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Abstract— In this paper, we explore the capabilities of actu-
ated models of the compass gait walker on rough terrain. We
solve for the optimal high-level feedback policy to negotiate
a perfectly known but qualitatively complex terrain, using a
fixed low-level controller which selects a high-level action once-
per-step. We also demonstrate that a one-step time horizon
control strategy using the same low-level controller can provide
performance which is surprisingly comparable to that of the
infinite time horizon optimal policy. The model presented here
uses a torque at the hip and an axially-directed impulsive toe-off
applied just before each ground collision. Our results provide
compelling evidence that actuated robots based on passive
dynamic principles (e.g. no ankle torque) should inherently be
capable of walking on significantly rough terrain.

I. INTRODUCTION

For legged robotic locomotion to become practical out-
side of a controlled, laboratory setting, robots will need
robust, dynamic control strategies which can cope with the
variability in environmental conditions expected in day-to-
day operation. Such robots will encounter differences in
terrain profiles and in characteristics such as contact friction
and coefficient of restitution, and they will be subject to
intermittent external forces.

Passive dynamic principles have inspired a promising
avenue of research in legged robotics ([12], [7], [11], [4],
[14], [16], [6]. Purely passive walkers, which require no
actuation or active control, exhibit stable, limit-cycle walking
down a gentle slope. Unfortunately, the coupling of the
stance- and swing-leg dynamics in a passive walker requires
a narrow set of acceptable initial conditions (about some
nominal, post-collision fixed point in state space) for any
particular step to be completed successfully. As a result,
passive walkers have notoriously fragile basins of attraction;
minor perturbations, such as subtle variations in terrain, tend
to knock them away from the fixed point and to cause
them to fall. Work has been done toward the problem of
walking on varying terrain, but in general, the methodologies
developed to date have some limitations. These methods
include a passivity-passed approach [14], which requires a
fully-actuated ankle torque rather than the passive ground
contact found in our compass gait model, and a manifold
control method [6], which is currently limited to gradual
variations in slope. Additionally, the sample-based hybrid-
zero dynamic (HZD) approach [16] is very promising as a
low-level solution for efficient and robust control, but it still
does not solve the high-level problem of setting the low-level
control at each step to walk on more complex terrain profiles.
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In this paper, we present highlights of our results in the
study of a compass gait (CG) walker model with torque actu-
ation at the hip and an axially-directed source of impulse at
each toe; the model is described in more detail in Section II.
Our goal is to assess the capabilities of this machine on
known (but complex) upcoming terrain; no attempt has been
made to consider energy efficiency.

II. METHODOLOGY

To solve for the approximate optimal control solution for
the compass gait walker on rough terrain, we discretized the
dynamics, creating a mesh of post-collision states. We then
used the value iteration algorithm [15] to find an optimal
step-to-step feedback policy for the discretized system. We
tested two low-level control strategies for defining the state-
to-state dynamics. The first method was a Proportional-
Derivative (PD) controller regulating the inter-leg angle, α.
The second method was an impulsive toe-off, applied just
before the next ground collision. We tested each method
alone and also tested both together. Details on the simulations
are given below in the remainder of this section.

A. The Compass Gait Model
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Fig. 1. The compass gait piped model. Simulations in this paper used the
following parameter values: m = 2kg, mh = 2kg, a = .5m, b = .5m

The basic compass gait model, introduced by [7], is used
in all simulations and depicted in Figure 1. It consists of two
rigid legs: a stance leg (at absolute angle θ1) and a swing
leg (at angle θ2, relative to θ1). The legs meet at a linkage
referred as the “hip”, which has a pure torque source. The
contact point with the ground is referred to throughout as the
“toe” and it is a zero-torque, frictionless joint. The model has
a distributed inertia, represented by mass mh at the hip and
a mass m along each leg, as illustrated. Ground collisions
are assumed to be instantaneous and perfectly inelastic, and
the labels of stance and swing leg are interchanged at each
step. Parameters for the model used throughout this paper



are given in the caption of Figure 1, and the direction of
walking for all simulations is from the left to the right.

