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Abstract

In this paper, we theoretically prove that
adding one special neuron per output unit
eliminates all suboptimal local minima of any
deep neural network, for multi-class classifi-
cation, binary classification, and regression
with an arbitrary loss function, under prac-
tical assumptions. At every local minimum
of any deep neural network with these added
neurons, the set of parameters of the origi-
nal neural network (without added neurons)
is guaranteed to be a global minimum of the
original neural network. The effects of the
added neurons are proven to automatically
vanish at every local minimum. Moreover,
we provide a novel theoretical characteriza-
tion of a failure mode of eliminating subopti-
mal local minima via an additional theorem
and several examples. This paper also intro-
duces a novel proof technique based on the
perturbable gradient basis (PGB) necessary
condition of local minima, which provides
new insight into the elimination of local min-
ima and is applicable to analyze various mod-
els and transformations of objective functions
beyond the elimination of local minima.

1 Introduction

Deep neural networks have achieved significant prac-
tical success in the fields of computer vision, ma-
chine learning, and artificial intelligence. However,
theoretical understanding of deep neural networks is
scarce relative to its empirical success. One of the
major difficulties in theoretically understanding deep
neural networks lies in the non-convexity and high-
dimensionality of the objective functions used to train
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the networks. Because of the non-convexity and high-
dimensionality, it is often unclear whether a deep neu-
ral network will be guaranteed to have a desired prop-
erty after training, instead of becoming stuck around
an arbitrarily poor local minimum. Indeed, it is NP-
hard to find a global minimum of a general non-convex
function (Murty and Kabadi, 1987), and of non-convex
objective functions used to train certain types of neu-
ral networks (Blum and Rivest, 1992). In the past,
such theoretical concerns were considered one of rea-
sons to prefer classical machine learning models (with
or without a kernel approach) that require only convex
optimization. Given their recent empirical success, a
question remains whether practical deep neural net-
works can be theoretically guaranteed to avoid poor
local minima.

There have been numerous recent studies that have
advanced theoretical understanding regarding the op-
timization of deep neural networks with significant
over-parameterization (Nguyen and Hein, 2017, 2018;
Allen-Zhu et al., 2018; Du et al., 2018; Zou et al., 2018)
and model simplification (Choromanska et al., 2015;
Kawaguchi, 2016; Hardt and Ma, 2017; Bartlett et al.,
2019; Du and Hu, 2019). For shallow networks with a
single hidden layer, there have been many positive re-
sults, yet often with strong assumptions, for example,
requiring the use of significant over-parameterization,
simplification, or Gaussian inputs (Andoni et al., 2014;
Sedghi and Anandkumar, 2014; Soltanolkotabi, 2017;
Brutzkus and Globerson, 2017; Ge et al., 2017; Soudry
and Hoffer, 2017; Goel and Klivans, 2017; Zhong et al.,
2017; Li and Yuan, 2017; Du and Lee, 2018).

Instead of using these strong assumptions, adding one
neuron to a neural network with a single output unit
was recently shown to be capable of eliminating all
suboptimal local minima (i.e., all local minima that
are not global minima) for binary classification with
a special type of smoothed hinge loss function (Liang
et al., 2018). However, the restriction to a neural net-
work with a single output unit and a special loss func-
tion for binary classification makes it inapplicable to
many common and important deep learning problems.
Both removing the restriction to networks with a sin-
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gle output unit and removing restrictions on loss func-
tions are seen as important open problems in different
but related theoretical work on local minima of neural
networks (Shamir, 2018; Laurent and Brecht, 2018).

In this paper, we state and prove a novel and sig-
nificantly stronger theorem: adding one neuron per
output unit can eliminate all suboptimal local min-
ima of any deep neural network with an arbitrary loss
function for multi-class classification, binary classifi-
cation, and regression. This paper also introduces a
novel proof technique based on the perturbable gradi-
ent basis (PGB) condition, which provides new insight
into the elimination of local minima and can be used
to analyze new models and transformations of objec-
tive functions beyond the elimination of local minima.
This paper analyzes the problem in the regime without
significant over-parameterization or model simplifica-
tion (except adding the few extra neurons).

