
Scheduling AlgorithmsDavid Karger, Massachusetts Institute of TechnologyCli� Stein, Dartmouth CollegeJoel Wein, Polytechnic University1 IntroductionScheduling theory is concerned with the optimal allocation of scarce resources to activities overtime. The practice of this �eld dates to the �rst time two humans contended for a sharedresource and developed a plan to share it without bloodshed. The theory of the design ofalgorithms for scheduling is younger, but still has a signi�cant history|the earliest papers inthe �eld were published more than forty years ago.Scheduling problems arise in a variety of settings, as is illustrated by the following examples:Example 1: Consider the central processing unit of a computer that must process a sequenceof jobs that arrive over time. In what order should the jobs be processed in order tominimize, on average, the time that a job is in the system from arrival to completion?Example 2: Consider a team of �ve astronauts preparing for the reentry of their space shuttleinto the atmosphere. There is a set of tasks that must be accomplished by the team beforereentry. Each task must be carried out by exactly one astronaut, and certain tasks can notbe started until other tasks are completed. Which tasks should be performed by whichastronaut, and in which order, to ensure that the entire set of tasks is accomplished asquickly as possible?Example 3: Consider a factory that produces di�erent sorts of widgets. Each widget must�rst be processed by machine 1, then machine 2, and then machine 3, but di�erent widgetsrequire di�erent amounts of processing time on di�erent machines. The factory has ordersfor batches of widgets; each order has a date by which it must be completed. In whatorder should the machines work on di�erent widgets in order to insure that the factorycompletes as many orders as possible on time?More generally, scheduling problems involve jobs that must scheduled on machines subject tocertain constraints to optimize some objective function. The goal is to specify a schedule thatspeci�es when and on which machine each job is to be executed.1



Researchers have studied literally thousands of scheduling problems, and it would be im-possible even to enumerate all known variants in the space of this chapter. Our goal is moremodest. We wish to make the reader familiar with an assortment of algorithmic techniquesthat have proved useful for solving a large variety of scheduling problems. We will demonstratethese techniques by drawing from a collection of \basic problems" that model important issuesarising in many scheduling problems, while at the same time remaining simple enough to per-mit elegant and useful analysis. These basic problems have received much attention, and theircentrality was reinforced by two inuential surveys [GLLK79, LLKS93]. All three examplesabove �t into the basic problem framework.In this survey we focus exclusively on algorithms that provably run, in the worst case, intime polynomial in the size of the input. If the algorithm always gives an optimum solution,we call it an exact algorithm. Many of the problems that we consider, however, are NP-hard,and it thus seems unlikely that polynomial-time algorithms exist to solve them. In these caseswe will be interested in approximation algorithms; we de�ne a �-approximation algorithm to bean algorithm that runs in polynomial time and delivers a solution of value at most � times theoptimum.The rest of this chapter is organized as follows. We complete this introduction by layingout a standard framework covering the basic scheduling problems and a notation for describingthem. We then explore various techniques that can be used to solve them. In Section 2 wepresent a collection of heuristics that use some simple rule to assign a priority to each job andthen schedule the jobs in priority order. These heuristics are useful both for solving certainproblems optimally in polynomial time, and for giving simple but high-quality approximationsfor certain NP-hard scheduling problems. Many scheduling problems require a more complexapproach than a simple priority rule; in Section 3 we study algorithms that are more sophis-ticated in their greedy choices. In Section 4 we discuss the application of some basic toolsof combinatorial optimization, such as network optimization and linear programming, to thedesign of scheduling algorithms. We then turn exclusively to NP-hard problems. In Section 5we introduce the notion of a relaxation of a problem, and show how to use relaxations to designapproximation algorithms. Finally, in Section 6 we discuss enumeration and scaling techniquesby which certain other NP-hard scheduling problems can be approximated arbitrarily closely2



in polynomial time.1.1 The Framework of Basic ProblemsA scheduling problem is de�ned by three separate elements: the machine environment, theoptimality criterion, and a set of side constraints and characteristics. We �rst discuss thesimplest machine environment, and use that to introduce a variety of optimality criteria andside constraints. We then introduce and discuss more complex machine environments.1.1.1 The One-Machine EnvironmentIn all of our scheduling problems we begin with a set J of n jobs, numbered 1; : : : ; n. In theone-machine environment we have one machine that can process at most one job at a time.Each job j has a processing requirement pj; namely, it requires processing for a total of pjunits of time on the machine. If each job must be processed in an uninterrupted fashion, wehave a nonpreemptive scheduling environment, whereas if a job may be processed for a periodof time, interrupted and continued at a later point in time, we have a preemptive environment.A schedule S for the set J speci�es, for each job j, which pj units of time the machine uses toprocess job j. Given a schedule S, we denote the completion time of job j in schedule S by CSj .The goal of a scheduling algorithm is to produce a \good" schedule, but the de�nition of\good" will vary depending on the application. In Example 2 above, the goal is to process theentire batch of jobs as quickly as possible, or, in other words, to minimize the completion timeof the last job �nished in the schedule. In Example 1 we care less about the completion timeof the last job in the batch as long as, on average, the jobs receive good service. Therefore,given a set of jobs and a machine environment, we must specify an optimality criterion; thegoal of a scheduling algorithm will be to construct a schedule that optimizes this criterion.The two optimality criteria discussed in our examples are among the most basic optimalitycriteria: the average completion time of a schedule and its makespan. We de�ne the makespanCSmax = maxj CSj of a schedule S to be the maximum completion time of any job in S, andthe average completion of schedule S to be 1nPnj=1CSj . Note that optimizing the averagecompletion time is equivalent to optimizing the sum of completion times Pnj=1CSj :We next turn to side constraints and characteristics that modify the one-machine environ-3



ment. A number of side constraints and characteristics are possible; for example, we mustspecify whether or not preemption is allowed. Two other possible constraints model the arrivalof jobs over time or the possibility of logical dependence between jobs. In a scheduling envi-ronment with release date constraints, we associate with each job j a release date rj ; job j isonly available for processing at time rj or later. In a scheduling environment with precedenceconstraints we are given a partial order � on the set J of jobs; if j0 � j then we may not beginprocessing job j until job 0 is completed.Although we are early in our discussion of scheduling models, we already have enoughinformation to de�ne a number of problems. We refer to various scheduling problems in thenow-standard notation de�ned by Graham, Lawler, Lenstra, & Rinnooy Kan (1979) [GLLK79].A problem is denoted by �j�j, where (i) � denotes the machine environment, (ii) � denotesvarious side constraints and characteristics and (iii)  denotes an optimality criterion.For the one-machine environment � is 1. For the optimality criteria we have introduced sofar,  is either PCj or Cmax. At this point in our discussion, � is a subset of rj, prec, andpmtn, where these denote respectively the presence of (non-trivial) release date constraints,precedence constraints and the ability to schedule preemptively. Any of the side constraintsnot explicitly listed are assumed not to be present|e.g., we default to a nonpreemptive modelunless pmtn is given in the side constraints. As an illustration, 1jjPCj denotes the problem ofnonpreemptively scheduling independent jobs on one machine so as to minimize their averagecompletion time, while 1jrj jPCj denotes the variant of the problem in which jobs have releasedates. As another example, 1jrj ; pmtn ; precjCmax denotes the problem of preemptively schedul-ing jobs with release dates and precedence constraints on one machine so as to minimize theirmakespan. Note that Example 1, given above, can be modeled by 1jrj jPCj, or, if preemptionis allowed, by 1jrj ; pmtn jPCj .Two other possible elements of a scheduling application might lead to di�erent objectivefunctions in the one-machine environment. It is possible that not all jobs are of equal impor-tance, and thus, when measuring average service provided to a job, one might wish to weightthe average so as to give more importance to certain jobs. We model this by assigning a weightwj > 0 to each job j, and generalize the PCj criterion to the average weighted completion timeof a schedule, 1nPnj=1wjCj . In the scheduling notation this optimality criterion is denoted by4



PwjCj .It is also possible that each job j may have an associated due date dj by which it shouldbe completed. This gives rise to two di�erent optimality criteria. Given a schedule S, wede�ne Lj = CSj � dj to be the lateness of job j, and we will be interested in constructing aschedule that minimizes Lmax = maxnj=1 Lj, the maximum lateness of any job in the schedule.Alternatively, we concern ourselves with constructing a schedule that maximizes the numberof jobs that complete by their due dates. To capture this, given a schedule S we de�neUj = 0 if CSj � dj and Uj = 1 otherwise; we can thus describe our optimality criterion asthe minimization of PUj , or more generally, PwjUj . As illustrations, 1jrj jLmax denotes theproblem of nonpreemptively scheduling, on one machine, jobs with release dates and due datesso as to minimize the maximum lateness of any job, and 1jprecjPwjUj denotes the problem ofnonpreemptively scheduling precedence-constrained jobs on one machine so as to minimize thetotal (summed) weight of the late jobs. Deadlines are not listed in the side constraints sincethey are implicit in the objective function.Finally, we will consider one scheduling problem that deals with a more general optimalitycriterion. For each job j, we let fj(t) be any function that is nondecreasing with the completiontime of the job, and, with respect to a schedule S, de�ne fmax = maxnj=1 fj(CSj ): The speci�cproblem that we will consider (in Section 3.1) is 1jprecjfmax { the scheduling of precedence-constrained jobs on one machine so as to minimize the maximum value of fj(Cj) over allj 2 J .1.1.2 More Complex Machine Environments: Parallel Machines and the ShopHaving introduced all of the optimality criteria, side characteristics and conditions that we willuse in this survey, we now discuss more complex machine environments.We �rst discuss parallel machine environments. In these environments we are given mmachines. A job j with processing requirement pj can be processed on any one of the machines,or, if preemption is allowed, started on one machine, and when preempted potentially continuedon another machine. A machine can process at most one job at a time and a job can be processedby at most one machine at a time.In the identical parallel machine environment the machines are identical, and job j requires5



pj units of processing time when processed on any machine. In the uniformly related machinesenvironment each machine i has a speed si > 0, and thus job j, if processed entirely on machinei, would take a total of pj=si time to process. In the unrelated parallel machines environmentwe model machines that have di�erent capabilities and thus their relative performance on a jobis unrelated. In other words, the speed of machine i on job j, sij , depends on both the machineand the job; job j requires pj=sij processing time on machine i. We de�ne pij = pj=sij .In the shop environment, which primarily models various sorts of production environments,we again have m machines. In this setting a job j is made up of operations, with each operationrequiring processing on a speci�c one of the m machines. Di�erent operations may take di�erentamounts of time (possibly 0). In the open shop environment, the operations of a job canbe processed in any order, as long as no two operations are processed on di�erent machinessimultaneously. In the job shop environment, there is a total order on the operations of a job,and one operation can not be started until its predecessor in the total order is completed. Aspecial case of the job shop is the ow shop, in which the order of the operations is the same{ each job requires processing on the same machines and in the same order, but di�erent jobsmay require di�erent amounts of processing on the same machine. Typically in the ow shopand open shop environment, each job is processed exactly once on each machine.In the scheduling notation, the identical, uniformly related and unrelated machine environ-ments are denoted respectively by P, Q, and R. The open, ow and job shop environments aredenoted by O, F and J. When the environment has a �xed number of machines the number isincluded in the environment speci�cation; so, for example, P2 denotes the environment withtwo identical parallel machines. Note that Example 2 can be modeled by P5jprecjCmax, andExample 3 can be modeled by F3jrj jPUj.2 Priority RulesThe most obvious approach to solving a scheduling problem is a greedy one: whenever a machinebecomes available, assign some job to it. A more sophisticated variant of this approach is togive each job a priority derived from the particular optimality criterion, and then, whenevera machine becomes available, assign the available job of highest priority to it. In this sectionwe discuss such scheduling strategies for one-machine, parallel-machine and shop problems. In6