To address the practical concerns of defining and detecting
ground collision, we assume that the toe of the swing leg is
immediately retracted once a ground collision occurs and
remains so until the stance leg reaches a vertical position,
at which time it extends instantaneously. We also include
an ideal impulsive source at each toe which we assume
can deliver an impulse of prescribed magnitude axially at
the stance leg contact immediately preceding an upcoming
collision between the swing leg and the ground. Inclusion
of an impulse source is inspired by the work of [10], who
illustrate that this is an efficient method for imparting energy
to the system to make up for energy lost in ground collisions.
They use the simplified version of the compass gait (i.e. all
mass concentrated at the hip; infinitesimal mass at each toe).

B. Optimal Control Using Value Iteration

For each of the three low-level control strategies, we
discretized the dynamic system and found the optimal high-
level policy which maximized the distance traveled over
time before falling. To determine the full capabilities of
the walker, one would need to discretize over time and to
select a torque magnitude at each dt. We chose to discretize
on a step-to-step basis instead, primarily to reduce the size
of the state space (from 5 to 4 dimensions) to keep the
problem computationally tractable, and we were pleased to
find that such a strategy still produces impressive results in
our simulations.

The post-collision state of the walker is represented in
most plots using four meshing state variables, X1m through
X4m, which are defined below.
X1m : absolute x coordinate of stance leg on terrain
X2m : relative x coordinate of swing leg from stance leg
X3m : absolute angular velocity of stance leg, θ̇1

X4m : relative angular velocity of swing leg, θ̇2

The table below gives the number of elements and range
spanned for each meshing state. Mesh elements are spaced
evenly in each dimension.

State # elements min. value max value units
Xm1 140 0 7 (m)
Xm2 15 -0.85 -0.15 (m)
Xm3 14 -3 -0.4 (rad/s)
Xm4 14 -0.1 5.1 (rad/s)

The value function and feedback policy between the
discretization points was smoothed using barycentric inter-
polation [13]. To maximize the distance traveled, the cost to
optimize was defined as the negative of the distance traveled
when a successful step was taken, and as 0 at each step for all
walkers which have entered an absorbing, “fallen” state. The
value function and feedback policy between the discretization
points was smoothed using barycentric interpolation [13].
Any post-collision states falling outside the defined mesh
range were automatically binned into the absorbing failure
(fallen) state.

C. Rough Terrain Model

We attempted to solve the optimal control problem for
each controller on a variety of terrain profiles, some of
which include discontinuities in addition to changes in slope.
Examples are shown in Figures 2, 4, 6 and 8.

To test the performance limits of each control strategy
analyzed, each terrain was scaled to make its features more
dramatic until the value iteration failed to converge on a
stable walking policy. Each terrain consists of a particular
profile which repeats every 7 meters, as shown in Figure 2.
This allows the value iteration to converge on a fixed policy
using a finite representation for the terrain and a finite
number of iteration steps. A repeating terrain may also be
thought to represent the terrain of a compass gait walker
circling endlessly on a fixed boom; we intend to experiment
with the control strategies described in this paper on a real
robot mounted to a such a boom, as depicted in Figure 10
in Section VI.

0 5 10 15
−1

0

1
wraps each 7m

[scale in meters]

Fig. 2. An example of terrain. Tested terrain profiles always repeat every
7 meters, allowing the numerical mesh to “wrap”.

D. Hierarchical Controller Design

Our simulations investigate two simple low-level control
options, and optimal policies are found for each of three
combinations: using each option individually, and using them
together. One low-level option is Proportional-Derivative
(PD) control of a desired inter-leg angle, and the other is im-
pulsive stance-foot toe-off immediately preceding the ground
collision for each new step. The high-level control action
selected at each step in the value iteration correspondingly
consists of one or both of the following: (1) a desired inter-
leg angle, αdes, for the PD controller and (2) the magnitude
of the impulse.

The primary purpose of the PD controller is to regulate of
the step length of the walker, which in turn selects upcoming
foot placement on the terrain. However, the dynamics are
inherently coupled and the controller also affects the entire
dynamic state of the walker. The main goal in employing
the impulsive toe-off action is to compensate for the energy
which is lost at each ground collision. This in turn should
allow the walker to take larger steps than would otherwise
be possible, since more energy is (of course) lost for larger
step angles [3].

