
Mavo: Creating Interactive Data-Driven
Web Applications by Authoring HTML

Lea Verou
MIT CSAIL

leaverou@mit.edu

Amy X. Zhang
MIT CSAIL
axz@mit.edu

David R. Karger
MIT CSAIL

karger@mit.edu

<body data-store="https://www.dropbox.com/…/todo.txt">
 <p>My tasks: [count(done)] done, [count(task)] total

 <li property="task" data-multiple>
 <input type="checkbox" property="done" />
 Do stuff

</body>

Figure 1: A fully-functional To-Do app made with Mavo, shown with its accompanying code and the starting HTML mockup.

ABSTRACT
Many people can author static web pages with HTML and
CSS but find it hard or impossible to program persistent, in-
teractive web applications. We show that for a broad class
of CRUD (Create, Read, Update, Delete) applications, this
gap can be bridged. Mavo extends the declarative syntax
of HTML to describe Web applications that manage, store
and transform data. Using Mavo, authors with basic HTML
knowledge define complex data schemas implicitly as they
design their HTML layout. They need only add a few at-
tributes and expressions to their HTML elements to transform
their static design into a persistent, data-driven web applica-
tion whose data can be edited by direct manipulation of the
content in the browser. We evaluated Mavo with 20 users who
marked up static designs—some provided by us, some their
own creation—to transform them into fully functional web
applications. Even users with no programming experience
were able to quickly craft Mavo applications.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST 2016, October 16–19, 2016, Tokyo, Japan.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4189-9/16/10...$15.00
DOI: http://dx.doi.org/10.1145/2984511.2984551

Author Keywords
Web design; End-user programming; Information
architecture; Semantic publishing; Dynamic Media; Web.

ACM Classification Keywords
H.5.4. Information Interfaces and Presentation (e.g. HCI):
Hypertext/Hypermedia- User Issues

INTRODUCTION
There is a sizeable community of authors creating static web
pages with basic HTML and CSS. While it is difficult to pin-
point the size of this community, it is likely large and grow-
ing. The ACM cites knowledge of HTML and CSS to be at
the K-12 level of computer literacy [19].

Far more powerful than static pages are web applications that
react dynamically to user actions and interface with back-end
data and computation. Even a basic application like a to-
do list needs to store and recall data from a local or remote
source, provide a dynamic interface that supports creation,
deletion, and editing of items, and have presentation varying
based on what the user checks off. Creating such applications
requires knowledge of JavaScript and/or other programming
languages to provide interaction and to interface with a data
management system, as well as understanding of some form
of data representation, such as JSON or a relational database.

There are many frameworks and libraries aiming to simplify
creation of such Web applications. However, all target pro-
grammers and still require writing a considerable amount of
code. It is indicative that even implementing a simple to-do
application similar to the one in Figure 1 needs 2941 lines of
JavaScript (not including comments) with ANGULARJS, 246
with POLYMER, 297 with BACKBONE.JS, and 421 with RE-
ACT. Other JavaScript frameworks are in the same ballpark.

Many people who are comfortable with HTML and CSS do
not possess additional programming skills2 and have little ex-
perience articulating data schemas [18]. For these novice web
authors, using a CMS (Content Management System) is often
seen as their only solution. However, research indicates that
there are high levels of dissatisfaction with CMSs [12]. One
reason is that CMSs impose narrow constraints on authors in
terms of possible presentation–far narrower than when edit-
ing a standalone HTML and CSS document. When an author
wishes to go beyond these constraints, they are forced to be-
come a programmer learning and modifying server-side CMS
code. The problem worsens when authors wish to present
structured data [4], which CMSs enable via plugins. The in-
terfaces for these plugins do not allow authors to edit data in
place on the page; instead they must fill out forms. This loses
the direct manipulation benefits that are a feature of WYSI-
WYG editors for unstructured content. Finally, CMSs pro-
vide a heavyweight solution when many authors only need to
present and edit a small amount of data. For example, out of
the over 7,000 CMS templates currently provided in Theme-
Forest.net, a repository of web templates, 39% are for portfo-
lio sites, while another 31% are for small business sites [2].

Our Contribution
This paper presents and evaluates a new language called
Mavo3 that augments HTML syntax to empower HTML au-
thors to implicitly define data schemas and add persistence
and interactivity. Simply by adding a few HTML attributes,
an author can transform any static HTML document into a dy-
namic data management application. Data becomes editable
directly in the page, offering the ability to create, update, and
delete data items via a WYSIWYG GUI. Mavo authors never
have to articulate a schema separately from their interface or
write data binding code. Instead, authors add attributes to
describe which HTML elements should be editable and how,
unwittingly describing their schema by example in the pro-
cess. With a few attributes, authors quickly imply complex
schemas that would have required multiple tables and foreign
keys in a relational database, without having to think beyond
the interface they are creating. As an added benefit, Mavo’s
HTML attributes are part of the HTML RDFa standard [3]
and thus contribute to machine-readable data on the Web.

Mavo is inspired by the principle of direct manipulation [20]
for the creation of the data model underlying an application.
Instead of crafting a data model and then deciding how to
1Statistics from todomvc.com
2We carried out a snowball sample of web designers using a Twitter
account followed by 70,000 Web designers and developers. Of 3,578
respondents, 49% reported little or no programming ability.
3Open source implementation & demos available at http://mavo.io

template and edit it, a Mavo author’s manipulation of the vi-
sual layout of an application automatically implies the data
model that drives that application. In addition, Mavo does not
require the author to create a separate data editing interface.
Users simply toggle an edit mode in their browser by click-
ing an edit button that Mavo inserts on their webpage. Mavo
then adds affordances to WYSIWYG-edit whatever data is in
view, with appropriate editing widgets inferred from the im-
plied types of the elements marked as data. Mavo can persist
data locally or outsource storage to any supported cloud ser-
vice, such as Dropbox or Github. Switching between storage
backends is a matter of changing the value of one attribute.

In addition to CRUD functionality, Mavo provides a simple
spreadsheet-like expression syntax to place reactive calcula-
tions, aggregates, and conditionals on any part of the inter-
face, enabling novices to create the rich reactive interfaces
that are expected from today’s web applications.

In contrast to the hundreds of lines of code demanded by the
popular frameworks, Figure 1 shows how an HTML mockup
can be transformed into a fully functioning to-do application
by adding only 5 lines of Mavo HTML.

Our approach constitutes a novel way for end users to trans-
form static webpages to dynamic, data-backed web applica-
tions without programming or explicitly defining a separate
data schema. From one perspective, this makes Mavo the first
client-side CMS, where all functionality is configurable from
within the HTML page. But it offers more. In line with the
vision of HTML as a declarative language for describing con-
tent so it can be presented effectively, Mavo extends HTML
with a declarative specification of how the data underlying
a presentation is structured and can be edited. Fundamen-
tally a language extension rather than a system, Mavo is com-
pletely portable, with no dependence on any particular web
infrastructure, and can thus integrate with any web system.
Similarly, existing WYSIWYG HTML editors can be used to
author Mavo applications. We offer Mavo as an argument for
the benefits of a future HTML language standard that makes
structured data on every page editable, persistent and trans-
formable via standard HTML, without dependencies.

We conducted a user study with 20 novice web developers
in order to test whether they could use Mavo to turn a static
HTML mockup of an application into a fully functional one,
both with HTML we provided and with HTML of their own
creation. We found that the majority of users were easily able
to mark up the editable portions of their mockups to create
applications with complex hierarchical schemas.