all of our algorithms, the priority of a job can be determined without reference to other jobs.This typically gives a simple scheduling algorithm that runs in O(n log n) time|the bottleneckbeing the time needed to sort the jobs by priority. We also discuss the limitations of theseapproaches, giving examples where they do not work well.2.1 One MachineWe �rst focus on algorithms for single-machine problems in which we give each job a priority,sort by priorities, and schedule in this order. To establish the correctness of such algorithms, itis often possible to apply an interchange argument. Suppose that there is an optimal schedulewith jobs processed in non-priority order. It follows that some adjacent pair of jobs in theschedule has inverted priorities. We show that if we swap these two jobs, the schedulingobjective function is improved, thus contradicting the claim that the original schedule wasoptimal.2.1.1 Average weighted completion time: 1jjPwjCjIn perhaps the simplest scheduling problem, our objective is to minimize the sum of completiontimes PCj . Intuitively, it makes sense to schedule the largest job at the end of the schedule toensure that it does not contribute to the delay on any other job. We formalize this by de�ningthe shortest processing time (SPT) algorithm: order the jobs by nondecreasing processing time(breaking ties arbitrarily) and schedule in that order.Theorem 2.1 SPT is an exact algorithm for 1jjPCj.Proof: To establish the optimality of the schedule constructed by SPT we use an interchangeargument. Suppose for the purpose of contradiction that the jobs in the optimal schedule arenot scheduled in non-decreasing order of completion time. Then there is some pair of jobs jand k such that j immediately precedes k in the schedule but pj > pk.Suppose we exchange jobs j and k. All jobs other than j and k still start, and thus complete,at the same time as they did before the swap. All that changes is the completion times of jobsj and k. Suppose that originally job j started at time t and ended at time t+ pj , so that job kstarted at time t+ pj and �nished at time t+ pj + pk. It follows that the original contributionof these two jobs to the sum of completion times, namely (t+pj)+(t+pj +pk) = 2t+2pj +pk,7



is replaced by their new contribution of 2t + 2pk + pj . This gives a net decrease of pj � pkin PCj, which is positive if pj > pk, implying that our original ordering was not optimal|acontradiction. 2This algorithm, and proof of optimality, generalizes to the optimization of average weightedcompletion time, 1jjPwjCj . Intuitively, we would like to schedule as much weight as possiblewith each unit of processing time. This suggests scheduling jobs in nonincreasing order ofwj=pj; the optimality of this rule can be established by a simple generalization of the previousinterchange argument.Theorem 2.2 ([Smi56]) Scheduling jobs in nonincreasing order of wj=pj gives an optimalschedule for 1jjPwjCj.2.1.2 Maximum lateness: 1jjLmaxA simple greedy algorithm also solves 1jjLmax, in which we seek to minimize the maximum joblateness. A natural strategy is to schedule the job that is closest to being late, which suggeststhe EDD algorithm: order the jobs by nondecreasing due dates (breaking ties arbitrarily) andschedule in that order.Theorem 2.3 ([Jac55]) EDD is an exact algorithm for 1jjLmax.Proof: We again use an interchange argument to prove that the the schedule constructed byEDD is optimal. Assume without loss of generality that all due dates are distinct, and numberthe jobs so that d1 < d2 < � � � < dn. Among all optimal schedules, we consider the one with thefewest inversions, where an inversion is a pair of jobs j; k such that j < k but k is scheduledbefore j. Suppose the given optimal schedule S is not the EDD schedule. Then there is a pairof jobs j and k such that dj < dk but k immediately precedes j in the schedule.Suppose we exchange jobs j and k. This does not change the completion time or latenessof any job other than j and k. We claim that we can only decrease max(Lj; Lk), so we do notincrease the maximum lateness. Furthermore, since j < k, swapping jobs j and k decreases thenumber of inversions in the schedule. It follows that the new schedule has the same or betterlateness than the original one but fewer inversions, a contradiction.8



To prove the claim, note that in schedule S CSj > CSk but dj < dk. It follows thatmax(LSj ; LSk ) = CSj � dj . Under the exchange, job j's completion time, and thus lateness,decreases. Job k's completion time rises to CSj , but this gives it a lateness of CSj �dk < CSj �dj .Thus, the maximum of the two latenesses has decreased. 22.1.3 Preemption and Release DatesWe now consider the more complex one-machine environment in which jobs may arrive overtime, as modeled by the introduction of release dates. The greedy heuristics of the previoussections are not immediately applicable, since jobs of high priority might be released relativelylate and thus not be available for processing before jobs of lower priority. The most naturalidea to cope with this complication is to always process the available (released) job of highestpriority. In a preemptive setting, this would mean, upon the release of a job of higher priority,preempting the currently running job and switching to the \better" job. We will show thatthis idea in fact yields optimal scheduling algorithms.We thus de�ne the Shortest Remaining Processing Time Algorithm SRPT: at each pointin time, schedule the job with shortest remaining processing time, preempting when jobs ofshorter processing time are released. We also generalize EDD: upon the release of jobs withearlier dues dates than the job currently being processed, preempt the current job and processthe job with the earliest due date.Theorem 2.4 ([Bak74, Hor74]) SRPT is an exact algorithm for 1jrj ; pmtn jPCj, and EDDis an exact algorithm for 1jrj ; pmtn jLmaxProof: As before, we argue by contradiction, using a similar greedy exchange argument.However, instead of exchanging entire jobs, we exchange pieces of jobs, which is now allowedin our preemptive environment.We focus on 1jrj ; pmtn jPCj . Consider a schedule in which available job j with the shortestremaining processing time is not being processed at time t, and instead available job k is beingprocessed. Let p0j and p0k denote the remaining processing times for jobs j and k after timet, so p0j < p0k. In total, p0j + p0k time is spent on jobs j and k. We now perform an exchange.Take the �rst p0j units of time that were devoted to either of jobs j and k after time t, and use9



them instead to process job j to completion. Then, take the remaining p0k units of time thatwere spent processing jobs j and k, and use them to schedule job j. This exchange preservesfeasibility since both jobs were released by time t.In the new schedule, all jobs other than j and k have the same completion times as before.Job k �nishes when job j originally �nished. But job j, which needed p0j < p0k additional work,�nishes before job k originally �nished. Thus we have reduced Cj +Ck without increasing anyother completion time, meaning we have reduced PCj , a contradiction.The argument that EDD solved 1jrj ; pmtn jLmax goes much the same way. If at time t, jobj with the earliest remaining due date is not being processed and job k with a later due dateis, we reallocate the time spent processing job k to job j. This makes job j �nish earlier, andmakes job k �nish when job j did originally. This cannot increase objective function value.2 By considering how SRPT and EDD function if all jobs are available at time 0, we concludethat on one machine, in the absence of release dates, the ability to preempt jobs does not yieldschedules with improved PCj or Lmax optimality criteria. This is not the case when jobs haverelease dates; intuitively, a problem such as 1jrj jPCj seems more di�cult, as one can notsimply preempt the current job for a newly-arrived better one, but rather must decide whetherto start a worse job or wait for the better one. This intuition about the additional di�cultyof this setting is justi�ed|1jrjjPCj and 1jrj jLmax are in fact NP-Complete problems. Wediscuss approximation algorithms for these problems in later sections.We also note that these ideas have their limitations, and do not generalize to the PwjCjcriterion { 1jrj ; pmtn jPwjCj is NP-hard. Finally, we note that SRPT and EDD are on-line al-gorithms { their decisions about which job to schedule currently do not require any informationabout which jobs are to be released in the future. See [Sga97] for a comprehensive survey ofon-line scheduling.2.2 The Two-Machine Flow ShopWe now consider a more complex machine environment in which we want to minimize themakespan in a ow shop. In general, this problem is NP-hard, even in the case of threemachines. However, in the special case of the two-machine ow shop F2jjCmax, a priority-10



based ordering approach due to Johnson [Joh54] yields an exact algorithm. We denote theoperations of job j on the �rst and second machines as a pair (aj ; bj): Intuitively, we wantto get jobs done on the �rst machine as quickly as possible so as to minimize idleness on thesecond machine due to waiting for jobs from the �rst machine. This suggests using an SPT ruleon the �rst machine. On the other hand, it would be useful to process the jobs with large bjas early as possible on the second machine, while machine 1 is still running, so they will notcreate a large tail of processing on machine 2 after machine 1 is �nished. This suggests somekind of longest processing time �rst (LPT) rule for machine 2.We now formalize this intuition. We partition our jobs into two sets. A is the set of jobsj for which aj � bj , while B is the set for which aj > bj . We construct a schedule by �rstordering all the jobs in A by nondecreasing aj value, and then all the jobs in B by nonincreasingbj values. We process jobs in this order on both machines. This is called Johnson's rule.It may be surprising that we do not reorder jobs to process them on the second machine.It turns out that for two-machine ow shops, such reordering is not necessary. A schedule inwhich all jobs are processed in the same order is called a permutation schedule.Lemma 2.5 An instance of F2jjCmax always has an optimal schedule that is a permutationschedule.Note that for three or more machines there is not necessarily an optimal permutationschedule.Proof: Consider any optimal schedule, and number the jobs according to the time at whichthey complete on machine 1. Suppose that job k immediately precedes job j in the order inwhich jobs are completed on machine 2, but j < k. Let t be the time at which job k is startedon machine 2. It follows that job k has completed on machine 1 by time t. Numbering j < kmeans that j is processed earlier than k on machine 1, so it follows that job j also has completedon machine 1 by time t. Therefore, we can swap the order of jobs j and k on machine 2, andstill have a legal schedule (since no other job's start time changes) with the same makespan.We can continue performing such swaps until there are none left to be done, implying that jobson machine 2 are processed in the same order as those on machine 1. 2Having limited our search for optimal schedules to permutation schedules, we present a11



clever argument given by Lawler et. al. [LLKS93] to establish the optimality of the permutationschedule speci�ed by Johnson's rule.Renumber the jobs according to the ordering given by Johnson's rule. Notice that ina permutation schedule for F2jjCmax, there must be a job k that is started on machine 2immediately after its completion on machine 1; for example, the job that starts immediatelyafter the last idle time on machine 2. The makespan of the schedule is thus determined by theprocessing times of k jobs on machine 1 and n� k + 1 jobs on machine 2, which is just a sumof n+ 1 processing times. If we reduce all the ai and bi by the same value p, then every sum ofn + 1 processing times decreases by (n + 1)p, so the makespan of every permutation scheduleis reduced by (n + 1)p.Now note that if a job has ai = 0 it is scheduled �rst in some optimal permutation schedule,since it delays no jobs on machine 1 and only \buys time" for jobs that are processed later thanit on machine 2. Similarly, if a job has bi = 0, it is scheduled last in some optimal schedule.Therefore, we can construct an optimal permutation schedule by repeatedly �nding theminimum operation size amongst all the aj and bj values of the unscheduled jobs, subtractingthat value from all of the operation sizes, and then scheduling the job with the new zeroprocessing time according to the above rules. Now observe that the schedule constructed isexactly the schedule that orders the jobs by Johnson's rule. We have therefore proved thefollowing.Theorem 2.6 ([Joh54]) Johnson's rule yields an optimal schedule for F2jjCmax.2.3 Parallel machinesWe now turn to the case of parallel machines. In the move to parallel machines, many prob-lems that are easily solvable on one machine become NP-hard; the focus therefore tends tobe on approximation algorithms. In some cases, the simple priority-based rules we used forone machine generalize well. That is, we assign a priority to every job, and, whenever a ma-chine becomes available, it starts processing the job that has the highest remaining priority.The schedules created by such algorithms, which immediately give work to any machine thatbecomes idle, will be referred to as busy schedules.12



