
1

2

Kari Pulli Nokia Research Center & MIT CSAIL

Jani Vaarala Nokia

Ville Miettinen Hybrid Graphics

Tomi Aarnio Nokia Research Center

Mark Callow HI Corporation

Developing Mobile
3D Applications with
OpenGL ES and M3G

Developing Mobile
3D Applications with
OpenGL ES and M3G

3

Today’s programToday’s program

• Start at 1:45
• Intro

10 min, Kari Pulli

• OpenGL ES overview
25 min, Kari Pulli

• Using OpenGL ES
40 min, Jani Vaarala

• OpenGL ES
performance
30 min, Ville Miettinen

• Break 3:30 – 3:45
• M3G Intro

5 min, Kari Pulli

• M3G API overview
50 min, Tomi Aarnio

• Using M3G
45 min, Mark Callow

• Closing & Q&A
5 min, Kari Pulli

• End at 5:30

4

Challenges for mobile gfxChallenges for mobile gfx

• Small displays
– getting much better

• Computation
– speed

– power / batteries

– thermal barrier

• Memory

Fairly recently mobile phones used to be extremely resource limited, especially
when it comes to 3D graphics. But Moore’s law is a wonderful thing.

The displays used to be only 1-bit black-and-white displays, that update slowly, with
resolutions like 48 x 84 pixels. However, the display technology has developed by
leaps and bounds, first driven by the digital cameras, now by mobile phones. Only
12-bit colors are beginning to be old-fashioned, 16 or 18 bit color depths are
becoming the norm, 24 bit can’t be too far ahead. The main resolution for Nokia’s
Series 60 is currently 176 x 208, in Japan QVGA (quarter VGA, 320 x 240) is
standard, Nokia Communicator (lower left) is 640 x 200, Series 90 (lower right) is
640 x 320. Soon the Japanese will no doubt upgrade from QVGA to full VGA.

CPUs used to be tiny 10+ MHz ARM 7’s, now 100-200 MHz ARM 9’s are norm,
pretty soon it’ll be 400-600 MHz ARM 11’s. It is still very rare to find hardware
floating point units even in higher end PDAs, but eventually that will also be
available. But the biggest problem is power. All those megahertzes and increased
pixel resolutions eat power, and the battery technology does not increase as fast as
other components. So the amount of power in batteries compact enough to be
pocketable is a limiting factor. But even if we suddenly had some superbatteries, we
couldn’t use all that power. More and more functionality on smaller physical size
means that designing hardware so it doesn’t generate hotspots that fry the
electronics becomes increasingly challenging.

And memory is always a problem. Current graphics cards have 128, 256, and even
more megabytes of memory, just for graphics, frame buffers, textures caches, and
the like Mobile devices have to deal with MBs that you can count with your fingers

5

Mobile graphics applicationsMobile graphics applications

3D Menu 3D Games 3D Animation

3D Messaging Location services Advertising

ppy birt

Message
from
John

6

GSM world: State-of-the-art
in 2001
GSM world: State-of-the-art
in 2001

• What’s the world’s most
played electronic game?
– The Guardian (May 2001)

• Communicator demo 2001
– Remake of a 1994 Amiga demo

– <10 year from PC to mobile

• Began SW 3D engine at Nokia

Around 2001, at least in Europe and Americas, the state of the art for mobile
graphics was games such as Snake. Considering that in 2001 alone Nokia
shipped over 100 million phones, most with Snake, with very few other
games available, Snake is at least one of the most played electronic games
ever.

In 2001 an old Amiga demo was ported to Nokia communicator, causing a
sensation at the Assembly event in Finland.

2001 was the year Nokia started to work on their first SW 3D engine, based
on a subset of OpenGL.

7

State-of-the-art in 2001:
Japan (from April / May)
State-of-the-art in 2001:
Japan (from April / May)

• High-level API with skinning, flat shading /
texturing, orthographic view

J-SH07
by SHARP

GENKI 3D Characters

(C) 2001 GENKI

ULALA

(c)SEGA/UGA.2001

J-SH51
by SHARP

Space Channel 5

©SEGA/UGA,2001 ©SEGA/UGA,2002

Snowboard Rider
©WOW ENTERTAINMENT INC.,
2000-2002all rights reserved.