RELATED WORK
Mavo combines ideas from three prior systems that addressed
the downsides of CMSs. Dido [15] built on Exhibit [14], ex-
tending HTML with language elements that visualized and
stored editable data directly in the browser. This approach
allowed a web designer to incorporate Dido into any web de-
sign and made Dido independent of any back-end system.
Quilt [5] extended HTML with a language for binding an
arbitrary web page to a Google spreadsheet “back-end”, en-
abling web authors to gain access to lightweight computation

without programming. Gneiss [10, 11] was a web application
within which authors could manage and compute over hierar-
chical data using an extended spreadsheet metaphor, then use
a graphical front end to interact with that data.

These three systems introduced powerful ideas: extend-
ing HTML to mark editable data in arbitrary web pages,
spreadsheet-like light computation, a hierarchical data model,
and independence from back-end functionality. But none
of these systems provides all of these capabilities simulta-
neously. Dido had no computational capabilities, could not
manage hierarchical data, and was never evaluated. Quilt was
dependent on a Google spreadsheet back-end, which left it
unable to manage hierarchical data. Gneiss was a monolithic
web application that only allowed the user to construct web
pages from a specific palette. It did not offer any way (much
less a language) to associate an arbitrarily designed web page
with the hierarchical data Gneiss was managing, which meant
that a web author faced constraints on their design creativity.
Gneiss and Quilt both required users to design their data sep-
arately from their web pages.

Mavo is a language that solves the challenge of combining
the distinct positive elements of this prior work, which are
in tension with one another. It defines a simple extension to
HTML that enables an author to add data management and
computation to any web page. At the same time, it provides a
lightweight, spreadsheet-like expression language that is ex-
pressed and evaluated in the browser, making Mavo indepen-
dent of any particular back-end. The editing and expression
language operates on hierarchical data, avoiding this limita-
tion of traditional spreadsheet computation.

The combination of these ideas yields a novel system that is
particularly well-suited to authoring interactive web applica-
tions. In Mavo (like Dido), the author focuses entirely on the
design of the web page, then annotates that page with markup
describing data and computation. The web page implies the
data model, freeing the author of the need to abstractly model
the data, manage a spreadsheet, or describe bindings between
the two. At the same time, our expression language provides
lightweight computation (Quilt and Gneiss), even on hierar-
chical data (Gneiss) without relying on any external services
(Dido). Because they are part of the document (Dido), Mavo
expressions can refer directly to data elements elsewhere in
the document, instead of requiring a syntactic detour through
references to cells in the associated spreadsheet. Finally, be-
cause it is an HTML language extension (Dido and Quilt),
Mavo can be applied to any web page and authored with any
HTML editor, freeing an author from design constraints.

In sum, we believe that the combination of capabilities of
Mavo align well with the needs and the preferred workflow
of current web authors. In particular, the independence of
the Mavo authoring language from any back-end system (or
even from any particular front-end interpreter) means that
Mavo prototypes a future for HTML and the web browser
itself, where data interaction becomes as much a basic part
of web authoring as paragraphs and colors.

End User Web Development
There are many systems that assist novice web developers
with building dynamic and data-backed web applications.
The drawback to many of these systems, however, is that
they often require using their own heavyweight authoring and
hosting environments, and they provide pre-made plugins or
templates that users can not customize without programming.
Examples of such systems include CMSs such as Wordpress,
Drupal, or Joomla. The growing community around static
site generators, such as Jekyll [1] is indicative of the dissat-
isfaction with rigid, heavyweight CMSs [4]. However, these
require significant technical expertise to configure and offer
no graphical interfaces for editing data.

In the previous section, we described three systems—
Dido [15], Quilt [5], and Gneiss [10]—from which we draw
key insights. However, this work solves challenges in com-
bining those insights into a single system, incorporates addi-
tional ideas, and contributes useful evaluation of the result-
ing system. Most importantly, Mavo demonstrates that the
often-hierarchical data model of an application can be incor-
porated directly into the visual design on which a web author
is focused, making the data modeling task an automatic side
effect of the creation of the web design. Supporting hierarchi-
cal schemas is critical because they occur naturally in many
data-driven apps on the web (53% according to [4]). Our eval-
uation studies users working with such hierarchical schemas.

Visual application builders like app2you [16] and App-
Forge [23] allow authors to specify the design of pages by
placing drag-and-drop elements into a WYSIWIG-like envi-
ronment. However, this approach limits authors to only the
building blocks provided by the tools and cannot be used
to transform arbitrary HTML. A followup system, FOR-
WARD [13], is more powerful but requires writing SQL
queries within HTML. Visual programming languages such
as Forms/3 [8] and NoPumpG [22] extend the spreadsheet
paradigm to graphical interfaces and interactive graphics.
However, they do not afford any customization in terms of
input UI, have no concept of a separate data store. Also, they
only target single-user local web applications and do not ad-
dress the unique challenges that Web applications raise.

The Semantic Web and Web Data Extraction
There has been a great deal of work on both encouraging and
extracting structured data on the web [9]. However, automatic
scraping techniques often have errors because they must in-
fer structure from unstructured or poorly structured text and
HTML markup. Several efforts have been made to define syn-
taxes and schemas, such as RDFa [3] and Microdata [21], for
publishing structured data in web pages to contribute to the
Semantic Web and Linked Open Data [6]. However, novice
users have had little incentive to adopt these standards—
sharing data rarely provides direct benefit to them—and find
them difficult to learn, potentially contributing to their limited
adoption on the web. Mavo contributes to this line of work by
using a standards-compliant syntax that is machine-readable.
Authors typically do not care about theoretical purity and are
motivated to add additional markup when they see a tangible
benefit. With Mavo, they expend effort because it makes their

static website editable or creates a web application. As a side
effect, however, they enrich the Semantic Web.

MAVO
A description of the Mavo language follows. We first describe
its syntax for data specification, editing, and storage, then its
expression language for lightweight reactive computation.

Building data-driven CRUD applications
Declarative, HTML-based Syntax
We chose to use HTML elements, attributes, and classes in-
stead of new syntax for Mavo functionality because our target
authors are already familiar with HTML syntax. Whenever
possible, we reused concepts from other parts of HTML. Us-
ing HTML5 as the base language also means a WYSIWYG
editor for Mavo applications can be easily created by extend-
ing any existing WYSIWYG HTML editor. 4 But as dis-
cussed previously, we consider it a key contribution of Mavo
that it is a system-independent language. For example, we
expect most Mavo authors to frequently take advantage of the
ability to “view source” and work with arbitrary HTML. View
source is an essential methodology for learning and adopt-
ing new elements of web design. It permits authors to copy
and tweak others’ designs (even without fully understanding
them) without worrying about new or conflicting system de-
pendencies [4]. Source editing is essential to let authors cir-
cumvent any limitations imposed by graphical editing tools.
Per [17], we want a low threshold (cost to get started) while
allowing users escape the low ceiling (maximum achievable
power) of GUI-based tool builders.

Storage location
To specify Mavo functionality on an HTML structure, the au-
thor places a data-store attribute on an enclosing element.
Its (optional) value specifies where the data will be stored,
through a URI or keyword. If no value is provided, data
is not stored anywhere, which can be useful for calculator-
type applications. Mavo can store data locally in the page
(data-store="#elementid"), in the browser’s local storage
(data-store="local"), in an uploaded / downloaded file
(data-store="file") or on one of the supported persistent
storage services by providing a URL to a file on them. We
currently support Dropbox and Github for remote storage, but
we provide a flexible API for third-party developers to add
support for more services.