In this section, we also introduce a new method of analysis. Instead of arguing correctnessbased on interchange arguments, we give lower bounds on the quality of the optimal schedule.We then show that our algorithm produces a schedule whose quality is within some factor of thelower bound, thus demonstrating a fortiori that it is within this factor of the optimal schedule.This is a general technique for approximation, and it has the pleasing feature that we are ableto guarantee that we are within a certain factor of the optimal value, without knowing whatthat optimal value is. Sometimes we can show that our greedy algorithm achieves the lowerbound, thus demonstrating that the algorithm is actually optimal.In this section, we devote most of our attention to the problem of minimizing the makespan(schedule length) on m parallel machines, and study the behavior of the greedy algorithm forthe problem. We remark that for the average-completion-time problem PjjPCj , the greedySPT algorithm also turns out to yield an optimal schedule. We discuss this further in Section4.1.As was mentioned in Section 2.1, PjjCmax is trivial when m = 1, as any schedule with no idletime will be optimal. Once we have more than one machine, things become more complicated.With preemption, it is possible to greedily construct an optimal schedule in polynomial time.In the non-preemptive setting, however, it is unlikely that there is a polynomial time exactalgorithm, since the problem is NP-complete via a simple reduction from the NP-completePartition problem [GJ79]. We will thus focus on �nding an approximately optimal solution.First, we will show that any busy schedule gives a 2-approximation. We will then see howthis can be improved with a slightly smarter algorithm, the Longest Processing Time (LPT)algorithm, which is a a 4=3-approximation algorithm. In Section 6 we will show that a morecomplicated algorithm can guarantee an even better quality of approximation.Our analyses of these algorithms are all based on comparing their performance to certainlower bounds on the quality of the optimal schedule; their performance compared to the op-timum can only be better. Our algorithms will make use of two simple lower bounds on themakespan C�max of the optimal schedule:C�max � nXj=1 pj=m (1)C�max � pj for all jobs j: (2)13



The �rst lower bound says that the schedule is at least as long as the average machine load,and the second says that the schedule is as least as long as the size of any job. To demonstratethe power of these lower bounds, we begin with the preemptive problem, Pjpmtn jCmax. Inthis case, we show how to �nd a schedule that matches the maximum of the two lower boundsgiven above. We then use the lower bounds to establish approximation guarantees for thenonpreemptive case.2.3.1 Minimizing Cmax with preemptionsWe give a simple algorithm, called McNaughton's wrap-around rule [McN59], that creates anoptimal schedule for Pjpmtn jCmax with at most m� 1 preemptions. This algorithm is di�erentfrom many scheduling algorithms in that it creates the schedule machine by machine, ratherthan over time.Observing that the lower bounds (1) and (2) still apply to preemptive schedules, we willgive a schedule of length D = maxfPj pj=m;maxj pjg. We order the jobs arbitrarily. Then webegin placing jobs on the machines, in order, �lling machine i up until time D before startingmachine i + 1. Thus, a job of length pj may be split, assigned to the last t units of time ofmachine i and the �rst pj� t units of time on machine i+ 1, for some t. It is now easy to verifythat since there are no more than mD units of processing, every job is scheduled, and becauseD� t � pj � t for any t, a job is scheduled on at most one machine at any time. Thus we havecreated an optimal preemptive schedule.Theorem 2.7 ([McN59]) McNaughton's wrap-around rule gives an optimal schedule for Pjpmtn jCmax.2.3.2 List scheduling for PjjCmaxIn contrast to Pjpmtn jCmax, PjjCmax is NP-hard. We consider the performance of the listscheduling (LS) algorithm, which is a generic greedy algorithm: whenever a machine becomesavailable, process any unprocessed job.Theorem 2.8 ([Gra66]) LS is a 2-approximation algorithm for PjjCmax.Proof: Let j0 be the last job to �nish in the schedule constructed by LS and let sj0 be thetime that j0 begins processing. Cmax is therefore sj0 + pj0 . All machines must be busy up to14



time sj0, since otherwise job j0 could have been started earlier. The maximum amount of timethat all machines can be busy is Pnj=1 pj=m, and so we obtain thatCmax � sj0 + pj0� nXj=1 pj=m + pj0� C�max + C�max = 2C�max:The last inequality comes from lower bounds (1) and (2) above. 2This algorithm can easily be implemented in O(n + m) time. By a similar analysis, thealgorithm guarantees an approximation of the same quality even if the jobs have release dates[Gus84].2.3.3 Longest Processing Time First for PjjCmaxIt is useful to think of the analysis of LS in the following manner. Every job starts beingprocessed before time Pnj=1 pj=m, and hence the schedule length is no more than Pnj=1 pj=mplus the length of the longest job that is running at time Pnj=1 pj=m.This motivates the natural idea that it is good to run the longer jobs early in the scheduleand the shorter jobs later. This is formalized in the Longest Processing Time (LPT) rule: sortjobs in nonincreasing order of processing time and list schedule in that order.Theorem 2.9 ([Gra69]) LPT is a 4=3-approximation algorithm for PjjCmax.Proof: We start by simplifying the problem. Suppose that j0, the last job to �nish in ourschedule, is not the last job to start. Remove all jobs that start after time sj0 . This doesnot a�ect the makespan of our schedule, since these jobs must have run on other machines.Furthermore, it can only decrease the optimal makespan for the modi�ed instance. Thus, ifwe prove an approximation bound for this new instance, it applies a fortiori to our originalinstance.We can therefore assume that the last job to �nish is the last to start, namely the smallestjob. In this case, by the analysis of Theorem 2.8 above, LPT returns a schedule of length nomore than C�max + pmin. We now consider two cases:Case 1: pmin � C�max=3. In this case C�max + pmin � C�max + (1=3)C�max � (4=3)C�max.15



Case 2: pmin > C�max=3. In this case, all jobs have pj > C�max=3, and hence in the optimalschedule there are at most 2 jobs per machine. Number the jobs in order of nonincreasing pj .If n � m, then the optimal schedule trivially puts one job on each machine. We thus considerthe remaining case with m < n � 2m. In this case, we claim that, for each j = 1; : : : ;m theoptimal schedule pairs job j with job 2m + 1 � j if 2m + 1 � j � n and places job j by itselfotherwise. This can be shown to be optimal via a simple interchange argument. We �nish theproof by observing that this is exactly the schedule that LPT would construct. 2This algorithm needs to sort the jobs, and can be implemented in O(m+n logn) time. If weare willing to spend substantially more time, we can obtain a (1 + �)-approximation algorithmfor any �xed � > 0; see Section 6.2.3.4 List scheduling for PjprecjCmaxEven when our input contains precedence constraints, list scheduling is still a 2-approximationalgorithm. Given a precedence relation �, we say that a job is available at time t if all itspredecessors have completed processing by time t. Recall that in list scheduling, whenever amachine becomes idle, any available job is scheduled. Before giving the algorithm, we giveone additional lower bound that is relevant to scheduling with precedence constraints. Letji1 ; ji2 ; : : : ; jik be any set of jobs such that ji1 � ji2 � � � � � jik , thenC�max � kX̀=1 pi` : (3)In other words the total processing time of any chain of jobs is a lower bound on the makespan.Theorem 2.10 ([Gra66]) LS is a 2-approximation algorithm for PjprecjCmax.Proof: Let j1 be the last job to �nish. De�ne j2 to be the latest-�nishing predecessor ofj1, and inductively de�ne j`+1 to be the latest-�nishing predecessor of j`, continuing untilreaching jk, a job with no predecessors. Let C = fj1; : : : ; jkg. We partition time into twosets, A, the points in time when a job in C is running, and B, the remaining time. Observethat during all times in B, all machines must be busy, for if they were not, there would bea job from C that had all its predecessors completed and would be ready to run. Hence,Cmax � jAj + jBj � Pj2C pj + Pnj=1 pj=m � 2C�max, where the last inequality follows byapplying lower bounds (3) and (1). Note that jAj is the total length of intervals in A. 216



For the case when all processing times are exactly one, PjprecjCmax is solvable in polynomialtime if there are only 2 machines [Law76], and is NP-complete if there are an arbitrary numberof machines[Ull75]. The complexity of the problem in the case when there are a �xed constantnumber of machines, e.g. 3, is one of the more famous open problems in scheduling.2.3.5 List Scheduling for OjjCmaxList Scheduling can also be applied to OjjCmax. Recall that in this problem, each job must beprocessed for disjoint intervals of time on several di�erent machines. By an analysis similarto that used for PjjCmax, we will show that any algorithm that constructs a busy schedulefor OjjCmax is a 2-approximation algorithm. Let Pmax be the maximum total processing time,summed over all machines, for any one job, and let �max be the maximum total processing time,summed over all jobs, of any one machine. Clearly, both Pmax and �max are lower bounds onthe makespan of the optimal schedule. We show that the natural List Scheduling generalizationof processing any available operation on a free machine constructs a schedule of makespan atmost Pmax + �max.To see this, consider the machine M 0 that �nishes processing last, and consider the last jobj0 to �nish on machine M 0. At any time during the schedule, either M 0 is processing a job orjob j0 is being processed (if neither of these is true, then list scheduling would require that j0 berunning on M 0, a contradiction). However, the total length of time during which j0 undergoesprocessing is at most Pmax. During all the remaining time in the schedule, machine M 0 mustbe busy. But machine M 0 is busy for at most �max time units. Thus the total length of theschedule is at most Pmax + �max, as claimed. Since Pmax + �max � C�max +C�max = 2C�max, weobtainTheorem 2.11 (Racsm�any, see [BF82]) List Scheduling is a 2-approximation algorithmfor OjjCmax.2.4 Limitations of Priority RulesFor many problems, simple scheduling rules do not yield good schedules, and thus given ascheduling problem, the algorithm designer should be careful about applying one of these ruleswithout justi�cation. In particular, for many problems, particularly those with precedence17