8

GSM world: State-of-the-art
in 2002
GSM world: State-of-the-art
in 2002

• 3410 shipped in May 2002
– A SW engine: a subset of OpenGL

including full perspective (even textures)

– 3D screensavers (artist created content)

– FlyText screensaver (end-user content)

– a 3D game

9

State-of-the-art in 2002:
Japan
State-of-the-art in 2002:
Japan

• Gouraud shading,
semi-transparency,
environment maps

3d menu

C3003P
by Panasonic

KDDI Au 3D Launcher

©SAN-X+GREEN CAMEL

I-3D PolyGame
Boxing

@ Hi Vanguard・REZO, BNW

Ulala Channel J

©SEGA/UGA,2001 ©SEGA/UGA,2002

10

Fathammer’s
Geopod

on XForge

3D on GSM in 20033D on GSM in 2003

• N-Gage ships

• Lots of proprietary 3D engines
on various Series 60 phones
– Starting already in late 2002

11

State-of-the-art in 2003:
Japan
State-of-the-art in 2003:
Japan

• Perspective view,
low-level API

Aqua ModeAqua ModeAqua ModeRidge Racer

@ Namco

Mission Commander
Multi player Fps Game

© IT Telecom

12

Mobile 3D in 2004Mobile 3D in 2004

• 6630 shipped late 2004
– OpenGL ES 1.0 (for C++)

– M3G (a.k.a JSR-184, for Java)

• Sharp V602SH in May 2004
– OpenGL ES 1.0 capable HW

but API not exposed

– Java / MascotCapsule API

13

Mobile 3D in 2005Mobile 3D in 2005

• PSP

• Gaming phones
with 3D gfx HW

14

Mobile 3D APIsMobile 3D APIs

OpenGL ESOpenGL ES

Java ApplicationsJava Applications

Java UI APIJava UI APIM3G (JSR-184)M3G (JSR-184)

Operating System (Symbian, Linux, …)Operating System (Symbian, Linux, …)

Java Virtual MachineJava Virtual Machine

Native C/C++
Applications

Native C/C++
Applications

Graphics HardwareGraphics Hardware

The green parts show the content of today’s course. We will cover two mobile 3D
APIs, used by applications, either the so-called native C/C++ applications, or Java
midlets (the mobile versions of applets). The APIs use system resources such as
memory, display, and graphics hardware if available. OpenGL ES is a low-level API,
that can be used as a building block for higher level APIs such as M3G, or Mobile
3D Graphics API for J2ME, also known as JSR-184 (JSR = Java Standardization
Request).

15

Overview: OpenGL ESOverview: OpenGL ES

• Background: OpenGL & OpenGL ES

• OpenGL ES 1.0 functionality

• OpenGL ES beyond 1.0

• EGL: the glue between OS and OpenGL ES

• How can I get it and learn more?

16

• The most widely adopted graphics standard
– most OS’s, thousands of applications

• Map the graphics process into a pipeline
– matches HW well

• A foundation for higher level APIs
– Open Inventor; VRML / X3D; Java3D; game engines

What is OpenGL?What is OpenGL?

modeling

projecting

clipping

lighting & shading

texturing

hidden surface

blending

pixels to screen

17

What is OpenGL ES?What is OpenGL ES?

• OpenGL is just too big for Embedded
Systems with limited resources
– memory footprint, floating point HW

• Create a new, compact API
– mostly a subset of OpenGL

– that can still do almost all OpenGL can

18

OpenGL ES 1.0 design
targets
OpenGL ES 1.0 design
targets
• Preserve OpenGL structure
• Eliminate un-needed functionality

– redundant / expensive / unused
• Keep it compact and efficient

– <= 50KB footprint possible, without HW FPU
• Enable innovation

– allow extensions, harmonize them
• Align with other mobile 3D APIs (M3G / JSR-184)

19

AdoptionAdoption

• Symbian OS, Series 60

• Brew

• PS3 / Cell architecture

Sony’s arguments at GDC: Why ES over OpenGL
• OpenGL drivers contain many features not needed

by game developers
• ES designed primarily for interactive 3D app devs
• Smaller memory footprint

20

OutlineOutline

• Background: OpenGL & OpenGL ES

• OpenGL ES 1.0 functionality

• OpenGL ES beyond 1.0

• EGL: the glue between OS and OpenGL ES

• How can I get it and learn more?