1) PD Control of Inter-leg Angle: The low-level PD
controller regulates the inter-leg angle, α, defined as:

α = θ2 − π (1)

Our PD controller was designed by hand, using simulations
of the compass gait walker on flat terrain and observing



performance given intermittent, impulsive disturbances. It
acts only during the latter part of each step, after the stance
leg has passed vertical. Activating the torque too early in the
gait tends to cause the walker to fall over backward before the
stance leg has successfully passed beyond the vertical point
in its trajectory. The hip torque, τ , is defined by Equation 2:

τ =
{

Kp(αdes − α) + Kd(0− α̇) , if θ1 < π
2

0 , otherwise (2)

where Kp = 100 and Kd = 10.
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Fig. 3. Comparison of passive and PD-controlled walker on a constant
4◦ slope. Although the peak swing-leg velocity each cycle is over 2 times
greater for the PD walker, the overall speed in walking is only about 9%
faster, since the dynamics are still dominated by the passive, inverted-
pendulum motion of the stance leg.

2) Impulsive Toe-Off Immediately Before Impact: In this
control strategy, a particular magnitude impulse is applied
axially from the stance leg downward, toward ground. It is
well-known that applying the impulse immediately before
collision is an efficient method for imparting energy to the
compass gait walker [10]. We assume the impulse is executed
perfectly and instantaneously.

The high-level feedback policy is evaluated at each post-
collision state, but we desire that a commanded pre-collision

impulse action affect the current step. Therefore, to model
the transition, the post-collision state is simply ”rewound” to
its corresponding pre-collision state, using the well-known
equations for conservation of angular momentum during the
inelastic collision [7]. Then, the contribution of the impulse
(m× v) is added as appropriate at the toe of the stance leg,
and the equations for angular momentum (now going from
pre- to post-collision) are applied once again. Note that the
velocity of the swing leg must be tested after the impulse is
applied to ensure that the velocity of the swing leg toe is still
directed toward the ground. A large enough impulse could
theoretically send the entire walker airborne! However, this
has not been a practical concern for the magnitudes we have
tested in our simulations.

Our initial tests using value iteration allowed for the
selection of one of 21 values ranging from 0 to 2 (kg-m/s).
Because the cost function described below rewards taking as
large a step as possible, the optimal impulse selected was
almost always the maximal value possible. To simplify the
controller and to reduce the run-time for value iteration (by
a factor of 21), we eventually set the impulse value to a
constant magnitude of 2 at every step.

E. Control Using a Single-Step Time Horizon

Our main purpose in this paper is to demonstrate the
theoretical capabilities inherent in the underactuated walker
as terrain becomes more extreme, and so we provide perfect
long-horizon knowledge of the terrain to decouple this factor
from the issue of what is dynamically possible, given the
underactuation. However, to further explore the theoretical
performance of the compass gait model on rough terrain, we
also tested a one-step control strategy. At each step, a new
action is selected by simulating a nominal value for αdes

for one step, assuming we have access to a perfect model
of the one-step dynamics. If the tested value results in a
successful (non-fallen) uncoming step, it is selected as the
desired action. If not, we continue to search inter-leg angles
in a discrete, prescribed sequence until a successful candidate
angle is found.

The one-step control policy we implement is extremely
primitive, yet it has proven surprisingly effective. This result
provides some evidence that use of a very limited look-ahead
(e.g. 1 to 3 steps) may provide near-optimal performance.
Correspondingly, it follows that it may also be possible
to obtain near-optimal results on real-world legged robots
having only a short-sighted knowledge of upcoming terrain.
We anticipated this result after our previous work, where we
noted a surprisingly fast mixing dynamics of the metastable
limit cycle generated by a passive compass gait walker on
statistically rough terrain [2].

III. RESULTS

This section highlights our simulation results for each of
the three control strategies described in Section II. Summa-
rized briefly, the PD controller is effective in regulating foot
placement on terrain; however, it allows for a disappointingly
limited variations in step width or height. The toe-impulse



action is intended to enable the walker to negotiate more
extreme terrain by pumping additional energy into the system
efficiently, but performance of the impulse control alone is
unfortunately quite fragile. Combining a constant magnitude
toe-off with the PD controller provides a significantly better
design that either component demonstrates alone, allowing
for significantly greater variations in both step length and
height during continuous walking.

A. Performance Using Only PD Control

Figures 4 and 5 show examples of terrain which our sim-
ulation successfully negotiates using only the PD controller.
The performance is good, but it is importantly limited by the
inherent inefficiency of adding energy through hip torque,
alone. A single step which is too wide or too steeply uphill
results in rapid failure, as the compass gait simply cannot
complete a subsequent step after a large loss in energy.
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Fig. 4. Examples of terrain which were successfully negotiated using
PD control alone. Terrain at top is flat except for a set of bottomless no-go
gaps. The middle and bottom examples consist of piecewise slopes. Figure 5
shows detail from the bottom plot.
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Fig. 5. A close-up of the bottommost terrain in Figure 4.