constraints and release dates, the optimal schedule has unforced idle time. That is, if one isconstructing the schedule over time, there may be a time t when there is an idle machine mand an available job j, but scheduling job j on machine m at time t will yield a sub-optimalschedule.Consider the problem QjjCmax and recall that for PjjCmax, list scheduling is a 2-approximationalgorithm. Consider a 2-job 2-machine instance in which s1 = 1, s2 = x, p1 = 1, p2 = 1, andx > 2. Then LS, SPT, and LPT all schedule one job on machine 1 and one on machine 2, and themakespan is thus 1. However, the schedule that places both jobs on machine 2 has makespan2=x < 1. By making x arbitrarily large, we see that none of these simple algorithms, which allhave approximation ratio at least x=2, have bounded approximation ratios.For this problem there is actually a simple heuristic that comes within a factor of 2 ofoptimal, but for some problems, such as QjprecjCmax and RjjCmax, there is no simple algorithmknown that comes anywhere close to optimal. We also note that even though list schedulingis a 2-approximation for OjjCmax, for FjjCmax busy schedules can be of makespan 
(m) timesoptimal [GS78].3 Sophisticated Greedy ApproachesAs we have just argued, for many problems, the priority algorithms that consider jobs inisolation, as in Section 2, are not su�cient. In this section, we consider algorithms that domore than sort jobs by some priority measure. They take other jobs into account when makinga decision about where to schedule a job. The algorithms we study here are \incremental" innature: they start with an empty solution and grow it, one job at a time, until the optimalsolution is revealed. At each step the decision about which job to add to the growing solution ismade greedily, but is based on the current context of jobs which have already been scheduled.We present two examples which are classic examples of the dynamic programming paradigm,and several others that are more specialized.All the algorithms share an analysis based on the idea of optimal substructure. Namely, ifwe consider the optimal solution to a problem, we can often argue that its \subparts" (e.g.,pre�xes of the optimal schedule) are optimal solutions to \subproblems" (e.g., the problem ofscheduling the set of jobs in that pre�x). This lets us argue that as our algorithms build their18



solution incrementally, they are building optimal solutions to bigger and bigger subproblemsof the original problem, until they reach an optimal solution to the entire problem.3.1 An Incremental Greedy Algorithm for 1jjfmaxThe �rst problem we consider is 1jjfmax, which was de�ned in Section 1. In this problem, eachjob has some nondecreasing penalty function on its completion time Cj, and the goal is to �nda schedule minimizing the maximum fj(Cj). As one example, 1jjLmax is captured by settingfj(t) = t� dj .A greedy strategy still applies, when suitably modi�ed. It is convenient, instead of talkingabout scheduling the \most penalizing" (e.g. earliest due date) job �rst, to talk about schedul-ing the \least penalizing" (e.g. latest due date) job last. Let p(J ) = Pj2J pj be the totaltime to process our schedule. Note that some job must complete at time p(J ). We �nd thejob j that minimizes fj(p(J )), and schedule this job last. We then (recursively) schedule allthe remaining jobs before j so as to minimize their maximum penalty. We call this algorithmLeast-Cost-Last.Observe the di�erence between this and our previous scheduling rules. In this new scheme,we cannot determine the best job to schedule second-to-last until we know which job is scheduledlast (we need to know the processing time of the last job in order to know the processing time ofthe recursive subproblem). Thus, instead of a simple O(n logn)-time sorting algorithm basedon absolute priorities, we are faced with an algorithm that inspects k jobs in order to identifythe job to be scheduled kth, giving a total running time of O(n + (n� 1) + � � � + 1) = O(n2).This change in algorithm is matched by a change in analysis. Since the notion of which jobis worst can change as the schedule is constructed, there is no obvious �xed priority to whichwe can apply a local exchange argument. Instead, as with Pjpmtn jCmax in Section 2.3.1, weshow that our algorithm's greedy decisions are in agreement with a provable lower bound onthe quality of the optimal schedule. Our algorithm produces a schedule that matches the lowerbound and must therefore be optimal.Let f�max(S) denote the optimal value of the objective function if we are only scheduling
19



the jobs in S. Consider the following two facts about f�max:f�max(J ) � minj2N fj(p(J ))f�max(J ) � f�max(J � fjg)The �rst of these statements follows from the fact that some job must be scheduled last. Thesecond follows from the fact that if we have an optimal schedule for J and remove a job fromthe schedule, then we do not increase the completion time of any job. Therefore, since the fjare increasing functions, we do not increase any penalty.We use these inequalities to prove by induction that our schedule is optimal. According toour scheduling rule, we schedule last the job j minimizing fj(p(J )). By induction, this gives usa schedule with objective maxffj(p(J )); f�max(J � fjg)g. But since each of these quantities is(by the equations above) a lower bound on the optimal f�max(J ), we see that in fact we obtaina schedule whose value is a lower bound on f�max(J ), and thus must in fact equal f�max(J ).3.1.1 Extension to 1jprecjfmaxOur argument from the previous section continues to apply even if we introduce precedenceconstraints. In the 1jprecjfmax problem, a partial order on jobs is given, and we must build aschedule that does not start a job until all jobs preceding it in the partial order have completed.Our above algorithm applies essentially unchanged to this case. Note that the last job in theschedule must be a job with no successors. We therefore build an optimal schedule by schedulinglast the job j that, among jobs with no successors, minimizes fj(P (J )). We then recursivelyschedule all other jobs before it. The proof of optimality goes exactly as before, using the factthat if L is the set of all jobs without successors,f�max(J ) � minj2L fj(P (J ))This is the same as the �rst equation above, except that the minimum is taken only over jobswithout successors. The remainder of the proof proceeds unchanged.Theorem 3.1 ([Law73]) Least-Cost-Last is an exact algorithm for 1jprecjfmax.It should also be noted that, once again, the fact that our algorithm is greedy makespreemption a moot point. One job needs to �nish last, and it immediately follows that we can20



do no better than executing all of that job last. Thus, our greedy algorithm continues to apply.3.1.2 An alternative approachMoore [Moo68] gave a di�erent approach to 1jjfmax that may be faster in some cases. Hisscheme is based on a reduction to the maximum lateness problem and its solution by the EDDrule. To see how an algorithm for Lmax can be applied to 1jjfmax, suppose we want to knowwhether there is a schedule with fmax � B. We can decide this as follows. Give each job j adeadline dj equal to the maximum t for which fj(t) � B. It is easy to see that a schedule hasfmax � B precisely when every job �nishes by its speci�ed deadline, i.e. Lmax � 0. Thus, wehave converted the feasibility problem for fmax into an instance of the lateness problem. Theoptimization problem may therefore be solved by a binary search for the correct value of B.3.2 Dynamic Programming for 1jjPwjUjWe now consider 1jjPwjUj problem, in which the goal is to minimize the total weight of latejobs. This problem is weakly NP-complete. That is, although it is NP-complete, for integralweights it is possible to solve the problem exactly in O(nPwj) time, which is polynomial if thewj are bounded by a polynomial. The necessary algorithm is a classical dynamic program thatbuilds the solution out of solutions to smaller problems (a detailed introduction to dynamicprogramming can be found in many algorithms textbooks, see, for example [CLR90]). ThisO(nPwj) dynamic programming algorithm has several implications. First, it immediatelyyields an O(n2)-time algorithm for 1jjPUj problem{just take all weights to be 1. Further-more, we will show in Section 6 that this algorithm can be used to derive a fully polynomialapproximation scheme for the general problem that �nds a schedule withPwjUj within (1+�)of the optimum in time polynomial in 1=� and n.The �rst observation to make is that under this objective, a schedule partitions the jobsinto two types: those completed by their due dates, and those not completed. Clearly, wemight as well process all the jobs that meet their due date before processing any that donot. Furthermore, the processing order of these jobs might as well be determined using theEarliest Due Date (EDD) rule from Section 2.1.2: when all jobs can be completed by their duedate (implying nonpositive maximum lateness) EDD, which minimizes maximum lateness, will21



clearly �nd a schedule that does so.It is therefore convenient to discuss feasible subsets of jobs that can all be scheduled togetherto complete by their due dates. The question of �nding a minimum weight set of late jobs canthen be equivalently restated as �nding a maximum weight feasible subset of the jobs.To solve this problem, we aim to solve a harder one: namely, to identify the fastest-completing maximum weight feasible subset. We do so via dynamic programming. Orderthe jobs according to increasing due date. Let Twj denote the minimum completion time ofa weight w-or-greater feasible subset of 1; : : : ; j, or 1 if there is no such subset. Note thatT0j = 0, while Tw0 = 1 for all w > 0. We now give a dynamic program to compute theother values Twj. Consider the fastest completing weight w-or-greater feasible subset S off1; : : : ; j + 1g. Either j + 1 2 S or it is not. If j + 1 =2 S, then S � f1; : : : ; jg and is thenclearly the fastest completing weight w-or-greater subset of f1; : : : ; jg, so S completes in timeTwj. If j + 1 2 S, then since we can schedule feasible subsets using EDD, j + 1 can be scheduledlast. The jobs preceding it have weight at least w � wj+1, and clearly form the minimum-completion-time subset of 1; : : : ; j with this weight. Thus, the completion time of this feasibleset is Tw�wj+1;j + pj+1. It follows thatTw;j+1 = ( min(Tw;j; Tw�wj+1 + pj+1) if Tw�wj+1;j + pj � dj+1Twj otherwiseNow observe that there is clearly no feasible subset of weight exceeding Pwj, so we canstop our dynamic program once we reach this value of w. This takes O(nPwj) time. Oncewe have all the values Twj , we can �nd the maximum weight feasible subset by identifying thelargest value of w for which some Twj (and thus Twn) is �nite.This gives a standard O(nPj wj) time dynamic program for computing Twn for everyrelevant value w; the maximum w for which Twn is �nite is the maximum total weight of jobsthat can be completed by their due date.Theorem 3.2 ([LM69]) Dynamic programming yields an O(nPwj)-time algorithm for ex-actly solving 1jjPwjUj.We remark that a similar dynamic program can be used to solve the problem in timeO(nP pj), which is e�ective when the processing times are polynomially bounded integers. We22



also note that a quite simple greedy algorithm due to Moore [Moo68] can solve the unweighted1jjPUj problem in O(n logn) time.3.3 Dynamic Programming for PjjCmaxFor a second example of the applicability of dynamic programming, we return to the NP-hardproblem PjjCmax, and focus on a special case that is solvable in polynomial time|the case inwhich the number of di�erent job processing times is bounded by a constant. While this specialcase might appear to be somewhat contrived, in Section 6 we will show that it can form thethe core of a polynomial approximation scheme for PjjCmax.Lemma 3.3 Given an instance of PjjCmax in which the pj take on at most s distinct values,there exists an algorithm which �nds an optimal solution in time nO(s).Proof: Assume for now that we are given a target schedule length T . We again use dynamicprogramming. Let the di�erent processing times be z1; : : : ; zs. The key observation is that theset of jobs on a machine can be described by an s-dimensional vector V = (v1; : : : ; vs), where vkis the number of jobs of length zk. There are at most ns such vectors since each entry has valueat most n. Let V be the set of all such vectors whose total processing time (that is, P vizi) isless than T . In the optimal schedule, every machine is assigned a set of jobs corresponding toa vector from this set. We now de�ne M(x1; : : : ; xk) to be the minimum number of machinesneeded to schedule a job set consisting of xi jobs of size zi, for i = 1; : : : ; s. We observe in thestandard dynamic-programming fashion thatM(x1; : : : ; xs) = 1 + minV 2VM(x1 � v1; : : : ; xs � vs):The minimization is over all possible vectors that could be processed by the \�rst" machinecounted by the quantity 1, and the recursive expression denotes the best way to process theremaining work. Thus we need to compute an ns entry table, where each entry depends onO(ns) other entries, and therefore the computation takes time O(n2s).It remains to handle the assumption that we know T . The easiest way to do this is toperform a binary search on all possible values of T . A slightly more sophisticated approachis to search only over the O(ns) makespans of vectors describing sets of jobs, as one of theseclearly determines the makespan of the solution. 223