While analyzing the properties of local minima in this
regime with no strong assumption is a potentially im-
portant step in theory, it does not immediately guar-
antee the efficient solution of general neural network
optimization. We explain this phenomenon in another
key contribution of this paper, which is a novel char-
acterization of a failure mode of the removal of bad
local optima, in terms of its effect on gradient-based
optimization methods.

2 Elimination of local minima

The optimization problem for the elimination of local
minima is defined in Section 2.1. Our theoretical re-
sults on the elimination of local minima are presented
in Section 2.2 for arbitrary datasets, and in Section
2.3 for realizable datasets. We discuss these results in
terms of non-vacuousness, consistency, and the effect
of over-parameterization in Section 2.4.

2.1 Problem description

Let x ∈ X ⊆ Rdx and y ∈ Y ⊆ Rdy be an input vector
and a target vector, respectively. Define ((xi, yi))

m
i=1

as a training dataset of size m. Given an input x and
parameter θ, let f(x; θ) ∈ Rdy be the pre-activation
output of the last layer of any arbitrary deep neural
network with any structure (e.g., any convolutional
neural network with any depth and any width, with
or without skip connections). That is, there is no as-
sumption with regard to f except that f(x; θ) ∈ Rdy .

We consider the following standard objective function
L to train an arbitrary neural network f :

L(θ) =
1

m

m∑
i=1

`(f(xi; θ), yi),

where ` : Rdy × Y → R is an arbitrary loss crite-
rion such as cross entropy loss, smoothed hinge loss,
or squared loss.

We then define an auxiliary objective function L̃:

L̃(θ̃) =
1

m

m∑
i=1

`(f(xi; θ) + g(xi; a, b,W ), yi) + λ‖a‖22,

where λ > 0, θ̃ = (θ, a, b,W ), a, b ∈ Rdy , W =[
w1 w2 · · · wdy

]
∈ Rdx×dy with wk ∈ Rdx ,

and g(x; a, b,W )k = ak exp(w>k x + bk) for all k ∈
{1, . . . , dy}.

We also define a modified neural network f̃ as

f̃(x; θ̃) = f(x; θ) + g(x; a, b,W ),

which is equivalent to adding one neuron g(x; a, b,W )k
per each output unit f(x; θ)k of the original neural net-
work. Because L̃(θ̃) = 1

m

∑m
i=1 `(f̃(xi; θ̃), yi) + λ‖a‖22,

the auxiliary objective function L̃ is the standard ob-
jective function L with the modified neural network f̃
and a regularizer on a.

2.2 Result for arbitrary datasets

Under only a mild assumption (Assumption 1), Theo-
rem 1 states that at every local minimum (θ, a, b,W )
of the modified objective function L̃, the parameter
vector θ achieves a global minimum of the original ob-
jective function L, and the modified neural network f̃
automatically becomes the original neural network f .
The proof of Theorem 1 is presented in Section 4 and
Appendix B.

Assumption 1. (Use of common loss criteria) For
any i ∈ {1, . . . ,m}, the function `yi : q 7→ `(q, yi) ∈
R≥0 is differentiable and convex (e.g., the squared loss,
cross entropy loss, and polynomial hinge loss satisfy
this assumption).

Theorem 1. Let Assumption 1 hold. Then, at every
local minimum (θ, a, b,W ) of L̃, the following state-
ments hold:

(i) θ is a global minimum of L, and

(ii) f̃(x; θ, a, b,W ) = f(x; θ) for all x ∈ Rdx , and
L̃(θ, a, b,W ) = L(θ).