Several features can be noted about both the performance
capabilities of the walker and the nature of the resulting
optimal control policy. Qualitatively, the walker is able to
perform much larger steps when the terrain is sloped down-
hill, as one might naturally expect. Also, the more extreme
(“difficult”) the terrain was, the more likely the optimal
policy was to select the same, repeated set of footholds over
a particular portion of the terrain, as illustrated in Figure 6.

The terrains shown throughout the paper are what the
authors consider to be the most impressive examples for
which successful optimal policies could be found; on more
extreme terrain, there were no solutions which resulted in
continuous walking. That noted, it is interesting to compare
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Fig. 6. The optimal footholds on extreme terrain quickly converge to
a fixed pattern (top). On easier terrain, no fixed pattern emerges, because
the cost function always rewards taking the largest steps possible (bottom).
In intermediate terrain, we see an intermediate level of organization in the
pattern of footholds (middle). The x locations of footholds taken are plotted
as dots here and in Figure 8, with the earliest steps plotted lowest and with
dots repeating as the terrain repeats, every 7 meters.

the features of the three types of intermittent terrain in
Figures 4. On the flat (topmost) terrain, gap width was about
11 cm on average, up to a maximum of 18 cm; for the
piecewise sloped terrain (bottom), the gaps needed to be
somewhat smaller: 8 cm on average up to a maximum of
about 10 cm. The downhill terrain (shown in the middle)
has an average grade of 4◦ and correspondingly permits
dramatically larger steps: 30 cm on average, with the larger
step being about 47 cm – or nearly half the leg length.

The overall variation in terrain height away from a
constant-slope terrain is not significantly different for the
downhill terrain with large steps as compared with the
piecewise sloped terrain. Excluding the part of the terrain
with intermittent gaps, the piecewise terrain has a standard
deviation (SD) of 1.07 cm, and a max-to-min height dif-
ference of 5.15 cm. Subtracting out the net slope of 4◦, the
“downhill” terrain height has a standard deviation of 1.26 cm
and max-to-min height different of 6.15 cm. Step width on
this terrain does vary significantly (from about 28 cm to
63 cm), but it cannot maintain a gait with continuously
small footsteps without tripping forward and falling after
a few steps. Torque-only actuation is often insufficient to
completely regulate energy.

B. Performance Using Only Toe-Off Control

It was hoped that an impulsive toe-off controller might
produce better results than the PD controller. However, the
toe-off alone results in a surprisingly fragile walking cycle



which requires a fairly precise initial condition and allows for
almost no variations in terrain height. We let a walker under
impulse-only control reach a steady limit cycle on terrain
which is completely flat (0◦ slope), using a constant impulse
value of m × v = 2 (kg-m/s). Then we introduce slight,
rolling bumps into the terrain of about 1/12 the magnitude
of those seen on the terrain in Figures 8.

After reaching the mild bumps on the terrain, the “toe-off
only” walker takes one step with a resulting downward slope
of -.7◦ and then “trips up” while attempting a subsequent
step at +.35◦. The performance is quite poor, even if one
allows for the selection of the magnitude of the impulse.
Without more direct regulation of the upcoming step length,
the walker quickly falls on even trivial terrain.

Figure 7 shows the dynamic states (angles and angular ve-
locities) of the walker during the same trial described above.
These data are presented primarily to allow quantitative and
qualitative comparison with the dynamic states during the
trials using both PD and impulse control, shown in Figure 9.
With the torque actuation from the PD controller, the steps
are generally both much larger (X2 is larger) and faster (there
are more steps per second, and X3 and X4 are both larger
when hip torque is employed). Note that two of the dynamic
states plotted in these figures differ from the meshing states
defined in Section II-B: X1 = θ1 and X2 = θ2, while
X4 = Xm4 = θ̇1 and X3 = Xm3 = θ̇2.
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Fig. 7. Dynamic states using impulsive toe-off control, only.