4 Matching and Linear ProgrammingNetworks and linear programs are central themes in combinatorial optimization, and are usefultools in the solution of many problems. Therefore it is not surprising that these techniques canbe applied pro�tably to scheduling problems as well. In this section, we discuss applications ofbipartite matching and linear programming to the exact solution of certain scheduling problems;in Section 5 we will revisit both techniques in the design of approximation algorithms for NP-hard problems.4.1 Applications of MatchingGiven a bipartite graph on two sets of vertices A and B and an edge set E � A�B, a matchingM is a subset of the edges, such that each vertex A and B is an endpoint of at most one edgeof M . A natural matching that is useful in scheduling problems is one that matches jobs tomachines; the matching constraints force each job to be scheduled on at most one machine,and each machine to be processing at most one job. If A has no more vertices than B, wecall a matching perfect if every vertex of A is in some matching edge. It is also possible toassign weights to the edges, and de�ne the weight of a matching to be the sum of the weightsof the matching edges. The key fact that we use in this section is that minimum weight perfectmatchings can be computed in polynomial time (see e.g. [AMO93]).4.1.1 Matching to Schedule Positions for RjjPCjIn this section we give a polynomial-time algorithm for RjjPCj that matches jobs to positionsin the schedule on each machine. For any schedule, let �ik be the kth-from-last job to run onmachine i, and let `i be the number of jobs that run on machine i. Then by observing that thecompletion time of a job is equal to the sum of the processing times of the jobs that run beforeit, we have that Xj Cj = mXi=1 `iXk=1C�ik = mXi=1 `iXk=1 `iXx=k pi;�xi = mXi=1 `iXk=1 kpi;�ki : (4)From this, we see that the kth from last job to run on a machine contributes exactly ktimes its processing time to the sum of completion times. Based on this observation, Horn[Hor73] and Bruno, Co�man and Sethi [BCS74] proposed formulating RjjPCj problem as a24



minimum-weight bipartite matching problem. We de�ne a bipartite graph G = (V;E) withV = A [ B as follows. A will contain n vertices vj, one for each of the n jobs j = 1; : : : ; n. Bwill contain nm nodes wik, where vertex wik represents the kth-from-last position on machinei, for i = 1; : : : ;m and k = 1; : : : ; n. We include in E an edge (vj ; wik) between every node inA and every node in B. Using (4) we de�ne the weights on the edges from A to B as follows:edge (vj ; wik) is assigned weight kpij.We now argue that a minimum-weight perfect matching in this graph corresponds to anoptimal schedule. First, note that for each valid schedule there is a perfect matching in G. Notevery perfect matching in G corresponds to a schedule, since a job might might be assignedto the kth from last position while less than k jobs are assigned to that machine; however,such a perfect matching is clearly not of minimal weight { a better matching can be obtainedby pushing the k0 < k jobs assigned to that machine into the k0 from last slots. Therefore, aschedule of minimum total completion time corresponds to a minimum-weight perfect matchingin the bipartite graph.Theorem 4.1 ([Hor73, BCS74]) There is a polynomial-time algorithm for RjjPCj.In the special case of parallel identical machines, it remains true that the kth from last jobto run on a machine contributes exactly k times its processing time to the sum of completiontimes. Since in this case the processing time of each job is the same on any machine, thealgorithm is clear: schedule the m largest jobs last on each machine, schedule the next mlargest jobs next to last, etc. The schedule constructed is exactly that constructed by the SPTalgorithm.Corollary 4.2 ([CMM67]) SPT is an exact algorithm for PjjPCj.4.1.2 Matching Jobs to Machines: Ojpmtn jCmaxFor our second example of the utility of matching, we give an algorithm for Ojpmtn jCmax dueto Gonzales and Sahni [GS76]. This algorithm will not �nd just one matching, but rather asequence of matchings, each of which will correspond to a partial schedule, and then concatenateall of these partial schedules together. Recall from our discussion of OjjCmax in Section 2.3.5that two lower bounds on the makespan of a nonpreemptive schedule are the maximum machine25



load �max and the maximum job size Pmax. Both of these remain lower bounds when preemptionis allowed. In the nonpreemptive setting, a simple greedy algorithm gives a schedule withmakespan bounded by Pmax + �max. We now show that when preemption is allowed, matchingcan be used to achieve a makespan equal to max(Pmax;�max).The intuition behind the algorithm is the following. Consider the schedule at any point intime. At this time, each machine is processing at most one job. In other words, the schedule ateach point in time de�nes a matching between jobs and machines. We aim to �nd a matchingthat forms a part of the optimal schedule, and process jobs according to it for some time. Ourgoal is that processing the matched jobs on their matched machines for some amount of timet, and adjusting Pmax and �max to reect the decreased remaining processing requirements,should reduce max(Pmax;�max) by t. It follows that if we repeat this process for a total amountof time equal to max(Pmax;�max), we will reduce max(Pmax;�max) to 0, implying that there isno work remaining in the system.What properties should our matching of jobs to machines have? Recall that our goal is toreduce our lower bound. Call a job tight if its total processing cost is Pmax. Call a machinetight if its total load is �max. Clearly, it is necessary that every tight job undergo processingin our matching, since otherwise we will fail to subtract t from Pmax. Similarly, it is necessarythat every tight machine be in the matching in order to ensure that we reduce �max by t.Lastly, we can only execute the matching for t time if every job-machine pair in the matchingactually requires t units of processing. In other words, we are seeking a matching in whichevery tight machine and job is matched, and each matching edge requires positive processingtime. Such a matching is referred to as a decrementing set. That it always exists is a nontrivialfact (about stochastic matrices) whose proof is beyond the scope of this survey; we refer thereader to Lawler and Labetoulle's presentation of this algorithm [LL78].To �nd a decrementing set, we construct a (bipartite) graph with a node representing eachjob and machine, and include an edge between machine node i and job node j if job j requires anon-zero amount of processing on machine i. In this graph we require a matching that matcheseach tight machine or job node; this can easily be found with a variant of traditional matchingalgorithms. Note that we must include the non-tight nodes in the matching problem since tightnodes can be matched to them. 26



Once we have found our decrementing set via matching, we have machines execute the jobsmatched to them until one of the matched jobs completes its work on its machine, or until anew job or machine becomes tight (this can happen because some jobs and machines are notbeing processed in the matching). Whenever this happens, we �nd a new decrementing set.For simplicity, we assume that Pmax = �max; this can easily be arranged by adding dummyoperations, which can only make our task harder. Since our decrementing set includes everytight job and machine, it follows that executing for time t will reduce both Pmax and �max byt. It follows that after Pmax = �max time, both quantities will be reduced to 0. Clearly thismeans that we are done in time equal to the lower bound.One might worry that the number of decrementing set calculations we must perform couldbe non-polynomially bounded, making our approximation algorithm too slow. But this turnsout not to happen. We only compute a new decrementing set when a job or machine �nishesor when a new job or machine becomes tight. Each job-processor pair can �nish only once,meaning that this occurs only nm times during our schedule. Also, each job or machine staystight forever after it becomes tight; thus, new tight jobs and machines only occur n + mtimes. Thus, constructing our schedule of optimal length requires only mn + m + n matchingcomputations.Theorem 4.3 ([GS76]) There is a polynomial time algorithm for Ojpmtn jCmax, that �ndsan (optimal) schedule of makespan max(Pmax;�max).4.2 Linear ProgrammingWe now discuss the application of linear programming to the design of scheduling algorithms. Alinear program is given by a vector of variables x = (x1; : : : ; xn), a set of m linear constraints ofthe form ai1x1 + ai2x2 + : : :+ ainxn � bi; 1 � i � m, and a cost vector c = (c1; : : : ; cn); the goalis to �nd an x that satis�es these constraints and that minimizes cx = c1x1 + c2x2 + : : :+ cnxn.Alternatively but equivalently, some of the inequality constraints might be given as equalities,and/or we may have no objective function and desire simply to �nd a feasible solution to theset of constraints. Many optimization problems can be formulated as linear programs, and thussolved e�ciently, since a linear program can be solved in polynomial time [Kha79].In this section we consider Rjpmtn jCmax. To model this problem as a linear program, we27



use nm variables xij; 1 � i � m; 1 � j � n. Variable xij denotes the fraction of job j that isprocessed on machine i; for example, we would interpret a linear-programming solution withx1j = x2j = x3j = 13 as assigning 13 of job j to machine 1, 13 to machine 2 and 13 to machine 3.We now consider what sorts of linear constraints on the xij are necessary to ensure thatthey describe a valid solution to an instance of Rjpmtn jCmax. Clearly the fraction of a jobassigned to any machine must be non-negative, so we will create nm constraintsxij � 0:In any schedule, we must fully process each job. We capture this requirement with the nconstraints: mXi=1 xij = 1; 1 � j � n:Note that, along with the previous constraints, these constraints imply that xij � 1 8 i; j.Our objective, of course, is to minimize the makespan D of the schedule. Recall that theamount of processing that job j would require, if run entirely on machine i, is pij. Therefore,for a set of fractional assignments xij, we can determine the amount of time machine i willwork: it is just Pxijpij , which must be at most D. We model this with the m constraintsnXj=1 pijxij � D for i = 1; : : : ;m:Finally, we must ensure that no job is processed for more than D time; we model this withthe n constraints mXi=1 xijpij � D; 1 � j � n:To summarize, we formulate the problem as the following linear program:min D (5)mXi=1 xij = 1; for j = 1; : : : ; n; (6)nXj=1 pijxij � D; for i = 1; : : : ;m; (7)nXi=1 pijxij � D; for j = 1; : : : ; n; (8)xij � 0 for i = 1; : : : ;m; j = 1; : : : ; n: (9)28