Assumption 1 is satisfied by simply using a common
loss criterion, including the squared loss `(q, y) = ‖q−
y‖22 or `(q, y) = (1 − yq)2 (the latter with dy = 1),

cross entropy loss `(q, y) = −
∑dy
k=1 yk log exp(qk)∑

k′ exp(qk′ )
,

or smoothed hinge loss `(q, y) = (max{0, 1 − yq})p
with p ≥ 2 (the hinge loss with dy = 1). Although
the objective function L : θ 7→ L(θ) used to train a
neural network is non-convex in θ, the loss criterion
`yi : q 7→ `(q, yi) is usually convex in q. Therefore,
Theorem 1 is directly applicable to most common deep
learning tasks in practice.
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2.3 Result for realizable datasets

Theorem 2 makes a statement similar to Theorem 1
under a weaker assumption on the loss criterion (As-
sumption 2) but with an additional assumption on the
training dataset (Assumption 3). The proof of Theo-
rem 2 is presented in Appendix B.

Assumption 2. (On the loss) For any i ∈ {1, . . . ,m},
the function `yi : q 7→ `(q, yi) is differentiable, and
q ∈ Rdy is a global minimum of `yi if ∇`yi(q) = 0.

Assumption 3. (On the label consistency) There
exists a function f∗ such that f∗(xi) = yi for all
i ∈ {1, . . . ,m}.
Theorem 2. Let Assumptions 2 and 3 hold. Then,
at every local minimum (θ, a, b,W ) of L̃, the following
statements hold:

(i) θ is a global minimum of L,

(ii) f̃(x; θ, a, b,W ) = f(x; θ) for all x ∈ Rdx , and
L̃(θ, a, b,W ) = L(θ), and

(iii) f(xi; θ) is a global minimum of `yi : q 7→ `(q, yi)
for all i ∈ {1, . . . ,m}.

Assumption 2 is weaker than Assumption 1 in the
sense that the former is implied by the latter but not
vice versa. However, as discussed above, Assumption 1
already accommodates most common loss criteria. As-
sumption 3 is automatically satisfied if a target y given
an input x is not random, but the non-randomness
is not necessary to satisfy Assumption 3. Even if
the targets are generated at random, as long as all
x1, x2, . . . , xm are distinct (i.e., xi 6= xj for all i 6= j),
Assumption 3 is satisfied.

Therefore, although Theorem 2 might be less applica-
ble in practice when compared to Theorem 1, Theorem
2 can still be applied to many common deep learn-
ing tasks with the additional guarantee, as stated in
Theorem 2 (iii). By using an appropriate loss crite-
rion for classification, Theorem 2 (iii) implies that the
trained neural network f(·; θ) at every local minimum
correctly classifies all training data points.

2.4 Non-vacuousness, consistency, and effect
of over-parameterization

Theorems 1 and 2 are both non-vacuous and consistent
with pathological cases. For the consistency, Theorems
1 and 2 (vacuously) hold true if there is no local min-
imum of L̃, for example, with a pathological case of
`(q, yi) = q − yi.

For non-vacuousness, there exists a local minimum of
L̃ if there exists a global minimum θ of L such that
f(xi; θ) achieves a global minimum for each f(xi; θ) 7→
`(f(xi; θ), yi) for i ∈ {1, . . . ,m} (this is because, given

such a θ, any point with a = 0 is a local minimum
of L̃). Therefore, the existence of local minimum
for L̃ can be guaranteed by the weak degree of over-
parameterization that ensures the exitance of a global
minimum θ for each f(xi; θ) 7→ `(f(xi; θ), yi) only for
a given training dataset (rather than for all datasets).

