


Building scalable
3D applications

Ville Miettinen
Hybrid Graphics



What’s going to happen... (1/2)What’s going to happen... (1/2)

• Mass market: 3D apps will become a huge 
success on low-end and mid-tier cell phones
– Retro-gaming

– New game genres taking into account special 
characteristics of cell phones

– Navigation apps, screen savers, animations

– Mass market is the place for revolutions



What’s going to happen... (2/2)What’s going to happen... (2/2)

• Separate market for high-end game phones
– Console ports

– Still need to run popular ”low-end” games

– Place for evolution

• Some devices will form their own markets
– Launch titles still subsidized 

by device manufacturers

• Much more variety than in PCs or consoles



What is a ”mobile platform”?What is a ”mobile platform”?

• CPU speed and available memory varies
– Current range ~30Mhz - 600MHz, no FPUs

• Portability issues
– Different CPUs, OSes, Java VMs, C compilers, ...

• Different resolutions
– QCIF (176x144) to VGA (640x480),

antialiasing on higher-end devices
– 4-8 bits per color channel (12-32 bpp)



Graphics capabilitiesGraphics capabilities

• General-purpose multimedia hardware
– Pure software renderers (all CPU & integer ALU)
– Software + DSP / WMMX / FPU / VFPU
– Multimedia accelerators

• Dedicated 3D hardware
– Software T&L + HW tri setup / rasterization
– Full HW

• Performance: 50K – 2M tris, 1M – 100M pixels



Dealing with diversityDealing with diversity

• Problem: running the same game 
on 100+ different devices
– Same gameplay but can scale video and audio

• Scalability must be built into game design

• Profile-based approach



3D content is easy to scale3D content is easy to scale

• Separate low and high poly 3D models
• Different texture resolutions 

and compressed formats
• Scaling down special effects not critical to 

game play (particle systems, shadows)
– Important to realize what is a ”special effect”

• Rendering quality controls
– Texture filtering, perspective correction, 

blend functions, multi-texturing, antialiasing



Building scalable 3D appsBuilding scalable 3D apps

• OpenGL ES standardizes the API and behavior
– ES does not attempt to standardize performance

– Two out of three ain’t bad 

• Differences between SW/HW configurations
– Trade-off between flexibility 

and performance

– Synchronization issues 



Building scalable 3D appsBuilding scalable 3D apps

• Scale upwards, not downwards
– Bad experiences of retro-fitting HW titles to SW

– Test during development on lowest-end platform

• Both programmers and artists need education
– Artists can deal with almost anything 

as long as they know the rules... 

– And when they don’t, just force them 
(automatic checking in art pipeline)



Reducing state changesReducing state changes

• Don’t mix 2D and 3D calls!!!
– Situation may become better in the future, though...

• Unnecessary state changes root of all evil
– Avoid changes affecting the vertex pipeline

– Avoid changes to the pixel pipeline

– Avoid changing textures



”Shaders””Shaders”

• Combine state changes into blocks (”shaders”)
– Minimize number of shaders per frame

– Typical application needs only 3-10 ”pixel shaders”
• Different 3-10 shaders in every application

• Enforce this in artists’ tool chain

• Sort objects by shaders every frame
– Split objects based on shaders



Complexity of shadersComplexity of shaders

• Software rendering: Important to 
keep shaders as simple as possible
– Do even if introduces additional state changes

– Example: turn off fog & depth buffering 
when rendering overlays

• Hardware rendering: Usually more important 
to keep number of changes small



Of models and strippingOf models and stripping

• Use buffer objects of ES 1.1 
– Only models changed manually 

every frame need vertex pointers

– Many LOD schemes can be done 
just by changing index buffers

• Keep data formats 
short and simple
– Better cache coherence, 

less memory used



Triangle data (1/2)Triangle data (1/2)

• Minimize number of rendering calls
– Trade-off between the number of 

render calls & culling efficiency

– Combine strips using degenerate triangles

– Understanding vertex caching
• Automatically optimize vertex access order

• Triangle lists better than their reputation



Triangle data (2/2)Triangle data (2/2)

• Optimize data in your art pipeline (exporters)
– Welding vertices with same attributes 

(with tolerance)
• Vertices/triangle ratio in good data 0.7-1.0

– Give artists plenty of automatic feedback



Transformations 
and matrices
Transformations 
and matrices

• Minimize matrix changes (demo)
– Changing a matrix may involve many hidden costs

– Combine simple objects with same transformation

– Flatten and cache transformation hierarchies

• ES 1.1: Skinning using matrix palettes (demo)
– CPU doesn’t have to touch vertex data

– Characters, natural motion: grass, trees, waves 



Point spritesPoint sprites

• ES 1.1: Point sprites (demo)
– Smoke, fire, explosions, water flow, 

stars, weather effects

– Scale controls through PointSizeArray, 
PointSizeAttenuation

– Expensive to do in ES 1.0

– Drawback: can’t rotate sprites or 
textures, fixed texture coordinates



Lighting and materialsLighting and materials

• Fixed-function lighting pipelines are so 1990s
– Drivers implemented badly even in desktop space
– In practice only single directional light fast

– OpenGL’s attenuation 
model difficult to use

– Spot cutoff and specular
model cause aliasing

– No secondary specular color



Lighting: the fast wayLighting: the fast way

• While we’re waiting for OpenGL ES 2.0...
– Pre-computed vertex illumination good if slow T&L 

– Illumination using texturing
• Light mapping

• ES 1.1: dot3 bump mapping + texture combine

• Less tessellation required

• Color material tracking for changing materials
• Flat shading is for flat models!



Illumination using 
multitexturing
Illumination using 
multitexturing







TexturesTextures

• Mipmaps always a Good Thing™
– Improved cache coherence and visual quality

– ES 1.1 supports auto mipmap generation

• Different strategies for texture filtering

• SW: Perspective correction not always needed

• Avoid modifying texture data

• Keep textures ”right size”, use 
compressed textures



TexturesTextures

• Multitexturing
– Needed for texture-based lighting

– Always faster than doing multiple rendering passes

– ES 1.1: support at least two texturing units

– ES 1.1: TexEnvCombine neat toy

• Combine multiple textures into single larger one
– Reduce texture state changes 

(for fonts, animations, light maps)



• Textures and shots from Kesmai’s Air 
Warrior 4 (never published)



The high-level pipelineThe high-level pipeline

• High-level optimizations equally important

• Setup: organize objects hierarchically
– Triangles organized into spatially coherent ”objects”

– Conservative bounding volumes (spheres, boxes) 
computed for each object



Four-step program 
for fast rendering
Four-step program 
for fast rendering

• 1. Render background and very distance objects
– Sky cubes, impostors 

(use sky box to clear the background)

• 2. Cull objects not contributing to final image

• 3. Apply level of detail computations
– Cull-away sub-pixel-size objects (contribution culling)

• 4. Sort remaining objects into optimal order



CullingCulling

• Occlusion culling
– Potentially Visible Sets and Portals 

are good low-cost solutions

– ES 1.1 provides user clip planes 
to help with portals

• Hierarchical view frustum culling 
• Back-face culling

– Are we inside our outside the object? 
Terrains and indoors don’t cull well



Object orderingObject ordering

• Sort objects into optimal rendering order
– Minimize shader changes

– Keep objects in front-to-back order
• Improves Z-buffering efficiency

– Satisfying both goals: bucketize 
objects by shader, sort buckets by Z



Thank you!Thank you!

• Any questions?