For example, to save data in Dropbox, the author provides
a Dropbox “share” URL as the value of the data-store at-
tribute. Mavo then prompts any user to log in to Dropbox be-
fore editing and saving. For storage services with predictable
URLs, such as Github, Mavo can even create the file if it does
not exist.

Data Definition
A core capability of Mavo is to define and materialize data
on a web page. Once Mavo is enabled on an HTML struc-
ture, it looks for elements with property (or itemprop) at-
tributes within that structure in order to infer the data schema.
4To demonstrate, we have prototyped a Mavo WYSIWYG editor,
which can be found at mavo.io/play

Figure 2: Different types of editing widgets for different types
of elements. Clockwise from the top left: , <meter>,
<time>, <a>

These elements are henceforth referred to as simply proper-
ties. If the HTML author is aware of semantic Web tech-
nologies such as RDFa or Microdata, these attributes may be
already present in their markup. If not, authors are simply in-
structed to use a property attribute to “name” their element
in order to make it editable and persistent. An example of this
usage can be found in Figure 1.

When an element becomes a property, it is associated with
a data value. This value is automatically loaded from and
stored to the specified data-store. For many elements (e.g.
), the natural place for this value to be “presented” is
in the element’s contents. In others, such as or <a>,
the natural place for a value is a “primary” attribute (src and
href respectively). These defaults can be overridden. For ex-
ample, adding data-attribute="title" to an element with
a property says that the value should be placed in the title
attribute.

It is worth noting that in Mavo, the example can be filled
with real data, which makes the template really look like the
output, unlike other templating languages where the template
is filled with visible markup. In addition, this example data
can easily become default values, by using the data-default
attribute without a value.

Data Editing
Mavo generates UI (user interface) controls for toggling be-
tween reading and editing mode on the page, as well as saving
and reverting to the last saved state (if applicable), as seen at
the top of Figure 1. In editing mode, Mavo presents a WYSI-
WYG editing widget for any property that is not a form con-
trol, which appears only when the user shows intent to inter-
act with it. The generated editing UI depends on the type of
the element. For instance, a <time> element will be edited
via a date or time picker, whereas an element will be
edited via a popup that allows specifying a URL or uploading
an image (Figure 2). The assumed data type can be overrid-
den by using certain class names (e.g. class="date").

Mavo leverages available semantics to optimize the editing
interface. For example, using a to display dates would
result in editing via a generic textfield. However, a <time>
element is edited with a time or date picker (depending on the

format of its datetime attribute). This has the side effect of
incentivizing authors to use semantically appropriate HTML.

Customizable Editors
We designed Mavo to be useful to HTML authors across a
wide range of skill levels, including web design professionals.
Thus, the generated editing GUI is fully customizable:

• Any Mavo UI elements can be fully re-skinned using CSS.
In addition, authors can provide their own UI elements by
using certain class names (such as class="mv-add-task"
for a custom “Add task” button).

• The way an element is edited can be customized by nest-
ing a form element inside it. For example, if a property
only accepts certain predefined values, authors can express
this by putting a <select> menu inside the element, essen-
tially declaring it as an enum. An alternative to nesting is
referencing a form element anywhere in the page via the
data-edit attribute. Any changes to the linked form ele-
ment are propagated to the property editors. This way, au-
thors can have dynamic editing widgets which could even
be Mavo apps themselves, e.g. a dropdown menu with a
list of countries populated from remote data and used in
multiple Mavo apps.

Objects
Properties that contain other properties become grouping el-
ements (objects in programming terminology); this permits
a user to define multi-level schemas. For example, an el-
ement with a student property can contain other elements
with name, age, and grade properties, indicating that these
properties “belong” to the student. Inferring objects from the
structure of properties instead of requiring an explicit typeof
attribute is Mavo’s main divergence from RDFa. (Explicitly
declaring objects via typeof attributes is also supported).)

Collections
Adding a data-multiple attribute to a property makes it a
collection. During editing, appropriate controls appear for
adding and deleting new elements in the collection, as seen
for the to-do items in Figure 1. Collection items can them-
selves be complex HTML structures consisting of multiple
data-carrying elements and even nested collections. This en-
ables the author to visually define schemas with one-to-many
relationships.

To author a collection, the author creates one representative
example of a collection item; Mavo uses this as the archetype
for any number of collection elements added later. As dis-
cussed earlier, the archetype can contain real data so it re-
sembles actual output and not just a template, and can also
provide default data values for new collection members.

Direct Schema Manipulation
Our approach to data definition means that end users define
their data by defining the way they want their data to look on
the page. This is in contrast to many systems which expect
their users to define their data model first and then map their
model into a view. In the spirit of direct manipulation, Mavo
users are manipulating their data schema by manipulating the

way the data looks. We believe that our approach is more nat-
ural for many designers, permitting them to directly specify
their ultimate goal: data that looks a certain way.

Computation
The aforementioned three attributes—data-store,
property, and data-multiple—are sufficient for cre-
ating any CRUD content-management application with a
hierarchical schema and no computation. However, many
CRUD applications in the wild benefit from lightweight
computation, such as summing certain values or condi-
tionally showing certain text depending on a data value.
To accommodate these use cases, Mavo includes a simple
expression syntax.

One of Mavo’s guiding design principles is to reuse exist-
ing HTML syntax as much as possible while minimizing the
introduction of “programming-like” concepts such as assign-
ment and sequential execution in favor of reactive evaluation,
akin to spreadsheets.

Expressions
Expressions are delimited by square brackets ([]) by de-
fault and can be placed anywhere inside the Mavo instance,
including in HTML attributes. To avoid triggering unre-
lated uses of brackets on individual elements, authors can
use the data-expressions attribute to customize the syn-
tax or disable expressions altogether. The setting is inher-
ited by descendant elements that lack a data-expressions
attribute of their own. For example, for the double-
brace expressions common in many templating libraries,
authors can use data-expressions="{{expression}}",
with expression being a literal to separate the start and
end markers. To disable expressions, authors can use
data-expressions="none" (or any other “invalid” value).

In keeping with our goal of leveraging HTML syntax, we
explored several HTML-based alternatives, such as span
data-content="expression" to define a span that should
be filled with the value of the expression. But these syntaxes
were more verbose and demanded contortions to place ex-
pressions into the values of attributes. The choice of brack-
ets for delineating expressions was based on the observation
that non-programmers often naturally use this syntax when
composing form letters, such as email templates. In addition,
many text editors automatically balance brackets.

Our approach to expressions only partially meets the “declar-
ative, direct manipulation” goal we described in our motiva-
tion. It is challenging to specify computation, an abstract
process, entirely through direct manipulation. The expres-
sion language is similar to that in spreadsheets—fully reac-
tive with no control flow, which nods towards declarative lan-
guages. The widespread adoption of spreadsheets provides
evidence that this type of computation is within reach of a
large population. Furthermore, placing the expression in the
document, precisely where its value will be presented, as op-
posed to referencing values computed in a separate model
“elsewhere”, fits the spirit of direct manipulation in specify-
ing the view. During our user study several subjects volun-
teered observations that this was effective.