21

Functionality: in / out? (1/7)Functionality: in / out? (1/7)

• Convenience functionality is OUT
– GLU

(utility library)

– evaluators
(for splines)

– feedback mode
(tell what would draw without drawing)

– selection mode
(for picking, easily emulated)

– display lists
(collecting and preprocessing commands)

gluOrtho2D(0,1,0,1)
vs.
glOrtho(0,1,0,1,-1,1)

glNewList(1, GL_COMPILE)
myFuncThatCallsOpenGL()
glEndList()
…
glCallList(1)

22

Functionality: in / out? (2/7)Functionality: in / out? (2/7)

• Remove old complex functionality
– glBegin – glEnd (OUT); vertex arrays (IN)

– new: coordinates can be given as bytes

glBegin(GL_POLYGON);
glColor3f (1, 0, 0);
glVertex3f(-.5, .5, .5);
glVertex3f(.5, .5, .5);
glColor3f (0, 1, 0);
glVertex3f(.5,-.5, .5);
glVertex3f(-.5,-.5, .5);
glEnd();

static const GLbyte verts[4 * 3] =
{ -1, 1, 1, 1, 1, 1,

1, -1, 1, -1, -1, 1 };
static const GLubyte colors[4 * 3] =
{ 255, 0, 0, 255, 0, 0,

0,255, 0, 0,255, 0 };
glVertexPointer(3,GL_BYTE,0, verts);
glColorPointerf(3,GL_UNSIGNED_BYTE,

0, colors);
glDrawArrays(GL_TRIANGLES, 0, 4);

23

Functionality: in / out? (3/7)Functionality: in / out? (3/7)

• Simplify rendering modes
– double buffering, RGBA, no front buffer access

• Emulating back-end missing functionality is
expensive or impossible
– full fragment processing is IN

alpha / depth / scissor / stencil tests,
multisampling,
dithering, blending, logic ops)

24

Functionality: in / out? (4/7)Functionality: in / out? (4/7)

• Raster processing
– ReadPixels IN, DrawPixels and Bitmap OUT

• Rasterization
– OUT: PolygonMode, PolygonSmooth, Stipple

25

Functionality: in / out? (5/7)Functionality: in / out? (5/7)

• 2D texture maps IN
– 1D, 3D, cube maps OUT

– borders, proxies, priorities, LOD clamps OUT

– multitexturing, texture compression IN (optional)

– texture filtering (incl. mipmaps) IN

– new: paletted textures IN

26

Functionality: in / out? (6/7)Functionality: in / out? (6/7)

• Almost full OpenGL light model IN
– back materials, local viewer,

separate specular OUT

• Primitives
– IN: points, lines, triangles

– OUT: polygons and quads

27

Functionality: in / out? (7/7)Functionality: in / out? (7/7)

• Vertex processing
– IN: transformations

– OUT: user clip planes, texcoord generation

• Support only static queries
– OUT: dynamic queries, attribute stacks

• application can usually keep track of its own state

28

Floats vs. fixed-pointFloats vs. fixed-point

• OpenGL is strongly based on floats
– recently even frame buffers

• No HW floating-point in target devices
– enable also low-end SW implementations

– didn’t want to wait for floating-point…

29

Floats vs. fixed-pointFloats vs. fixed-point

• Accommodate both
– integers / fixed-point numbers for efficiency
– floats for ease-of-use and being future-proof

• Details
– 16.16 fixed-point: add a decimal point inside an int

– get rid of doubles

glRotatef(0.5f, 0.f , 1.f, 0.f);
vs.

glRotatex(1 << 15, 0 , 1 << 16, 0);

30

Profiles: Common ProfileProfiles: Common Profile

• The full OpenGL ES profile
– both float and fixed-point function entry points
– requires desktop OpenGL range and accuracy

• Good platform for gaming and other 3D apps
• Implementable on many platforms,

including mobiles

Common

Safety
Critical

Lite

31

Profiles: Lite & Safety CriticalProfiles: Lite & Safety Critical

• Common Lite: “SW implementation-friendly”
– for extremely limited systems
– only fixed-point, reduced range requirements

• Safety Critical
– key criterion: ease safety certifications
– targeted for avionics

and
automotive displays Common

Safety
Critical

Lite

32

OutlineOutline

• Background: OpenGL & OpenGL ES

• OpenGL ES 1.0 functionality

• OpenGL ES beyond 1.0

• EGL: the glue between OS and OpenGL ES

• How can I get it and learn more?

