning pipelines take
authored assets and:

• 1. Strips out authoring-only
information

• 2. Re-sizes to suit the target
platform

• 3. Compresses and formats
binary data for the target
platform

• Different target platforms can
use the same asset database
with the appropriate
conditioning pipeline

Tool 1

Tool 2

Tool 3

Tool 4

COLLADA
Database

Conditioning
Pipeline

Conditioning
Pipeline

488

2D Vector Graphics2D Vector Graphics

• OpenVG
– low-level API, HW acceleration

– spec draft at SIGGRAPH 05, conformance tests summer 06

• JSR 226: 2D vector graphics for Java
– SVG-Tiny compatible features

– completed Mar 05

• JSR 287: 2D vector graphics for Java 2.0
– rich media (audio, video) support, streaming

– may still complete in 07

489

OpenVG featuresOpenVG features

Paints Mask

Stroke

Image transformation Paths

Fill rule

490

OpenVG pipelineOpenVG pipeline

Definition of path, transformation,
stroke and paint

Transformation

Clipping and Masking

Rasterization

Image Interpolation

Blending

Stroked path generation

Paint Generation

491

JSR-226 examplesJSR-226 examples

Game, with skins Scalable maps,
variable detail

Cartoon Weather info

492

Combining various APIsCombining various APIs

• It’s not trivial to efficiently combine use of
various multimedia APIs in a single
application

• EGL is evolving towards simultaneous
support of several APIs
– OpenGL ES and OpenVG now

– all Khronos APIs later

493

OpenGL ES and OpenVGOpenGL ES and OpenVG

OpenGL ES
Accurately represents
PERSPECTIVE and

LIGHTING

OpenVG
Accurately represents

SHAPE and
COLOR

OpenVG ideal for advanced composting user interfaces
OpenGL ES for powerful 3D UI effects

494

SummarySummary

• Fixed functionality mobile 3D is reality NOW
– these APIs and devices are out there

– go get them, start developing!

• Better content with Collada

• Solid roadmap to programmable 3D

• New standards for 2D vector graphics

495