Named References
Mavo’s expression syntax resembles a typical spreadsheet
formula syntax. However, instead of referring to cells by
grid coordinates, Mavo formulas refer to properties by name.
Every property defined in a Mavo instance becomes a (read-
only) variable that can be used in expressions anywhere in
the Mavo instance. These named references are necessary
since Mavo has no predefined grid for row/column references.
We consider this necessity a virtue. Instead of referenc-
ing mysterious row and column coordinates, an expression
uses human-understandable property names. We believe this
will decrease bugs caused by misdirected references. Indeed,
many spreadsheets offer named ranges to provide this benefit
of understandable references. For spreadsheets, perhaps the
main benefit of the row-column references is having formu-
las with “relative references” (e.g. to adjacent columns) to
automatically update as they are copied down into new rows.
But Mavo’s automatic duplication of templates in collections
means copies are never made by the user, obviating the need
for this benefit.

A range of common mathematical and aggregate functions
is predefined. As with spreadsheets, we also include an
iff(condition, iftrue, iffalse) function that uses the
first argument to choose between the remaining two values.
Finally, for power users, Mavo expressions can include arbi-
trary JavaScript, which is executed in a sandbox environment
where properties become read-only variables.

Multi-valued Expressions
If a referenced property is inside a collection, then its value
in the expression depends on the expression placement:

1. If the expression is on or inside the same item that contains
the referenced property, its value resolves to the value of
the property in (the corresponding copy of) that item.

2. If the expression is outside the data-multiple element
that contains the property, i.e. outside the collection, it
resolves to a list (array) of all values of that property
inside the collection. These lists can be used as argu-
ments to aggregate functions, such as average(age) or
count(visit).

Figure 3: The debug tools in action, showing local values and
warnings.

Figure 4: The Mavo tree created for the To-Do app shown in
Figure 1.

Our expression syntax also supports array arithmetic: Oper-
ations between arrays are applied element-wise. Operations
between arrays and primitives are applied on every array el-
ement. For example rating > 3 compares every item in
rating with 3 and returns an array of booleans that can then
e.g. be fed to a count() function.

Debugging
Mavo includes debugging tools that show the current appli-
cation state, as expandable tables inside objects (Figure 3).
This is enabled by placing a mv-debug class on any ancestor
element or adding ?debug to the URL. These tables display
current values of all properties and expressions in their object,
and warnings about common errors. Expressions shown can
be edited in place, so that users can experiment in real-time.

IMPLEMENTATION
Mavo is implemented as a JavaScript library that integrates
into a web page to simulate native support for our syntax. On
load, Mavo processes any elements with a data-store at-
tribute and builds an internal Mavo tree representation of the
schema (Figure 4). It also inspects every text and attribute
node on or inside every element looking for expressions, and
builds corresponding objects for them. For every expression,
a JavaScript parser is used to rewrite binary operations as
function calls in order to enable array arithmetic.

Any remote data specified in the data-store attribute is then
fetched and recursively rendered. Every time an object is cre-
ated during editing or data rendering, it holds a reference to
its corresponding node in the Mavo tree (Figure 4), which it
uses as a template. This improves performance by only run-
ning costly operations (such as finding and parsing expres-
sions) once per collection.

When the data in an object changes, via rendering, editing
or expression evaluation, expressions within it or referring to
it are re-evaluated to reflect current values. This occurs in a
special execution context where current object data and Mavo
functions appear to be global scope. ECMAScript 2015 Prox-
ies are used behind the scenes to conditionally fetch descen-
dant or ancestor properties only when needed, to allow for

identifiers to be case insensitive, to make the variables read-
only, and to allow identifier-like strings to be unquoted.

There are APIs in place for third-party developers to add new
default editing widgets, new expression functions, and new
storage backends. In addition, Mavo includes a hooks system
for developing plugins that modify how it works on a lower
level. For example, both Expressions and the Mavo debug-
ging tools are implemented as plugins and can be removed.

EVALUATION
In our evaluation, we examined whether Mavo could be
learned and applied by novice web authors to build a variety
of applications in a short amount of time. In order to under-
stand both the usability and flexibility of Mavo, we designed
two user studies. For a first STRUCTURED study, we authored
static web page mockups of two representative CRUD appli-
cations and then gave users a series of Mavo authoring tasks
that gradually evolved those mockups into complete applica-
tions. This study focused on learnability and usability. For
a second FREESTYLE study, before telling users about Mavo
(so that they would not feel constrained by the capabilities of
our system), we asked them to create their own mockup of an
address book application. Then, during the study, we asked
them to use Mavo to convert their mockups into functional
applications. This study focused on whether Mavo’s capabil-
ities were sufficent to create applications envisioned by users.
We carried out the two user studies using three applications.
The applications were designed with hierarchical data to test
users’ ability to generate hierarchical data schemas and per-
form computations on them.

To facilitate replication of our study, we have published all
our study materials online5.

Preparation
We recruited 20 participants (mean age 35.9, SD 10.2; 35%
male, 60% female, 5% other) by publishing a call to partici-
pation on social media and local web design meetup groups.
Of these, 13 performed only the STRUCTURED study, 3 per-
formed only the FREESTYLE study, and 4 performed both.
All of our participants marked their HTML skills as inter-
mediate (rich text formatting, basic form elements, tables) or
above. However, most (19/20) described themselves as inter-
mediate or below in JavaScript. When they were asked about
programming languages in general, 13/20 described them-
selves as beginners or worse in any programming language,
while 7/20 considered themselves intermediate or better. In
addition, when we asked participants about their experience
with various data concepts, only 4/20 stated they could write
JSON, 5/20 could write SQL, and none could write HTML
metadata (RDFa, Microdata, Microformats).

Before either study, we gave each user a tutorial on Mavo,
interspersed with practice tasks on a simple inventory ap-
plication. This took 45 minutes on average and covered
the property attribute (10 minutes), the data-multiple at-
tribute (10 minutes), and expressions using the [] syntax,
broken down into how to reference properties and perform
5http://mavo.io/uist2016/study

computations (5 minutes), aggregates such as count() (10
minutes), and iff() syntax and logic (10 minutes).

The Structured Study
For the STRUCTURED study, 17 subjects were given static
HTML and CSS mockups of one out of two applications
that we created and were asked to carry out a series of tasks
by editing the HTML. The tasks tested their ability to use
different aspects of Mavo, as shown in Figure 5. Eight of
these users were given a mockup of a Decisions app, a tool
for making decisions by summing weighted pros and cons.
The application also shows a suggested decision based on the
sums of pro and con weights. The other 9 users were given
a mockup of a Foodie log, a restaurant visit tracker that in-
cludes dishes eaten on each visit with individual ratings per
dish. The application also computes average ratings for each
visit and each restaurant.

Each subject was shown a fully functional version of their
respective application (but not its HTML source) before being
given the static HTML template. While a CSS style file was
provided, they did not have to look at it. We provided tasks
to the user one at a time, letting them complete one before
revealing the next. Participants were asked to speak aloud
their thoughts and confusions as they worked. Researchers
were silent except to alert subjects to spelling mistakes and
to explain HTML and CSS concepts—such as how to set a
value on a <meter> tag—if subjects were unaware of them. If
subjects spent over 15 minutes on a task but were not close to
succeeding, the researchers stepped in to offer hints or explain
the answer, and marked the task as failed.

Study Tasks
In the case of the Decisions app, users had 10 tasks to com-
plete, while for the Foodie log, users had 12 tasks. The tasks
increased in difficulty in order to challenge the users. We
grouped the tasks into 7 categories, where each category tests
a particular aspect of Mavo. Example tasks, code solutions,
and the number of tasks in each category per application is
in Figure 5. As footnoted earlier, all this task data is available
online. A description of each task category follows:

• Make editable Adding property attributes to different
HTML tags to make them editable.