It is clear that any feasible schedule for our problem yields an assignment of values to thexij that satis�es the constraints of our above linear program. However it is not completelyclear that solving the linear program yields a solution to the scheduling problem; this linearprogram does not specify the ordering of the jobs on a speci�c machine, but simply assignsthe jobs to machines while constraining the maximum load on any machine. It thus fails toexplicitly require that a job not be processed simultaneously on more than one machine.Interestingly enough, we can resolve this di�culty with an application of open-shop schedul-ing. We de�ne an open shop problem by creating an operation oij for each positive variablexij , and de�ne the size of oij to be xijpij. We then �nd an optimal preemptive schedule for thisinstance, using the matching-based algorithm discussed in Section 4.1.2. We know that boththe maximum machine load and maximum job size of this open shop instance are boundedabove by D, and therefore the makespan of the resulting open shop schedule is at most D.If we now reinterpret the operations of each job in the open-shop schedule as fragments ofthe original job in the unrelated machines instance, we see that we have given a preemptiveschedule of length D in which no two fragments of a job are scheduled simultaneously.We thus have established the following.Theorem 4.4 ([LL78]) There is an exact algorithm for Rjpmtn jCmax.We will see further applications of linear programming to the development of approximationalgorithms for NP-hard scheduling problems in the next section.5 Using Relaxations to Design Approximation AlgorithmsWe now turn exclusively to the design of approximation algorithms for NP-hard schedulingproblems. Recall that a �-approximation algorithm is one that is guaranteed to �nd a solutionwith value within a multiplicative factor of � of the optimum. Many of the approximationalgorithms in this area are based on a relaxation of the NP-hard problem. A relaxation ofa problem is a version of the problem with some of the requirements or constraints removed(\relaxed"). For example, we might consider 1jrj ; pmtn jPCj to be a relaxation of 1jrj jPCjin which the \no preemption" constraint has been relaxed. A second example of a relaxationmight be a version of the problem in which we relax the constraint that a machine processes29



at most one job at a time; a solution to this relaxation may have several jobs scheduled at onetime on the same machine.A solution to the original problem is a solution to the relaxation, but a solution to therelaxation is not necessarily a solution to the original problem. This is clearly illustrated byour nonpreemptive/preemptive example { a nonpreemptive schedule is a legal solution to apreemptive problem, although perhaps not an optimal one, but the converse is not true. Itfollows that in the case of a minimization problem, the value of the optimal solution to therelaxation is a not-necessarily-tight lower bound on the optimal solution to the original problem.An idea that has proven quite useful is to de�ne �rst a relaxation of the problem whichcan be solved in polynomial time, and then to give an algorithm to convert the relaxation'ssolution into a valid solution to the original problem, with some degradation in the quality ofsolution. The key to making this work work well is to �nd a relaxation that preserves enoughof the structure of the original problem to make the optimal relaxed solution \similar" to theoriginal optimum, so that the relaxed solution does not degrade too much when converted toa valid solution.In this section we discuss two sorts of relaxations of scheduling problems and their use inthe design of approximation algorithms, namely the preemptive version of a nonpreemptiveproblem and a linear-programming relaxation of a problem.There are generally two di�erent ways to infer a valid schedule from the relaxed solution:one is to infer an assignment of jobs to machines while the other is to infer a job ordering. Wegive examples of both methods,Before going any further, we introduce the notion of a relaxed decision procedure, whichwe will use both in Section 5.1 and later in Section 6. A �-relaxed decision procedure (RDP)for a minimization problem accepts as input a target value T , and returns either no, assertingthat no solution of value � T exists, or returns a solution of value at most �T . A polynomial-time �-relaxed decision procedure can easily be converted into a �-approximation algorithm forthe problem via binary search for the optimum T ; see [HS87, Hoc97] for more details. Thissimple idea is quite useful, as it essentially lets us assume that we know the value T of anoptimal solution to a problem. (Note that this is a di�erent use of the word relax than theterm \relaxation.") 30



5.1 Rounding a Fractional Assignment to Machines: RjjCmaxIn this section we give a 2-relaxed decision procedure for RjjCmax. Recall the linear programthat we used in giving an algorithm for Rjpmtn jCmax. If, instead of the constraints xij � 0we could constrain the xij to be 0 or 1, the solution would constitute a valid nonpreemptiveschedule. Furthermore, note that these integer constraints combined with the constraints (7)make the constraints (8) unnecessary (if a job is assigned integrally to a machine, constraint (7)ensures that is is a fast enough machine, thus satisfying constraint (8) for that job). In otherwords, the following formulation has a feasible solution if and only if there is a nonpreemptiveschedule of makespan D.mXi=1 xij = 1; for j = 1; : : : ; n; (10)nXj=1 pijxij � D; for i = 1; : : : ;m; (11)xij 2 f0; 1g; for i = 1; : : : ;m; j = 1; : : : ; n: (12)This is an example of an integer linear program, in which the variables are constrainedto be integers. Unfortunately, in contrast to linear programming, �nding a solution to aninteger linear program is NP-complete. However, this integer programming formulation willstill be useful. A very common method for obtaining a relaxation of an optimization problemis to formulate it as an integer linear program, and then to relax the integrality constraints.One obtains a fractional solution and then rounds the fractions to integers in a fashion that(hopefully) does not degrade the solution too dramatically.In our setting, we relax the constraints (12) to xij � 0. We will also add an additionalset of constraints that will ensure that the fractional solutions to this linear program haveenough structure to be useful for approximation. Speci�cally, we disallow any part of a job jbeing processed on a machine i on which it could not complete in D time in a nonpreemptiveschedule. Speci�cally, we include the following constraints:xij = 0; if pij � D: (13)(In fact, instead of adding constraints, we can simply remove such variables from the linearprogram.) As argued above, this constraint is actually implicit in the integer program given by31



the constraints (10) through (12), but was no longer guaranteed when we relaxed the integerconstraints. Our new constraints can be seen as a replacement for the constraints (8) that wedid not need in the integer formulation. Note also that these new constraints are only linearconstraints when D is �xed. This is why we use an RDP instead of taking the more obviousapproach of writing a linear program to minimize D.To recap, constraints (10), (11), and (13) along with xij � 0 constitute a linear-programmingrelaxation of RjjCmax. Our relaxed decision procedure attempts solve this relaxation, obtaininga solution �xij; 1 � i � m; 1 � j � n. If there is no feasible solution, our RDP can output no {no nonpreemptive schedule has makespan D or less. If the linear program is feasible, we willgive a way to derive an integral assignment of jobs to machines from the fractional solution.Our job is made much easier by the fact, which we cite from the theory of linear programming,that we can �nd a so-called basic solution of this linear program that has at most n+m positivevariables. Since these n + m positive variables must be distributed amongst n jobs, there areat most m jobs that are assigned in a fractional fashion to more than one machine.We may now state our rounding procedure. For each (machine, job) pair (i; j) such that�xij = 1, we assign job j to machine i. We call the schedule of these jobs S1. For the remainingat most m jobs, we simply construct a matching of the jobs to machines such that each job ismatched to a machine it is already partially assigned to. We schedule each job on the machineto which it is matched, and call the schedule of these jobs S2.We defer momentarily the question of whether such a matching exists, and analyze themakespan of the resulting schedule, which is at most the sum of the makespans of S1 and S2.Since the xij form a feasible solution to the relaxed linear program, the makespan of S1 is atmost D. Since S2 schedules at most one job per machine, and assigns j to i only if xij > 0,meaning pij < D, the makespan of S2 is at most D (this argument is the reason we had to addconstraint (13) to our linear program). Thus the overall schedule has length at most 2D.The argument that a matching always exists is somewhat complex and can only be sketchedhere. We create a graph G in which there is one node for each machine and one for each job,and an edge between each machine node i and job node j if xij > 0. We are again helped bythe theory of linear programming, as the linear program we solved is a generalized assignmentproblem. As a result, for any basic solution, the structure of G is a forest of trees and 1-trees,32



which are trees with one edge added; for further details see [AMO93]. We need not considerjobs that are already integrally assigned, so for every pair (i; j) such that xij = 1, we removefrom G the nodes representing machine i, job j and their mutual edge (note that the constraintsimply that this machine and job is not connected to any other machine or job). In the forestthat remains, the only leaves are machine nodes, since every remaining job node represents ajob that is fractionally assigned by the linear program and thus has an edge to at least twomachines.It is now straightforward to �nd a matching in G. We �rst consider the 1-trees, andin particular consider the unique cycle in each 1-tree. The nodes in these cycles alternatebetween machine nodes and job nodes, with an equal number of each. We arbitrarily choosean orientation of the cycle and assign each job to the machine that follows it in the orientedcycle. We then remove all of the matched nodes from G. What remains is a forest of trees;furthermore, it is possible that for each of these trees we have created at most one new leafthat is a job node. We then root each of the trees in the forest, either at its leaf job node, or,if it does not have one, at an arbitrary vertex. Finally, we assign each job node to one of itschildren machine nodes in the rooted tree. Each machine node has at most one parent, andthus is assigned at most one job. We have thus successfully matched all job nodes to machinenodes, as we required.Thus, there exists a 2-relaxed decision procedure for RjjCmax, and we have the followingtheorem.Theorem 5.1 ([LST90]) There is a 2-approximation algorithm for RjjCmax.5.2 Inferring an Ordering from a Preemptive Schedule for 1jrjjPCjIn this section and the next we discuss techniques for inferring an ordering of jobs from a relax-ation. In this section we consider the problem 1jrj jPCj . Recall, as mentioned in Section 2.1,that this problem is NP-hard. However, we can �nd a good relaxation by the simple expedi-ent of allowing preemption. Speci�cally, we use 1jrj ; pmtn jPCj as a relaxation of 1jrj jPCj .1jrj ; pmtn jPCj can be solved without linear programming, simply by using the SRPT rule. Wewill make use of this relaxation by extracting from it the order of completion of the jobs inthe optimal preemptive schedule, and create a nonpreemptive schedule with the same order of33



completion.Our algorithm, which we call Convert-Preempt-Schedule, is as follows. We �rst obtainan optimal preemptive schedule P for the instance in question. We then order the jobs in theirorder of completion in P ; assume by renumbering that CP1 � : : : CPn . We schedule the jobsnonpreemptively in the same order. If at some point the next job in the order has not beenreleased, we wait idly until its release date and then schedule it. This added idle time is thereason our schedule may not be optimal.Theorem 5.2 ([PSW95]) Convert-Preempt-Schedule is a 2-approximation algorithm for1jrj jPCj.Proof: The non-preemptive schedule N constructed by Convert-Preempt-Schedule can beunderstood as follows. For each job j, consider the point of completion of the last pieceof j scheduled in P , insert pj extra units of time into the schedule at the completion pointof j in P (delaying by an additional pj time the part of the schedule after CPj ) and thenschedule j nonpreemptively in the newly inserted block of length pj. Then, remove from theschedule all of the time originally allocated to processing job j. Finally, cut out any idle timein the resulting schedule that can be removed without changing the scheduled order of thejobs or violating a release date constraint. The result is exactly the schedule computed byConvert-Preempt-Schedule.Note that the completion of job j is only delayed by insertion of blocks for jobs that �nishearlier in P and hence: CNj � CPj +Xk�j pk:However, Pk�j pk � CPj , since all of these jobs completed before j in P , and thereforenXj=1CNj � 2 nXj=1CPj :The theorem now follows from the fact that the total completion time of the optimal preemptiveschedule is a lower bound on the total completion time of the optimal nonpreemptive schedule.2
34