33

OpenGL ES 1.1: coreOpenGL ES 1.1: core

• Buffer Objects
allow caching vertex data

• Better Textures
>= 2 tex units, combine (+,-,interp), dot3 bumps, auto mipmap gen.

• User Clip Planes
portal culling (>= 1)

• Point Sprites
particles as points not quads, attenuate size with distance

• State Queries
enables state save / restore, good for middleware

34

OpenGL ES 1.1: optionalOpenGL ES 1.1: optional

• Draw Texture
fast drawing of pixel rectangles using texturing units
(data can be cached), constant Z, scaling

• Matrix Palette
vertex skinning (>= 3 matrices / vertex, palette >= 9)

35

OpenGL ES 2.0OpenGL ES 2.0

• Address programmability
– Vertex and pixel shaders, GL Shading Language

– No fixed functionality
• no backwards compatibility

• Mobile 3D features catching up desktop fast!
– mobile programmable API only a couple of years

behind desktop

36

Towards OpenGL ES 1.2Towards OpenGL ES 1.2

• Reduce variability of implementations
– Require stencil bits, make some optional

extensions mandatory, …

– Also some new functionality

• Announce functionality likely to be later in 1.2
– Allows HW vendors to get ready, and gives time to

get market feedback from 1.1

37

OutlineOutline

• Background: OpenGL & OpenGL ES

• OpenGL ES 1.0 functionality

• OpenGL ES beyond 1.0

• EGL: the glue between OS and OpenGL ES

• How can I get it and learn more?

38

EGL glues OpenGL ES to OSEGL glues OpenGL ES to OS

• EGL is the interface between OpenGL ES
and the native platform window system
– similar to GLX on X-windows, WGL on Windows

– facilitates portability across OS’s (Symbian, Linux, …)

• Division of labor
– EGL gets the resources (windows, etc.) and

displays the images created by OpenGL ES

– OpenGL ES uses resources for 3D graphics

39

EGL surfacesEGL surfaces

• Various drawing surfaces,
targets for rendering
– windows – on-screen rendering

(“graphics” memory)

– pbuffers – off-screen rendering
(user memory)

– pixmaps – off-screen rendering
(OS native images)

40

EGL contextEGL context

• A rendering context is an abstract OpenGL
ES state machine
– stores the state of the graphics engine

– can be (re)bound to any matching surface

– different contexts can share data
• texture objects

• vertex buffer objects

41

Main EGL 1.0 functionsMain EGL 1.0 functions

• Getting started
– eglInitialize() / eglTerminate(), eglGetDisplay(),

eglGetConfigs() / eglChooseConfig(),
eglCreateXSurface() (X = Window | Pbuffer | Pixmap),
eglCreateContext()

• eglMakeCurrent(display, drawsurf, readsurf,
context)

– binds context to current thread, surfaces, display

42

Main EGL 1.0 functionsMain EGL 1.0 functions

• eglSwapBuffer(display, surface)
– posts the color buffer to a window

• eglWaitGL(), eglWaitNative(engine)
– provides synchronization between OpenGL ES

and native (2D) graphics libraries

• eglCopyBuffer(display, surface, target)
– copy color buffer to a native color pixmap

43

EGL 1.1 enhancementsEGL 1.1 enhancements

• Swap interval control
– specify # of video frames between buffer swaps

– default 1; 0 = unlocked swaps, >1 save power

• Power management events
– PM event => all Context lost

– Disp & Surf remain, Surf contents unspecified

• Render-to-texture [optional]
– flexible use of texture memory

44

OutlineOutline

• Background: OpenGL & OpenGL ES

• OpenGL ES 1.0 functionality

• OpenGL ES beyond 1.0

• EGL: the glue between OS and OpenGL ES

• How can I get it and learn more?