• Allow multiple Turn an element into a collection, by
adding property and data-multiple.

• Simple reference Display the value of a property some-
where else, via a [propertyName] expression.

• Simple aggregate Show the result of a simple aggregate
calculation, such as the count or sum of something.

• Multi-block aggregate Aggregate calculation on a dy-
namic property, such as an average of counts.

• Filtered aggregate Show how many items satisfy a given
condition.

• Conditional Show different text depending on a condition.

Results
In the STRUCTURED studies, before providing the tasks, we
showed users the finished application they were tasked to cre-
ate and asked them how long they thought it would take them.
Of the 17 users, 5 estimated it would take them several hours,

Task category Example task Example code Med. time Success

Make editable
Foodie: 1, Decisions: 1

“Make the restaurant information editable
(name, picture, url, etc)”

<h1 property="name">
Toscano</h1>

3:00 100%

Allow multiple
Foodie: 3, Decisions: 2

“Make it possible to add more pros and
cons.”

<article property="pro"
data‑multiple>

1:15 100%

Simple reference
Foodie: 3, Decisions: 3

“Make the header background dynamic
(same image as the restaurant picture)”

<header style="
background: url([pic])">

0:43 88%

Simple aggregate
Foodie: 3, Decisions: 2

“Make the visit rating dynamic (average of
dish ratings)”

[average(dishRating)] 0:55 97.5%

Multi-block aggregate
Foodie: 1, Decisions: 0

“Make the restaurant rating dynamic
(average of visit ratings)”

<meter value="
[average(visitRating)]">

2:00 77.8%

Filtered aggregate
Foodie: 1, Decisions: 1

“Show a count of good restaurants” [count(rating > 3)] good
restaurants

6:10 70.9%

Conditional
Foodie: 0, Decisions: 1

“Show "Yes" if the score is positive, "No" if
it's negative, "Maybe" if it’s 0.”

[iff(score>0, Yes,
iff(score<0, No, Maybe))]

5:28 75%

Figure 5: User study tasks are shown in the mockups that were given to participants, and results are broken down by task category.
The green arrows point to element backgrounds, which participants made dynamic via inline styles or class names. Page elements
involved in specific tasks are outlined with color codes shown in the table. “Make editable” tasks are not shown to prevent clutter.

6 estimated days, 3 estimated weeks, and 3 estimated months.
Some users said that they would need to learn new skills or
that they had no idea where to start.

After going through the tutorial, 6 users went on to complete
all the tasks for their application with no failures, 1 user had
no failures but had to leave before the last task, and 10 users
failed at one or more tasks. The 6 users who completed all
tasks successfully took on average 17.3 minutes (Decisions)
and 22.5 minutes (Foodie) to build the entire application. Of
the 10 people who failed one or more times, 5 failed on 1
task, 2 failed on 2 tasks, and 3 failed on 3 tasks. All failures
were concentrated on expression tasks, usually the most dif-

ficult ones. The success rate for basic CRUD functionality
was 100%. Figure 5 shows the median time taken and suc-
cess rate for each category of task for all 17 users. As can
be seen, some task categories were easier for participants to
carry out than others. For instance, all participants quickly
learned where to place the property and data-multiple at-
tributes. Almost all participants were also able to display sim-
ple aggregates, such as showing a count of restaurant visits or
a decision score (sum of pro weights - sum of con weights).
However, some participants struggled with more complicated
expressions, such as conditionals or multi-block aggregates.
We explore some of the more common issues next.

HTML fragment Success
</meter> [rating] 100%
title="Overall rating: [rating]" 100%
</meter> [weight] 100%
style="background: url([pic])" 77.8%
class="weight-[weight]" 75%
class="answer-[answer]" 75%

Table 1: Success rate of simple references.

We asked these 17 participants who built either the Decisions
or Foodie app to rate the difficulty of converting the static
page to the fully realized application. They were asked to
rate this twice: once after seeing a demo of the final appli-
cation but before learning about Mavo, and once after going
through all the tasks with Mavo. On a 5-point Likert scale,
the reported difficulty rating after building the app with Mavo
dropped 2.06 points on average from its pre-Mavo rating.

Common Mistakes
The most prevalent error was putting data-multiple on the
wrong element—usually the parent container—with 40% of
participants stumbling on it at some point. However, as soon
as users saw that they were getting copies of the wrong ele-
ment, they immediately figured out the issue. As the user’s
intent was always clear, a WYSIWYG editor would solve
this in the future. Another similarly common and quick-to-
fix mistake was forgetting data-multiple (25%). None of
these mistakes led to failures on a task.

We noticed that users had a hard time grasping or realizing
they could do concatenation. Both the Decisions and Foodie
applications included 3 simple reference tasks. We noticed
that the failure rate was significantly higher (20-25% vs 0%)
when the variable part was not separated by whitespace from
the static part of the text, as shown in Table 1.

Another common mistake was using sum() instead of
count() (20% of participants). This may be because they
are thinking of counting in terms of “summing how many
items there are”, or that they are more familiar with sum(),
due it being far more common than count() in spreadsheets.
Interestingly, there was no correlation between spreadsheet
familiarity and occurrence of this mistake.

We noticed that some participants frequently copied and
pasted expressions when they needed the same calculation
in different places. A DRY (Don’t Repeat Yourself) strategy
familiar to programmers would be to create an intermediate
variable by surrounding the expression in one place with a
tag (such as or <meta>) that also has a property,
so that it can be referenced elsewhere. These intermediate
properties would reduce clutter and consequently reduce fu-
ture mistakes down the road; they would also make it easier
to modify computations globally. This idea might however
be counterintuitive in Mavo as it calls for creating a tag in the
HTML that is never intended to be part of the presentation,
conflicting with the idea that one authors the application by
authoring what they want to see.

Figure 6: A sample of Own Address Book applications cre-
ated by users.

The STRUCTURED tasks with the lowest success rate (70.9%)
were those that required counting with a filter (count(rating
> 3)). 25% of participants tried solving these with condition-
als, usually of the form iff(rating > 3, count(rating)),
which just printed out the number of ratings, since the condi-
tion is true if there is at least one rating larger than 3. Most
who succeeded remembered or (more often) guessed that they
could put a conditional inside count and seemed almost sur-
prised when it worked. Another way of completing this task
would be to declare intermediate hidden variables computing
e.g. rating > 3 inside each restaurant or decision and then
sum or count them outside that scope. Only 10% of partic-
ipants tried this method, again suggesting that intermediate
variables are a foreign concept to this population.

Most participants found iff() to be one of the hardest con-
cepts to grasp. 40% of subjects tried iff() when it was not
needed, for instance in simple reference tasks. 25% of users
were unable to successfully complete the conditional task,
which required two nested iff()s or three adjacent iff()
statements, each controlling the appearance of one of the des-
ignated words (“Yes”, “Maybe”, or “No”). The latter strategy
was only attempted by 37.5% of participants.

In post-study discussions, some users mentioned how condi-
tionals reminded them of what they found hard about pro-
gramming: “That’s some math and logic which are not my
strong points. Just seeing those if statements...I did a little bit
of Java and I remember those always screwed me over in that
class. No surprise that that also tripped me up here.”