C. Performance Using Both PD Control and Toe-Off

Our most impressive performance by far is obtained by
combining the low-level PD controller with the an impulse
of magnitude 2 (kg-m/s) preceding every ground collision.
The optimal control policy converges to a successful policy
for continuous walking on the terrain shown in Figure 8,
which has a standard deviation (σ) of 4.7 cm and a max-to-
min difference in height of 19.1 cm. The step-to-step heights
between footholds actually achieved along this terrain have
σ of 3.3 cm, and σ of the inter-leg angle at each step is about
5.9◦.

The dual-mode control strategy was so powerful that we
were also able to obtain long trials of continuous walking
(over 60 seconds in duration) using the simple, one-step
control method described in Section II-E. The bottom of

Figure 8 shows footholds taken during one such trial using
the one-step planner. Here, the standard deviation in step-
to-step height is 5.0 cm, and the SD in α is 8.8◦. Finally,
Figure 9 depicts the dynamic states for both the optimal
and one-step control policies. Note here that the selected
set-point for α (X2 = α + π) has very little variation in
the one-step planner. Deviations in the set point of α are
occasionally required for success, but not if a nominal first-
tested value (of 28◦) works. It is intriguing that this low-level
controller works surprisingly well even given such a clearly
sub-optimal high-level policy. This leads us to suspect that
it is quite probable that a more intelligently-design short-
sighted planner might perform nearly as well the optimal
(far-sighted) one.
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Fig. 8. Footsteps taken during a 60-second trial using the optimal control
policy from value iteration (top) and using a one-step time horizon (bottom).
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Fig. 9. Dynamic states during a using the optimal control policy from
value iteration (top) and using the one-step control strategy (bottom).



IV. DISCUSSION

We wish to bring some particular issues to the attention
of the reader in this section. First, we note that care must
be taken in interpolating the inherently discontinuous policy
for walking on rough (most particularly, on intermittent)
terrain to select control actions. We discovered a persistent
and catastrophic interpolation error which occurred from
time to time when evaluating the optimal policy during
simulations. For gaps, there are transition points where one
must decide to take either a small step or a large step
to avoid such regions. We found there were occasionally
but consistently states where barycentric interpolation of the
policy resulted in a medium-sized step which landed in a
no-go zone. Although [13] provide an excellent reference on
issues of stochasticity and discontinuity of value function in
implementing the solution to a dynamic system via value
iteration, their solutions can be expensive in practice and do
not directly address our particular interpolation issues, which
are associated with sharp discontinuities in our policy.

The second issue we bring to the reader’s attention here
is that our solutions do not attempt to exploit the low
cost of transport and efficiency which are so characteristic
and appealing in particularly well-designed passive dynamic
walkers, such as the Cornell biped [5], [9]. Our purpose
here was to demonstrate the theoretical performance possible
for passive-based walking with an inherently underactuated
ankle. Further study can be done using a cost function which
takes into account both the distance traveled and the cost of
transport.

Finally, we note that the success of a simple, intuitive
strategy for control of the Raibert hopper on intermittent
terrain in [8] inspired our inclusion of intermittent gaps
in some of our own terrain examples. The simple control
ideas of the Raibert hopper have since provided a basis
for the practical design of impressively robust control for
the dynamic quadruped “BigDog” on rough terrain [1]. We
conjecture that the future for dynamic legged bipedal robots
may follow a similar path, using lessons learned from the
compass gait model as a basis for impressive controllers on
advanced robots based on passive dynamic principles.

V. CONCLUSIONS

The compass gait model can successfully negotiate an
impressive range of rugged terrain using a surprisingly
simple control strategy. A simple yet effective low-level
control strategy can be obtained by combining a toe-off just
before each ground collision with a PD control loop on the
desired inter-leg angle. The magnitude of the toe-off can be a
constant value for all footsteps, so that the high-level control
at each step consists solely of the desired inter-leg angle.
The action of the toe-off insures energy in added efficiently
at each step, while actively controlling the inter-leg angle
tends to regulate the dynamics around a nominal trajectory
in state space.

VI. FUTURE WORK
Given the success of our simulations, we plan to imple-

ment a similar control strategy on a real compass-gait robot.
The robot will be mounted on a boom, providing lateral
stability but also introducing some additional, unmodeled
dynamics. We are hopeful that the inherent stability demon-
strated by the simple low-level control strategy described in
this paper can also be demonstrated on the real-world system.
We expect that a controller based on the same practical
principles will provide a good initial control policy, to be
optimized online using model-free gradient-based learning
methods.

Fig. 10. Compass gait robot posed on rough terrain.
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