5.3 An Ordering from a Linear Programming Relaxation for 1jrj; precjPwjCjIn this section we generalize the techniques of the previous section, applying them not to apreemptive schedule but instead to a linear programming relaxation of 1jrj ; precjPwjCj.5.3.1 The RelaxationWe begin by describing the linear programming relaxation of our problem. Unlike our previousrelaxation, this one does not arise from relaxing the integrality constraints of an integer linearprogram. Rather, we give several classes of inequalities that would be satis�ed by feasiblesolutions to 1jrj ; precjPwjCj . These constraints are necessary but not su�cient to describe avalid solution to the problem.The linear-programming formulation that we considered for RjjCmax assigned jobs to ma-chines but captured no information about the ordering of jobs on a machine. For 1jrj ; precjPwjCjthe ordering of jobs on a machine is a critical element of a high-quality solution, so we seek aformulation that can model this. We do this by making time explicit in the formulation: wewill have n variables Cj, one for each of the n jobs; Cj will represent the completion time ofjob j in a schedule.Consider the following formulation in these Cj variables, solutions to which correspond tooptimal solutions of 1jrj ; precjPwjCj .minimize nXj=1wjCj (14)subject to Cj � rj + pj; j = 1; : : : ; n, (15)Ck � Cj + pk; for each pair j; k such that j � k, (16)Ck � Cj + pk or Cj � Ck + pj; for each pair j; k: (17)Unfortunately, the last set of constraints are not linear constraints. Instead, we use a class ofvalid inequalities, introduced by Wolsey [Wol85] and Queyranne [Que93]. Recall that we denotethe entire set of jobs f1; : : : ; ng as J , and, for any subset S � J , we de�ne p(S) = Pj2S pjand p2(S) = Pj2S p2j . We claim that for any feasible one-machine schedule (independent of35



constraints and objective)Xj2S pjCj � 12(p2(S) + p(S)2); for each S � J . (18)We show that these inequalities are satis�ed by the completion times of any valid sched-ule for one machine and thus in particular by the completion times of a valid schedule for1jrj ; precjPwjCj.Lemma 5.3 Let C1; : : : ; Cn be the completion times of jobs in any feasible schedule on onemachine. Then the Cj must satisfy the inequalitiesXj2S pjCj � 12 �p(S)2 + p2(S)� for each S � J : (19)Proof: We assume that the jobs are indexed so that C1 � � � � � Cn. Consider �rst the caseS = f1; : : : ; ng. Clearly for any job j, Cj �Pjk=1 pk. Multiplying by pj and summing over allj, we obtain nXj=1 pjCj � nXj=1 pj jXk=1 pk = 12 �p2(S) + p(S)2�Thus (19) holds for S = f1; : : : ; ng. The general case follows from the fact that for any otherset of jobs S, the jobs in S are feasibly scheduled by the schedule of f1; : : : ; ng|just ignore theother jobs. So we may view S as our entire set of jobs and apply the previous argument. 2In the special case of 1jjPwjCj the constraints (19) give an exact characterization of theproblem [Wol85, Que93]; speci�cally, any set of Cj that satisfy these constraints must describethe completion times of a feasible schedule, and thus these linear constraints e�ectively replacethe disjunctive constraints (17). When we extend the formulation to include constraints (15)and (16), we no longer have an exact formulation, but rather a linear-programming relaxationof 1jrj ; precjPwjCj.We note that this formulation has an exponential number of constraints; however, it canbe solved in polynomial time by the use of the ellipsoid algorithm for linear programming[Wol85, Que93]. We also note that in the special case in which we just have release dates, aslightly strengthened version can (remarkably) be solved optimally in O(n log n) time [Goe96].
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5.3.2 Constructing a Schedule from a Solution to the RelaxationWe now show that a solution to this relaxation can be converted e�ciently to an approximately-optimal schedule. For simplicity, we ignore release dates and consider only 1jprecjPwjCj . Ourapproximation algorithm, which we call Schedule-by- �Cj, is simple to state. We �rst solve thelinear programming relaxation given by (14), (16) and (18) and call the solution �C1; : : : ; �Cn; werenumber the jobs so that �C1 � �C2 � : : : �Cn: We then schedule the jobs in the order 1; : : : ; n.Since there are no release dates there is no idle time. Note that this ordering of the jobs respectsthe precedence constraints, because if the �Cj satisfy (14) then j � k implies that �Cj < �Ck.To analyze Schedule-by- �Cj, we begin by understanding why it is not an optimal algorithm.Unfortunately, �C1 � � � � � �Cn being a feasible solution to (18) does not guarantee that, in theschedule in which job j is designated to complete at time �Cj (thus de�ning its start time), thatat most one job is scheduled at any point in time. More formally, the intervals (Cj � pj ; Cj],j = 1; : : : ; n, are not constrained to be disjoint. If �C1 � � � � � �Cn actually corresponded to avalid schedule, then �Cj would be no less than Pjk=1 pk for all j. We will see that, although theformulation does not guarantee this property, it does yield a relaxation of it, which is su�cientfor the purposes of approximation.Theorem 5.4 ([HSSW97]) Schedule-by- �Cjis a 2-approximation algorithm for 1jprecjPwjCj.Proof: Since �Cj optimized a relaxation, we know that Pwj �Cj is a lower bound on the trueoptimum. It therefore su�ces to show that our algorithm gets within a factor of 2 of thislower bound. So we let ~C1; : : : ; ~Cn denote the completion times in the schedule found bySchedule-by- �Cj, and show that Pwj ~Cj � 2Pwj �Cj.Since the jobs have been renumbered so that �C1 � � � � � �Cn, taking S = f1; : : : ; jg gives~Cj = p(S):We now show that �Cj � 12p(S). (Again, if the �Cj were feasible completion times in an actualschedule, we would have �Cj � p(S). This relaxed version of the property is the key to theapproximation.)We use inequality (18) for S = f1; 2; : : : ; jg.jXk=1 pk �Ck � 12(p2(S) + p(S)2) � 12p(S)2: (20)37



Since �Ck � �Cj , for each k = 1; : : : ; j, we have�Cjp(S) = �Cj jXk=1 pk � jXk=1 �Ckpk � 12p(S)2:Dividing by p(S), we obtain that �Cj is at least 12p(S). We therefore see that ~Cj � 2 �Cj . SincePj wj ~Cj � 2Pj wjC�j the result follows. 26 Polynomial Approximation Schemes Using Enumeration andRoundingFor certain NP-hard scheduling problems there is a limit to our ability to approximate themin polynomial time; for example, Lenstra, Shmoys and Tardos proved that there is no �-approximation algorithm, with � < 3=2, for RjjCmax unless P = NP [LST90]. For certainproblems, however, we can approximate their optimal solutions arbitrarily closely in polynomialtime. In this section we present three polynomial approximation schemes; that is, polynomialtime algorithms that, for any constant � > 1, deliver a solution whose objective value is atmost � times optimal. The running time will depend on �|the smaller � is, the slower thealgorithm will be.We will present two approaches to the design of such algorithms. The �rst approachis based on rounding processing times or weights to small integers so that we can applypseudopolynomial-time algorithms such as that for 1jjPwjUj . A second approach is basedon identifying the \important" jobs|those that have the greatest impact on the solution|and processing them separately. In one version, illustrated for PjjCmax, we round the largejobs so that there are only a constant number of large job sizes, schedule them using dynamicprogramming, and then schedule the small jobs arbitrarily. In a second version, illustrated for1jrj jLmax, we enumerate all possible schedules for the large jobs, and then �ll in the small jobsaround them.6.1 From Pseudopolynomial to PTAS: 1jjPwjUjIn Section 3, we gave an O(nPwj) time algorithm for 1jjPwjUj. Since this gives an algorithmthat runs in polynomial time when the weights are polynomial in n, a natural idea is to tryto reduce any instance to such a special case. We will scale the weights so that the optimal38



solution is bounded by a polynomial in n; this will allow us to apply our dynamic programmingalgorithm to weights of polynomial size.Assume for now that we know W �, the value of PwjUj in the optimal schedule. Multiplyevery weight by n=(�W �); now the optimal PwjUj becomes n=�. Clearly, a schedule withPwjUj within a multiplicative (1 + �)-factor of optimum under these weights is also within amultiplicative (1 + �)-factor of optimum under the original weights. Thus, it su�ces to �nd aschedule with PwjUj at most (1 + �)n=� = n=� + n under the new weights.To do so, increase the weight of every job to the next larger integer. This increases theweight of each job by at most 1 and thus, for any schedule, increases PwjUj by at most n.Under these new weights, PwjUj for the original optimal schedule is now at most n=� + n,so the optimal schedule under these integral weights has PwjUj � n=� + n. Since all weightsare integers, we can apply the dynamic programming algorithm of Section 3 to �nd an optimalschedule for the rounded instance. Since we only rounded up, the same schedule under theoriginal weights can only have a smallerPwjUj. Thus, we �nd a schedule with weight at mostn=� + n in the (scaled) original weights, i.e. a (1 + �) times optimum schedule.The running time of our dynamic program is proportional to n times the sum of the (new)weights. This might be a problem, since the weights can be arbitrarily large. However, any jobwith new weight exceeding n=�+n must be scheduled before its deadline. We therefore identifyall such jobs, and modify our dynamic program: Twj becomes the minimum time needed tocomplete all these jobs that must complete by their deadlines plus other jobs from 1; : : : ; j oftotal weight w. The dynamic programming argument goes through unchanged, but now weconsider only jobs of weight O(n=�). It follows that the largest value of w that we consider isO(n2=�), which means that the total running time is O(n3=�).It remains to deal with our assumption that we know W �. One approach is to use the RDPscheme that performs a binary search on W �. Of course, we do not expect to arrive at W �exactly, but note that an estimate will su�ce. If we test a value W 0 with W �=� � W 0 � W �,the analysis above will go through with the running time increased by a factor of �. So wecan wait for the RDP binary search to bring us within (say) a constant factor of W � and thensolve the problem.Of course, if the weights w are extremely large, our binary search could go through many39



iterations before �nding a good value of W 0. An elegant trick lets us avoid this problem. Wewill solve the following problem: �nd a schedule that minimizes the weight of the maximumweight late job. The value of this schedule, W 0, is clearly a lower bound on W �, as all schedulesthat minimizePwjUj must have a late job of weight at least W 0. Further, W � is at most nW 0,since the schedule returned must have at most n late jobs each of which has weight at mostW 0. Hence our value W 0 is within a factor of n of optimal. Thus O(log n) binary search stepssu�ce to bring us within a constant factor of W �.To compute W 0, we formulate a 1jjfmax problem. For each job j,fj(Cj) = ( wj if Cj > dj0 if Cj � djThis will compute the schedule that minimizes the weight of the maximum weight late job. Bythe results of Section 2.1, we know we can compute this exactly in polynomial time.Theorem 6.1 There exists a O(n3(log n)=�)-time (1+�)-approximation algorithm for 1jjPwjUj6.2 Rounding and Dynamic Programming for PjjCmaxWe now return to the problem of PjjCmax. Recall that in Lemma 3.3 we solved, in polynomialtime, the special case in which there are a constant number of di�erent job sizes. For thegeneral case, we will focus mainly on the big jobs. We will round and scale these jobs so thatthere is at most a constant number of sizes of big jobs, and apply the dynamic programmingalgorithm of Section 3 to these rounded jobs. We then �nish up by scheduling the small jobsgreedily. By the de�nition of big and small, the overall contribution of the small jobs to themakespan will be negligible.We will give a (1+�)-RDP for this problem that can be transformed as before into a (1+�)-approximation algorithm. We therefore assume that we have a target optimum schedule lengthT , We also assume for the rest of this section that �T; �2T; ��1 and ��2 are integers. The proofscan easily be modi�ed to handle the case of arbitrary rational numbers.We �rst show how to handle the large jobs.Lemma 6.2 Let I be an instance of PjjCmax, let T be a target schedule length, and � > 0.Assume that all pj � �T . Then, for this case, there is a (1 + �)-RDP for PjjCmax.40