Freestyle Study
Our second FREESTYLE user study involved a third Own Ad-
dress Book application. During recruitment, subjects were
asked to create their own static mock-up of an address book
on their own time prior to meeting us, without being told
why. The 7 subjects who complied were assigned to the
FREESTYLE study (3 also did the STRUCTURED study first).
During our meeting (and after the tutorial), they were asked
to add Mavo markup to their own mockup to turn it into a
working application.

We added this second study to address several questions.
First, we wanted to be sure that our own HTML was not “op-
timized” for Mavo. Because users were not aware of Mavo
at the time they created their application, their decisions were
not influenced by perceived strengths and limitations of the
Mavo approach. We can therefore posit that these mockups
reflected their preferred concept of a contact manager appli-
cation. Thus, this study served to test whether Mavo is suit-
able for animating applications that users actually wanted to
create. At the same time, it tested whether users could effec-
tively use Mavo to animate “normal” HTML that was written
without Mavo in mind.

Study Tasks
Before this FREESTYLE study, we provided no specification
of how the application should work or look, except to say
that users only needed to use HTML and CSS; that if there
were lists, they only needed to provide one example in the
list; and that the mockup needed to contain at least a name,
a picture, and a phone number. Then, during the study ses-
sion, we asked them to use Mavo to make their mockup fully
functional in any way they chose. If the application they envi-
sioned was very simple, after they successfully implemented
their application, we encouraged them to consider more com-
plex features, as described in the a section below.

Since what the user worked on depended on their own en-
visioned implementation, we did not have explicitly defined
tasks throughout. However, we did encourage users to try
more advanced Mavo capabilities by suggesting the follow-
ing tasks if they ran out of ideas:

1. Allow phone numbers (or emails) to have a label, such as
“Home” or “Work” [Make editable]

2. Allow multiple phone numbers (and/or emails, postal ad-
dresses) [Allow multiple]

3. Provide a picture alt text that depends on the person’s name
(for example, “John Doe’s picture”) [Simple reference]

4. Show a total count of people (and/or phone numbers,
emails) [Simple aggregate]

5. Show “person” vs “people” in the heading, depending on
how many contacts there are. [Conditional]

Results of Open-Ended Tasks
Of our participants, 7 brought in their own static mockup of
an Address Book app and had time for the FREESTYLE study.
We found a variety of implementations of the repeatable con-
tact information portion. One person used a <table>, with
each row representing a different contact. Three people used
, with each contact as a separate list item, and the in-
formation about each contact represented inline or as sepa-
rate <div> elements. Two people chose to only use nested
<div>s, with each contact having their own <div>. Finally,
one person chose to create a series of 26 <div>s, each one a
letter of the alphabet, with the intended ability to add contacts
within each letter.

When we asked users to use Mavo to improve their mockup
in any way, all 7 users chose initially to use the Mavo syntax
to make the fields of the app editable and to support multiple
contacts, and had no trouble doing so. 4 out of 7 chose, on

their own accord, to support multiple phone numbers, emails,
or addresses per contact. In all but one case, Mavo was able
to accommodate what users envisioned, as well as our ex-
tra tasks. In one case (top left in Figure 6), the participant
wanted grouping and sorting functionality, which Mavo does
not support. She was still able to convert her HTML to a web
application, but the user had to manually place each contact
in the correct one of 26 distinct “first letter” collections. A
sample of Own Address Book applications that users created
are shown in Figure 6.

Five more participants brought Contact Manager mockups,
but did not have time to animate them due to participating
in the STRUCTURED study first. However, all five mockups
were suitable for Mavo and followed the same patterns al-
ready observed in the FREESTYLE study.

General Observations
We conclude this section with some general observations ap-
plicable to both studies.

Overall Reaction to Data Authoring
The overall reactions to Mavo ranged from positive to enthu-
siastic. One user who was a programming beginner but used
CMSs on a daily basis, said “Being able to do that...right
in the HTML and not have to fool with...a whole other
JavaScript file...That is fantastic. I can’t say how awesome
that is. I’m like, I want this thing now. Can I have a copy
please? Please send me an email once it’s out.” Along sim-
ilar lines, another non-programmer said “When is this going
to be available? This is terrific. This is exactly the stuff I have
a hard time with”.

Many participants liked the process of editing the HTML as
opposed to editing in a separate file and/or in a separate lan-
guage. One user said “It seems much more straightforward,
everything is right there. You’re not referring to some other
file somewhere else and have to figure out what connects with
what. It’s...almost too easy”. Others liked how the Mavo
syntax was reminiscent of HTML. One person said “It didn’t
seem like a lot of new things had to be learned because nam-
ing properties was just the same as giving classes and ids.”
Another said “It’s very simple. It’s as logical as HTML. You
are eliminating one huge step in coding, the need to call
the answer at some point, which is really cool...Everything
is where it needs to be, not in a different place”.

Other users praised the ability to edit the data from within the
browser as opposed to a separate file or data system. One per-
son said, “I’m convinced it’s magic to basically write templat-
ing logic and have it show up and be editable. I think there’s
a lot less cognitive overhead to direct manipulation on the
page, especially for a non-technical user”. This unprompted
recognition of direct manipulation supports our argument that
this approach is natural.

Reaction to Expressions
Many participants were enthused about expressions, even
those who failed at a few tasks. One participant said about
them: “It’s simpler than I expected it to be. My anxiety ex-
pects it to be hard, then I just say ‘write what you think’ and

Figure 7: Mavo apps independently created by participants.
Clockwise: Collectible Card Game, Horse feed management,
bug tracker.

it turns out to be right. It’s very intuitive.” Another user, af-
ter learning about filtered aggregates (e.g. count(age > 5))
said “It’s so expressive, it tells you exactly what it’s doing!”

Though several users struggled with some of the more com-
plicated tasks around expressions, all participants easily got
the hang of defining a hierarchical data schema within HTML
using Mavo. Several users felt that the Mavo attributes of
property and data-multiple were powerful even without
expressions, and mentioned wanting to use these attributes to
replicate functionalities of CMSs that they used. When asked
what applications they could see Mavo being useful for, users
mentioned using Mavo to build a color palette app, a movies-
watched log, a basic blog, and an app for tipping. Two users
mentioned using Mavo for putting out surveys and contact
forms. Several mentioned using Mavo to build an online port-
folio, with lists of projects.

Debugging Behavior
Some participants used the debug table provided to them
while others ignored it, instead choosing to look at the vi-
sual presentation of the HTML to see where they went wrong.
One user even commented out loud that they were not going
to look at the debug table at all, then proceeded to fail on a
task where a quick glance would have likely prevented this.
A possible explanation is that novices are not used to look-
ing in a separate place for debugging information. The debug
tables were visually and spatially disconnected from the rest
of their interface, especially on (visually) larger objects. An-
other possible explanation is that the information density of
the table is intimidating to novices. The users who did look at

the debug tables found them useful for spotting spelling mis-
takes, missing closing braces or quotes, use of wrong property
names, and for understanding whether properties were lists,
strings, or numbers. Nobody experimented with editing ex-
pressions in the debug table, and few participants (15%) used
the in-browser development tools such as the console and el-
ement inspector.

Aftermath
To further investigate its appeal, we encouraged participants
to try out Mavo on their own time after the user study. Three
of them went on to create Mavo apps, including a collectible
card game, a bug tracker, and a horse feed management ap-
plication (Figure 7. The authors of the first two applications
were programming novices, the latter intermediate.

DISCUSSION
In this section we discuss various issues brought up in our
design and study of the Mavo language.