45

SW ImplementationsSW Implementations

• Gerbera from Hybrid
– Free for non-commercial use

– http://www.hybrid.fi

• Vincent
– Open-source OpenGL ES library

– http://sourceforge.net/projects/ogl-es

• Reference implementation
– Wraps on top of OpenGL
– http://www.khronos.org/opengles/documentation/gles-1.0c.tgz

46

On-Device ImplementationsOn-Device Implementations

• NokiaGL (SW)

• Imagination MBX
• NVidia GoForce 3D

• ATI Imageon

• Toshiba T4G

• …

The models shown
Nokia 6630
Dell Axim 50v
Gizmondo
LG 3600
Sharp V602SH

47

SDKsSDKs

• Nokia Series 60 FP2 SDK (Symbian OS)
– http://www.forum.nokia.com

• Imagination SDK
– http://www.pvrdev.com/Pub/MBX

• NVIDIA handheld SDK
– http://www.nvidia.com/object/hhsdk_home.html

• Brew SDK & documentation
– http://brew.qualcomm.com

48

Questions?Questions?

49

Mobile 3D Graphics APIsMobile 3D Graphics APIs

OpenGL ESOpenGL ES

Java ApplicationsJava Applications

Java UI APIJava UI APIM3G (JSR-184)M3G (JSR-184)

Operating System (Symbian, Linux, …)Operating System (Symbian, Linux, …)

Java Virtual MachineJava Virtual Machine

Native C/C++
Applications

Native C/C++
Applications

Graphics HardwareGraphics Hardware

50

Why a new standard for
J2ME?
Why a new standard for
J2ME?
• OpenGL (ES) (and D3D) are too low-level

– Lots of Java code needed for simple things

• Java 3D is too bloated
– A hundred times larger than M3G

– Does not fit together with MIDP

• Idea of subsetting Java 3D (but a new API)
– Basic Java 3D ideas: nodes, scene graph

– Add file format, keyframe animation

– Remain compatible with OpenGL ES

51

Status July 05 (www.jbenchmark.com)Status July 05 (www.jbenchmark.com)

• CECT
– GS900

• LG
– MM-535

• Motorola
– A780, C975, E680, E680i, E1000, i605,

V980

• Nokia
– 6230i, 6255, 6255i, 6630, 6680, 6681, 6682

• Panasonic
– VS3

• Samsung
– SGH-Z130, SGH-Z300, SGH-Z500, SPH-

A880

• Sanyo
– MM-7400, MM-8300, S103

• Sharp
– V902sh, SX813

• Siemens
– CX65, CX70, CX75, M65, M65i, S65

• SonyEricsson
– F500i, K300c, K300i, K500c, K500i, K508c,

K508i, K700i, K750c, K750i, S700i, V800,
Z500a, Z800

• Toshiba
– TS921

52

Today’s programToday’s program

• M3G Intro
5 min, Kari Pulli

• M3G API overview
50 min, Tomi Aarnio

• Using M3G
45 min, Mark Callow

• Closing & Q&A
5 min, Kari Pulli

• End at 5:30

• Tomi: M3G API Overview
– design principles

– basic structure

– scene graphs & animation

– M3G file format

• Mark: Using M3G
– development process, tools

– midlets, simple -> complex

– performance tips

– publishing

53

Closing & SummaryClosing & Summary

• We have covered
– OpenGL ES

– M3G

54

Khronos embedded API
palette
Khronos embedded API
palette

• OpenGL ES family
– fixed functionality (1.x)

– programmable (2.x)

• OpenVG
– 2D vector graphics

– SVG players, UI frameworks,
low-level OS graphics

Paints
Mask

StrokeImage transformation
Paths

Fill rule

55

Khronos embedded API
palette
Khronos embedded API
palette

• OpenMAX
– building-blocks for multimedia codecs

• Audio API
– working group just approved

• Collada
– interchangeable interactive 3D content

– working group just approved

56

Mobile JavaMobile Java

• M3G (JSR 184)
– first maintenance release out

– second generation API work can start next as
OpenGL ES 2.0 is completed

• JSR 239: Java Bindings for OpenGL ES

• JSR 226: 2D vector graphics for Java
– SVG-Tiny compatible features

57

SummarySummary

• Fixed functionality mobile 3D is reality NOW
– these APIs and devices are out there

– go get them, start developing!

• Solid roadmap to programmable 3D
– OpenGL ES 2.0

– M3G 2.0 work to start next winter