Proof: We assume T � maxj pj, since otherwise we immediately know that the problem isinfeasible. Form instance I 0 from I with processing times p0j by rounding each pj down to aninteger multiple of �2T . This creates an instance in which:1. 0 � pj � p0j � �2T2. there are at most T�2T � 1�2 di�erent job sizes,3. in any feasible schedule, each machine has at most T�T = 1� jobs.Thus, we can apply Lemma 3.3 to instance I 0 and obtain an optimal solution to this schedulingproblem; let its makespan be D. If D > T , then we know that there is no schedule of length� T for I, since job sizes in I 0 are no greater than those in I. In this case we can answer \noschedule of length � T exists". If D � T , then we will answer \there exists a schedule of length� (1 + �)T . We now show that this answer will be correct. We simply take our schedule for I 0and replace the rounded jobs with the original jobs from I. By (1) and (3) above, we add atmost �2T to the processing time of each job, and since there are at most 1� jobs per machine,we add at most �T to the processing time per machine. Thus we can create a schedule withmakespan at most T + �T = (1 + �)T . 2We now give the complete algorithm. The idea will be to remove the \small" jobs, useLemma 6.2 to schedule the remaining jobs, and then add the small jobs back greedily. Giveninput I0, target schedule length T , and � = 1 + � > 1, we execute the following algorithm.Let R be the set of jobs with pj � �T . Let I = I0 �RApply Lemma 6.2 to I, T , and �.If this algorithm returns no,(y) then output \no schedule of length � T exists".elsefor each job j in Rif there is a machine i with load � T ,then add job j to machine i(*) else return \no schedule of length � T exists"return \yes, a schedule of length � �T exists"Theorem 6.3 The algorithm above is a �-relaxed decision procedure for PjjCmax.41



Proof: If the algorithm outputs \yes, a schedule of length � �T exists," then it has constructedsuch a schedule, and is clearly correct. If the algorithm outputs \no schedule of length � Texists" on line (y), then it is because no schedule of length T exists for instance I. But instanceI is a subset of the original jobs and so if no schedule exists for I, then no schedule exists forI0, and the output is correct. If the algorithm outputs \no schedule of length � T exists" online (*), then at this point in the algorithm, every machine must have more than T units ofprocessing on it. Thus, we have that Pj pj > mT , which means that no schedule of length � Texists. 2The running time is dominated by the dynamic programming in Lemma 3.3. It is polynomialin n, but the exponent is a polynomial in 1=�. While for � very close to 1, the running timeis prohibitively large, for larger, �xed values of �, a modi�ed algorithm yields good scheduleswith near-linear running times; see [HS87] for details.6.3 Exhaustive Enumeration for 1jrjjLmaxWe now turn to the problem of minimizing the maximum lateness in the presence of releasedates. Recall from Section 2.1 that without release dates EDD is an exact algorithm for thisproblem. Once we add release dates the problem becomes NP-hard. As we think aboutapproximation algorithms, we come upon an immediate obstacle, namely that the objectivefunction can be 0 or even negative, and hence a solution of value at most �C�max is clearlyimpossible. In order to get around this, we must guarantee that the objective value is positive.One simple way to do so is to decrease all the dj 's uniformly by some value �. This decreasesthe objective value by exactly � and does not change the structure of the optimal solution. Inparticular, if we pick � large enough so that all the dj 's are negative, we are guaranteed thatLmax is positive.Forcing dj to be negative is somewhat arti�cial and so we do not concentrate on thisinterpretation (note that by taking � arbitrarily large, we can make any algorithm into anarbitrarily good approximation algorithm). We instead use an equivalent but natural deliverytime formulation which, in addition to modeling a number of applications, is a key subroutine incomputational approaches to shop scheduling problems [LLKS93]. In this formulation, each job,in addition to having a release date rj and a processing time pj, has a delivery time qj. A delivery42



time is an amount of time that must elapse between the completion time of a job on a machineand when it is truly considered �nished. Our objective is now to minimize maxjfCj + qjg. Tosee the connection to our original problem, note that by setting qj = �dj (recall that we madeall dj negative, so all qj are positive), the delivery-time problem is equivalent to minimizingmaximum lateness, and in fact we will overload Lj and de�ne it as Cj + qj.6.3.1 Jackson's rule is a 2 approximationIn the delivery-time model, EDD translates to Longest Delivery Time First. This is often referredto as Jackson's rule. [Jac55]. Let L�max be the optimum maximum lateness. The following twolower bounds for this problem are the easily derived 1analogs of (1) and (2):L�max �Xj pj; (21)L�max � rj + pj + qj for all j: (22)Lemma 6.4 Jackson's Rule is a 2-approximation algorithm for the delivery time version of1jrj jLmax.Proof: Let j0 be a job for which Lj0 = Lmax. Since Jackson's rule creates a schedule with nounforced idle time, we know that there is no idle time between time rj0 and Cj0 . Let J 0 be theset of jobs that run between rj0 and Cj0 . ThenLj0 = Cj0 + qj0 (23)= rj0 + Xj2J 0 pj + qj0 (24)� (rj0 + qj0) +Xj pj (25)= 2L�max; (26)where the last line follows by applying the two lower bounds (21) and (22). 26.3.2 A PAS using EnumerationThe presentation of this section follows that of Hall [Hal97]. The original approximation schemefor this problem is due to Hall and Shmoys [HS89].43



To obtain better bounds, we need to look more carefully at when Jackson's rule can gowrong. Let sj be the starting time of job j, let rmin(S) = minj2S rj , let qmin(S) = minj2S qj,and recall that p(S) = Pj2S pj. Then clearly, for any S � JL�max � rmin(S) + p(S) + qmin(S): (27)Now consider a job j0 for which Lj0 = Lmax. Let ti be the latest time before sj0 at which themachine is idle, and let a be the job that runs immediately after this idle time. Let S be theset of jobs that run between sa and Cj0 . We call S a critical section. Because of the idle timeimmediately before sa, we know that for all j 2 S; rj � ra. In other words we have a set ofjobs, all of which were released after time ra, and which end with the job that achieves Lmax.Now if for all j 2 S qj � qj0 , then we claim that  Lj0 = L�max. This follows from the fact thatLmax = Lj0 = ra + p(S) + qj0 = rmin(S) + p(S) + qmin(S);and that the right hand side, by (27), is also a lower bound on L�max. So, as long as, in a criticalsection, the job with the shortest delivery time is last, we have an optimal schedule. Thus, ifJackson's rule is not optimal, there must be a job b in the critical section which has qb < qj0 .We call the latest-schedule job in the critical section with qb < qj0 an interference job. Thefollowing lemma shows the relationship between the interference job and its e�ect on Lmax.Lemma 6.5 Let b be an interference job in a schedule created by Jackson's rule. Then Lmax <L�max + pb.Thus, if interference jobs have small processing times, Jackson's rule does very well. Tomake sure that this is the case, we will handle the large jobs separately, to ensure that theyare not interference jobs, and then use Jackson's rule on the remaining jobs.Let us assume for now that we know the optimal schedule for instance I. Let s�j be thestarting time of job j in the optimal schedule, and let � > 0 be a parameter to be chosen later.Partition the jobs into small jobs S = fj : pj < �g and big jobs B = fj : pj � �g. We createinstance ~I as follows: if j 2 S, then ~rj = rj , ~pj = pj, and ~qj = qj, otherwise, ~rj = s�j , ~pj = pj ,and ~qj = L�max(I)�pj�s�j . Instance ~I is no easier than instance I, since we have not decreasedany release dates or delivery times. Yet, the optimal schedule for I remains an optimal schedule44



for ~I, by construction. In ~I we have given the large jobs a release date equal to their optimalstarting time, and a delivery time that is equal to the schedule length minus their completiontime, and hence have constrained the large jobs to run exactly when they would run in theoptimal schedule for instance I. Thus, in an optimal schedule for ~I, the big jobs run at exactlytime ~rj and have Lj = ~rj + ~pj + ~qj = L�max.Now we claim that if we run Jackson's rule on ~I, the big jobs will not be interference jobs.Lemma 6.6 If we run Jackson's rule on ~I, no job b 2 B will be an interference job.Proof: Assume that some job b 2 B is an interference job. As above, de�ne the critical section,and jobs a and j0. Since b is an interference job, we know that ~qj0 > ~qb and ~rj0 > ~rb. We alsoknow that ~rb = s�b , and so j0 must run after b in the optimal schedule for I. Applying (27) tothe set consisting of jobs b and j0, we get thatL�max � ~rb + ~pb + ~pj0 + ~qj0 � rb + pb + pj0 + ~qb = L�max + pj01which is a contradiction. 2So if we run Jackson's rule on ~I, we get a schedule whose length is at most L�max(I) + �.Choosing � = �Pj pj, and recalling that L�max � P pj, we get a schedule of length at most(1 + �)L�max. Further, there can be at most Pj pj=(�Pj pj) = 1=� big jobs. The only problemis that we don't know ~I.We now argue that it is not necessary to know ~I. First, observe that the set of big jobs ispurely a function of the input, and �. Now, if we knew the starting times of the big jobs inthe optimal schedule for I , we would know ~I , and could run Jackson's rule on the job in S,inserting the big jobs at the appropriate time. This implies a numbering of the big jobs, i.e.each big job ji is, for some k, the kth job in the schedule for ~I. Thus, we really only need toknow k, and not the starting time for job ji. Thus we just enumerate all possible numberingsfor the big jobs. There are n1=� such numberings. Given a numbering, we can run Jackson'srule on the small jobs, and insert the big jobs at the appropriate places in O(n logn) time, andthus we get an algorithm that in O(n1+1=� log n) time �nds a schedule with Lmax � (1+�)L�max.
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7 Research Issues and SummaryIn this chapter we have surveyed some of the basic techniques for deterministic scheduling.Scheduling is an old and therefore mature �eld, but important opportunities for research con-tributions remain. In addition to some of the outstanding open questions (see the survey byLawler et al. [LLKS93]) it is our feeling that the most meaningful research contributions willbe either new and innovative techniques for attacking old problems or new problem de�nitionsthat model more realistic applications.There are other schools of approach to the design of algorithms for scheduling, such as thoserelying on techniques from arti�cial intelligence or from computational optimization. It willbe quite valuable to forge stronger connections between these di�erent approaches to solvingscheduling problems.8 De�ning Terms� n: number of jobs.� m: number of machines.� pj : processing time of job j.� CSj : completion time of job j in schedule S.� wj : weight of job j.� rj : release date of job j; job j is unavailable for processing before time rj .� dj : due date of job j.� Lj := Cj � dj the lateness of job j.� Uj : 1 is job j is scheduled by dj and 0 otherwise.� �j�j: denotes scheduling problem with machine environment �, optimality criterion,and side characteristics and constraints denoted by �.� Machine Environments: 46



{ 1: One machine.{ P : Parallel identical machines.{ Q: Parallel machines of di�erent speeds.{ R: Parallel unrelated machines.{ O: Open shop.{ F : Flow shop.{ J : Job shop.� Possible characteristics and constraints:{ pmtn: Job preemption allowed.{ rj : jobs have nontrivial release dates.{ prec: jobs are precedence-constrained.� Optimality Criteria:{ PCj : average (sum) of completion times.{ PwjCj: weighted average (sum) of completion times.{ Cmax: makespan (schedule length).{ Lmax: Maximum lateness over all jobs.{ PUj : Number of on-time jobs.{ PwjUj: Weighted number of on-time jobs.AcknowledgementsWe are greatful to Jan Karel Lenstra and David Shmoys for helpful comments.References[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows :Theory, Algorithms, and Applications. Prentice Hall, Englewood Cli�s, NJ, 1993.[Bak74] K. R. Baker. Introduction to Sequencing and Scheduling. Wiley, 1974.47
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