Direct Manipulation of Data Schemas
Mavo’s approach of designing schmemas by designing the
presentation of the data from those schemas works well be-
cause the presentation of data usually reflects its schema. If
we have a collection of objects with properties, we generally
expect those objects to be shown in a list, with each object’s
properties presented inside the space allocated to that object.
This is understandable, as the visual grouping conveys rela-
tionship to the viewer. We are simply inverting this process,
arranging for the visual grouping to convey information to
the underlying data later. Mavo may not be suitable for cre-
ating presentation that conflict strongly with the underlying
data schema, should such presentations ever be wanted.

Target Users
Mavo is aimed at a broad population of users. There is no
hard limit to what it can do, since its expressions also accept
arbitrary JavaScript. However, this is not the primary target.
Our focus is increasing the power payoff for a given invest-
ment of effort/learning that is accessible to novices. Cur-
rently, even small web applications require substantial skill
and effort to build. Too often, designers of essentially static
websites are forced to deploy them inside CMSs, only so
that their non-technical clients can update the site content.
Mavo frees designers from these CMS constraints by pro-
viding an automatic WYSIWYG content management UI for
plain HTML. Plain CRUD apps only need data-* attributes
“entirely in HTML” without application logic.

For users who want more, expressions add power:
lightweight computation for application logic at a conceptual
cost similar to spreadsheets. More complex functions provide
more power, like advanced spreadsheet ones. Our user study
traced out this ease/power curve and showed that most users
can work with such expressions.

Although we have focused on Mavo as a tool to support non-
programmers, skilled programers can also benefit from the
ability to rapidly build dynamic CRUD interfaces. Even for
programmers Mavo brings some of the benefits of data typ-
ing to the construction of the interface: declaring data types

enables the system to provide appropriate input and data man-
agement without demanding that the developer write special
purpose code for the typed content.

Scalability
Because Mavo is implemented as a pure Javascript library and
all computation occurs on the client, serving a Mavo app to
any number of users is as easy and scalable as serving static
web pages. Scalability issues arise only around access to the
data, which may be stored locally or outsourced to third-party
storage providers such as Dropbox.

Mavo is therefore perfectly suited to so-called Personal Infor-
mation Management (PIM) applications. These applications
have a single author and reader, and the amount of data they
manage is generally small. For the ultimate in scalability, the
Mavo app web page can be stored (“installed”) on the user’s
own machine and data stored locally in the user’s browser.
While this old fashioned approach sacrifices the access-from-
anywhere advantages of cloud-based services, it frees the user
of any dependence on the network. Even when operating in
the cloud, PIM-oriented Mavo applications scale extremely
well because each user’s data is isolated. Each user’s Mavo
simply loads or stores their own small data file, which is the
bread-and-butter operation of the popular storage services. A
peer-to-peer synchronization service for web storage would
allow users to manage information on all their devices while
still avoiding dependence on any cloud services.

Mavo is also well suited to “web publishing” applications
where an author manages and publishes a moderate-size hier-
archical data model and present it to audiences of any size
through views enriched by computation of scalar and ag-
gregate functions over those items. This large space spans
personal homepages, blogs, portfolios, conference websites,
photo albums, color pickers, calculators, and more. Since
only the author edits, these applications scale like the PIM
applications for editing, while on the consumption side any
number of consumers are all simply loading the (static) Mavo
application and data file, which again is highly scalable. Con-
versely, Mavo can be used to supercharge web forms that col-
lect information from large numbers of individuals—such as
surveys and contact forms—to adapt dynamically to inputs
and perform validation computations.

Mavo is not designed to make social or big data apps that
present every user with the results of complex queries com-
bining many users’ data. This social/computational space is
important, but so is the large space of “small data” applica-
tions that Mavo can provide. Mavo also does not persist the
results of large complex calculations, instead redoing them
every time. Again, this is an unimportant issue in small-data
applications. Even on big-data applications, Mavo may in the
future be a useful component for simplified UI design if pow-
erful back-end servers are used to filter down and deliver only
the small amount of data any given user needs in their UI at a
given time.

Multi-User Applications
Mavo can already be used to create basic multi-user applica-
tions, since many users can simultaneously visit a Mavo web

page and access the underlying data. But access control needs
to be implemented by the back-end service and is currently
quite coarse. For example, Dropbox only supports read and
write access to an entire file. This is adequate for many “small
data” applications. However, back-end services with richer
access models exist. For instance, DataHub [7] provides row-
level access control, where each table row is “owned” by dif-
ferent users. This would enable apps where users can read
others’ data but only edit their own. Mavo would need to re-
flect these permissions in the editing UI it generates. Assum-
ing the backend service provides API methods to determine
permissions, this would require few modifications to Mavo.

One planned Mavo capability that would be beneficial for
multi-user applications is the ability to combine Mavo in-
stances drawing from different data sources. This would en-
able uses such as a blog where the posts are stored in Dropbox
and can only be edited by the author, with comments that are
stored in a service that supports row-level access control.

Multi-user applications require robust conflict resolution to
be able to scale. We plan to support server-sent events to
make bidirectional data flows possible, which, in conjunction
with auto-saving, should reduce conflicts to a minimum that
can be resolved via the UI.

Encouraging Semantic Web Best Practices
The Mavo syntax for naming elements is based on a sim-
plified version of RDFa. Its main divergence from RDFa is
that scopes are inferred from the property structure instead of
via a separate typeof attribute. Mavo then adds any missing
typeof attributes. As a result, at runtime any Mavo instance
becomes valid RDFa that can be consumed by any program
that needs it. Mavo further incentivizes authors to use good
property names by using their identifiers in various places in
the generated editing UI: button labels, tooltips, and input
placeholders to name a few.

Lastly, in addition to runtime HTML, whenever people edit
a website via Mavo, they are also unwittingly producing
machine-readable, structured JSON data.

FUTURE WORK

Improving Expressions
Our user study showed that Mavo’s CRUD capabilities can be
easily understood and used by novices, but there is room for
improvement on expressions. Users struggled with condition-
als (iff()), partly due to syntax. An HTML-based syntax for
conditional logic could help rectify this. We are considering
an attribute specifically for toggling content (example: <div
data-if="score < 2">No</div>), which appears to be the
most common use case for a conditional statement.

Some participants tried using sum() with the property name
of the list items instead of the numerical property being
summed. Others used sum() instead of count(). Both
of these mistakes printed 0, as sum() drops non-numbers.
A more meaningful result might be helpful. For example
sum(someObject) could sum all numerical primitives inside
the object, or could treat any non-numbers as 1 in order to
have sum generalize count.

Filtering and Sorting
While participants were enthusiastic about the potential of
building apps with Mavo, there were also a few requested
use cases that Mavo cannot presently accommodate. Sort-
ing, searching and filtering were recurring themes. Simple
filtering and searching is already possible via expressions
and CSS, but not in a straightforward way. We plan to ex-
plore more direct ways to declaratively express these opera-
tions. Since Mavo makes collections and properties explicit,
it doesn’t take much more syntax to enable sorting and filter-
ing of a collection on certain properties; however, the more
complex question is to develop a sufficiently simple language
that can empower users to fully customize any generated sort-
ing and filtering interfaces beyond simple skinning.

One user wanted to filter a list based on web service data (cur-
rent temperature). Mavo can already incorporate data from
any JSON data source, so this will become possible once we
support combining data from multiple Mavo instances on the
same page.

