SIGGRAPH2005

B - 4

SIGGRAPH2005

Building scalable
3D applications

Ville Miettinen
Hybrid Graphics

What's going to happen... (1/2) sicerapHz005

Mass market: 3D apps will become a huge
success on low-end and mid-tier cell phones

Retro-gaming

New game genres taking into account special
characteristics of cell phones

Navigation apps, screen savers, animations

Mass market is the place for revolutions

What's going to happen... (2/2) sicerapH2005

Separate market for high-end game phones
Console ports
Still need to run popular "low-end” games
Place for evolution

Some devices will form their own markets

Launch titles still subsidized
by device manufacturers

Much more variety than in PCs or consoles

What is a "mobile platform”? sicerapHzoos

CPU speed and available memory varies
Current range ~30Mhz - 600MHz, no FPUs

Portability issues
Different CPUs, OSes, Java VMs, C compilers, ...

Different resolutions P

QCIF (176x144) to VGA (640x480), #&
antialiasing on higher-end devices

4-8 bits per color channel (12-32 bpp) Se——e

Graphics capabilities SIGGRAPH2005

General-purpose multimedia hardware

Pure software renderers (all CPU & integer ALU)
Software + DSP / WMMX / FPU / VFPU
Multimedia accelerators

Dedicated 3D hardware

Software T&L + HW tri setup / rasterization
Full HW

Performance: 50K — 2M tris, 1M — 100M pixels

Dealing with diversity SIGGRAPH2005

Problem: running the same game
on 100+ different devices

Same gameplay but can scale video and audio

Scalability must be built into game design

Profile-based approach -I"' - -
i . N

3D content Is easy to scale sicerapH200s

Separate low and high poly 3D models

Different texture resolutions
and compressed formats

Scaling down special effects not critical to
game play (particle systems, shadows)

Important to realize what is a "special effect”
Rendering quality controls

Texture filtering, perspective correction,
blend functions, multi-texturing, antialiasing

A

Building scalable 3D apps sicarapHzoos

OpenGL ES standardizes the APl and behavior

ES does not attempt to standardize performance

Two out of three ain’t bad

Differences between SW/HW configurations

Trade-off between flexibility
and performance

Synchronization issues

Building scalable 3D apps SIGGRAPH2005

Scale upwards, not downwards
Bad experiences of retro-fitting HW titles to SW

Test during development on lowest-end platform

Both programmers and artists need education

Artists can deal with almost anything
as long as they know the rules...

And when they don't, just force them
(automatic checking in art pipeline)

Reducing state changes SIGGRAPH2005

Don’t mix 2D and 3D calls!!!

Situation may become better in the future, though...

Unnecessary state changes root of all evil
Avoid changes affecting the vertex pipeline

Avoid changes to the pixel pipeline

Avoid changing textures

"Shaders” SIGGRAPH2005

Combine state changes into blocks ("shaders™)

Minimize number of shaders per frame

Typical application needs only 3-10 "pixel shaders”
Different 3-10 shaders in every application

Enforce this in artists’ tool chain

Sort objects by shaders every frame

Split objects based on shaders

Complexity of shaders SIGGRAPH2005

Software rendering: Important to
keep shaders as simple as possible

Do even if introduces additional state changes

Example: turn off fog & depth buffering
when rendering overlays

Hardware rendering: Usually more important
to keep number of changes small

Of models and stripping SIGGRAPH2005

Use buffer objects of ES 1.1

Only models changed manually
every frame need vertex pointers

Many LOD schemes can be done
just by changing index buffers

Keep data formats
short and simple

Better cache coherence,
less memory used

Trian 0 le data (1/2) SIGGRAPH2005

Minimize number of rendering calls

Trade-off between the number of
render calls & culling efficiency

Combine strips using degenerate triangles

Understanding vertex caching

Automatically optimize vertex access order

Triangle lists better than their reputation

Trian 0 le data (2/2) SIGGRAPH2005

Optimize data in your art pipeline (exporters)

Welding vertices with same attributes
(with tolerance)

Vertices/triangle ratio in good data 0.7-1.0

Give artists plenty of automatic feedback

Transformations
and matrices

SIGGRAPH2005

Minimize matrix changes ()
Changing a matrix may involve many hidden costs
Combine simple objects with same transformation
Flatten and cache transformation hierarchies

ES 1.1: Skinning using matrix palettes ()
CPU doesn’t have to touch vertex data

Characters, natural motion: grass, trees, waves

Point s Pr Iites SIGGRAPH2005

ES 1.1: Point sprites ()

Smoke, fire, explosions, water flow,
stars, weather effects

Scale controls through PointSizeArray,
PointSizeAttenuation

Expensive to do in ES 1.0

Drawback: can’t rotate sprites or
textures, fixed texture coordinates

_ . 9
Lighting and materials SIGGRAPH2005

* Fixed-function lighting pipelines are so 1990s
— Drivers implemented badly even in desktop space
— In practice only single directional light fast

— OpenGL’s attenuation
model difficult to use

— Spot cutoff and specular
model cause aliasing

— No secondary specular color

Lighting: the fast way SIGGRAPH2005

While we’re waiting for OpenGL ES 2.0...

Pre-computed vertex illumination good if slow T&L

lllumination using texturing
Light mapping
ES 1.1: dot3 bump mapping + texture combine

Less tessellation required

Color material tracking for changing materials
Flat shading is for flat models!

lllumination using
multitexturing

SIGGRAPH2005

hs

o

9
]
]
0
b
&

ecific code pa

Textures SIGGRAPH2005

Mipmaps always a Good Thing™
Improved cache coherence and visual quality

ES 1.1 supports auto mipmap generation
Different strategies for texture filtering
SW: Perspective correction not always needed
Avoid modifying texture data

Keep textures "right size”, use
compressed textures

Textures SIGGRAPH2005

Multitexturing
Needed for texture-based lighting

Always faster than doing multiple rendering passes
ES 1.1: support at least two texturing units

ES 1.1: TexEnvCombine neat toy

Combine multiple textures into single larger one

Reduce texture state changes
(for fonts, animations, light maps)

SIGGRAPH2005

P ——

The high-level pipeline SIGGRAPH2005

High-level optimizations equally important

Setup: organize objects hierarchically
Triangles organized into spatially coherent "objects”

Conservative bounding volumes (spheres, boxes)
computed for each object

Four-step program
for fast rendering

SIGGRAPH2005

1. Render background and very distance objects

Sky cubes, impostors
(use sky box to clear the background)

2. Cull objects not contributing to final image

3. Apply level of detail computations

Cull-away sub-pixel-size objects (contribution culling)

4. Sort remaining objects into optimal order

Culling

Occlusion culling

Potentially Visible Sets and Portals
are good low-cost solutions

ES 1.1 provides user clip planes
to help with portals

Hierarchical view frustum culling

Back-face culling

Are we inside our outside the object?
Terrains and indoors don’t cull well

SIGGRAPH2005

Object ordering SIGGRAPH2005

Sort objects into optimal rendering order
Minimize shader changes

Keep objects in front-to-back order
Improves Z-buffering efficiency

Satisfying both goals: bucketize
objects by shader, sort buckets by Z

Thank youl! &

SIGGRAPH2005

* Any questions?