Handling Schema Mutations
Mavo’s innovation of inferring schema from HTML presenta-
tion might be its Achilles’ heel. After Mavo is used to create
data, changes to the HTML may result in a mismatch between
the schema of the saved data and the new schema inferred
from the HTML, which could lead to data loss. Currently
Mavo handles only the most basic of such changes, such as:

• When properties are added the schema is automatically ex-
tended to include them.

• When properties are removed, corresponding data is re-
tained and saved, but not displayed. This protects a user
from data loss if they stop displaying a property then
bring it back later. It also enables the creation of multi-
ple Mavo applications operating on different parts of the
same dataset.

• When a singleton is made into a data-multiple collec-
tion, Mavo converts the single item to a collection of one
item.

• When a collection is made into a singleton (by removing
the data-multiple attribute), the data is retained so it can
be brought back later but anything after the first item is
not displayed and cannot be edited or referred to in expres-
sions.

• Property names can be changed by specifying property
name aliases using the data-alias attribute.

More complete handling of schema changes is a key open
question for Mavo. Our lab study did not explore it because
we are not sure what migrations will arise in practice. We
plan to release Mavo to the wider public in the coming months
and do a field study about how people use it in the wild to
create web applications. This will also help identify the types
of migrations that are most commonly needed.

The enforced bijection between Mavo schema and data
schema may also prevent Mavo from making use of “third
party” data that is laid out according to a different schema.
We may need to develop language for describing schema
mappings to permit incorporation of such data.

CONCLUSION
This paper presents Mavo, a system that helps end users con-
vert static HTML pages to fully-fledged web applications for
managing and transforming structured data. Our user stud-
ies showed that HTML authors can quickly learn use Mavo
attributes to transform static mockups to CRUD applications,
and, to a large extent, use Mavo expressions to perform dy-
namic calculations and data transformations on the existing
data.

ACKNOWLEDGEMENTS
We would like to thank the reviewers for their valuable feed-
back and our study participants for their help. This research
was funded in part by a grant from Wistron Corporation.

REFERENCES
1. Jekyll. https://jekyllrb.com.

2. ThemeForest. http://themeforest.net.

3. W3C HTML+RDFa 1.1 - Second Edition.
https://www.w3.org/TR/html-rdfa.

4. Benson, E., and Karger, D. R. End-users publishing
structured information on the web: an observational
study of what, why, and how. In Proceedings of the 32nd
annual ACM conference on Human factors in computing
systems, ACM (2014), 1265–1274.

5. Benson, E., Zhang, A. X., and Karger, D. R. Spreadsheet
driven web applications. In Proceedings of the 27th
Annual ACM Symposium on User Interface Software
and Technology, UIST ’14, ACM (New York, NY, USA,
2014), 97–106.

6. Berners-Lee, T., Hendler, J., Lassila, O., et al. The
semantic web. Scientific american 284, 5 (2001), 28–37.

7. Bhardwaj, A., Bhattacherjee, S., Chavan, A.,
Deshpande, A., Elmore, A. J., Madden, S., and
Parameswaran, A. G. Datahub: Collaborative data
science & dataset version management at scale. arXiv
preprint arXiv:1409.0798 (2014).

8. Burnett, M., Atwood, J., Djang, R. W., Reichwein, J.,
Gottfried, H., and Yang, S. Forms/3: A first-order visual
language to explore the boundaries of the spreadsheet
paradigm. Journal of functional programming 11, 02
(2001), 155–206.

9. Cafarella, M. J., Halevy, A., and Madhavan, J.
Structured data on the web. Communications of the
ACM 54, 2 (2011), 72–79.

10. Chang, K. S.-P., and Myers, B. A. Creating interactive
web data applications with spreadsheets. In Proceedings
of the 27th Annual ACM Symposium on User Interface
Software and Technology, UIST ’14, ACM (New York,
NY, USA, 2014), 87–96.

11. Chang, K. S.-P., and Myers, B. A. Using and exploring
hierarchical data in spreadsheets. In ACM CHI (2016).

12. Connell, R. S. Content management systems: trends in
academic libraries. Information Technology and
Libraries (Online) 32, 2 (2013), 42.

https://jekyllrb.com
http://themeforest.net
https://www.w3.org/TR/html-rdfa

13. Fu, Y., Ong, K. W., Papakonstantinou, Y., and
Petropoulos, M. The sql-based all-declarative forward
web application development framework. In CIDR
(2011), 69–78.

14. Huynh, D. F., Karger, D. R., and Miller, R. C. Exhibit:
lightweight structured data publishing. In Proceedings of
the 16th international conference on World Wide Web,
ACM (2007), 737–746.

15. Karger, D. R., Ostler, S., and Lee, R. The web page as a
wysiwyg end-user customizable database-backed
information management application. In Proceedings of
the 22nd annual ACM symposium on User interface
software and technology, ACM (2009), 257–260.

16. Kowalzcykowski, K., Deutsch, A., Ong, K. W.,
Papakonstantinou, Y., Zhao, K. K., and Petropoulos, M.
Do-it-yourself database-driven web applications. In
Proceedings of the 4th Biennial Conference on
Innovative Data Systems Research (CIDRâĂŹ09),
Citeseer (2009).

17. Myers, B., Hudson, S. E., and Pausch, R. Past, present,
and future of user interface software tools. ACM
Transactions on Computer-Human Interaction (TOCHI)
7, 1 (2000), 3–28.

18. Rosson, M. B., Ballin, J., and Rode, J. Who, what, and
how: A survey of informal and professional web
developers. In Visual Languages and Human-Centric
Computing, 2005 IEEE Symposium on, IEEE (2005),
199–206.

19. Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D.,
O’Grady-Cunniff, D., Owens, B. B., Stephenson, C.,
and Verno, A. Csta k–12 computer science standards:
Revised 2011, 2011.

20. Shneiderman, B. Direct manipulation: a step beyond
programming languages. Sparks of innovation in
human-computer interaction 17 (1993), 1993.

21. WHATWG. Microdata - HTML Living Standard.
https://html.spec.whatwg.org/multipage/microdata.html.

22. Wilde, N., and Lewis, C. Spreadsheet-based interactive
graphics: from prototype to tool. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, ACM (1990), 153–160.

23. Yang, F., Gupta, N., Botev, C., Churchill, E. F.,
Levchenko, G., and Shanmugasundaram, J. Wysiwyg
development of data driven web applications.
Proceedings of the VLDB Endowment 1, 1 (2008),
163–175.

https://html.spec.whatwg.org/multipage/microdata.html

	Introduction
	Our Contribution

	Related Work
	End User Web Development
	The Semantic Web and Web Data Extraction

	Mavo
	Building data-driven CRUD applications
	Declarative, HTML-based Syntax
	Storage location
	Data Definition
	Data Editing
	Customizable Editors
	Objects
	Collections
	Direct Schema Manipulation

	Computation
	Expressions

	Named References
	Multi-valued Expressions

	Debugging

	Implementation
	Evaluation
	Preparation
	The Structured Study
	Study Tasks
	Results
	Common Mistakes

	Freestyle Study
	Study Tasks
	Results of Open-Ended Tasks

	General Observations
	Overall Reaction to Data Authoring
	Reaction to Expressions
	Debugging Behavior
	Aftermath

	Discussion
	Direct Manipulation of Data Schemas
	Target Users
	Scalability
	Multi-User Applications
	Encouraging Semantic Web Best Practices

	Future Work
	Improving Expressions
	Filtering and Sorting
	Handling Schema Mutations

	Conclusion
	Acknowledgements
	REFERENCES