This is in contrast to the previous papers that require
significant over-parameterization to ensure interpola-
tion of all datasets and to make the corresponding
neural tangent kernel to be approximately unchanged
during training (Nguyen and Hein, 2017, 2018; Allen-
Zhu et al., 2018; Du et al., 2018; Zou et al., 2018).
Our paper does not require those and allow the neural
tangent kernel to significantly change during training.
Because of this difference, our paper only needs Ω̃(1)
parameters, whereas the state-of-the-art previous pa-
per requires Ω̃(H12n8) parameters (Zou and Gu, 2019)
or Ω̃(n) parameters (Kawaguchi and Huang, 2019), .

Because a local minimum does not need to be a strict
local minimum (i.e., a local minimum with a strictly
less value than others in a neighborhood), there are
many other cases where there exists a local minimum
of L̃: e.g., Example 5 in Section 6.2 also illustrates a
situation where there exists a local minimum of L̃ with-
out the above condition of the existence of sample-wise
global minimum of L or weak over-parameterization.

3 PGB necessary condition beyond
elimination of local minima

In this section, we introduce a more general result be-
yond elimination of local minima. Namely, we prove
the perturbable gradient basis (PGB) necessary condi-
tion of local minima, which directly implies the elim-
ination result as a special case. Beyond the specific
transformation of the objective function L̃, the PGB
necessary condition of local minima can be applied to
other objective functions with various transformations
and models.

Theorem 3. (PGB necessary condition of local min-
ima). Define the objective function Q by

Q(z) =
1

m

m∑
i=1

Qi(φi(z)) +Ri(ϕi(z)) (1)

where for all i ∈ {1, . . . ,m}, the functions Qi :
q ∈ Rdφ 7→ Qi(q) ∈ R≥0 and Ri : q ∈ Rdϕ 7→
Ri(q) ∈ R≥0 are differentiable and convex, and φi
and ϕi are differentiable. Assume that there ex-
ists a function h : Rdz → Rdz and a real num-
ber ρ 6= 0 such that for all i ∈ {1, . . . ,m} and all

z ∈ Rdz , φi(z) =
∑dz
k=1 h(z)k∂kφi(z) and ϕi(z) =

ρ
∑dz
k=1 h(z)k∂kϕi(z). Then, for any local minimum
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z ∈ Rdz of Q, the following holds: there exists ε0 > 0
such that for any ε ∈ [0, ε0),

Q(z) ≤ inf
S⊆finV[z,ε],

α∈Rdz×|S|

Q̃ε,z(α, S) +
ρ− 1

ρm

m∑
i=1

∂Ri(ϕi(z))ϕi(z),

where

Q̃ε,z(α, S) =
1

m

m∑
i=1

Qi(φ
z
i (α, ε, S)) +Ri(ϕ

z
i (α, ε, S)),

φzi (α, ε, S) =

dz∑
k=1

|S|∑
j=1

αk,j∂kφi(z + εSj),

and

ϕzi (α, ε, S) =

dz∑
k=1

|S|∑
j=1

αk,j∂kϕi(z + εSj).

Here, S ⊆fin S′ denotes a finite subset S of a set
S′ and V[z, ε] is the set of all vectors v ∈ Rdz such
that ‖v‖2 ≤ 1, φi(z + εv) = φi(z), and ϕi(z +
εv) = ϕi(z) for all i ∈ {1, . . . ,m}. Furthermore, if
ρ = 1, this statement holds with equality as Q(z) =
infS⊆finV[z,ε],α∈Rdz×|S| Q̃ε,z(α, S).

The PGB necessary condition of local minima states
that whether a given objective Q is non-convex or con-
vex, if z is a local minimum of the original (poten-
tially non-convex) objective Q, then z must achieve
the global minimum value of the transformed objec-
tive Q̃ε,z(α, S) for any sufficiently small ε. Here, the

transformed objective Q̃ε,z is the original objective Q
except that the original functions φi(z) and ϕi(z) are
replaced by perturbable gradient basis (PGB) func-
tions φzi (α, ε, S) and ϕzi (α, ε, S). In other words, all lo-
cal minima with the original functions φi(z) and ϕi(z)
achieve the global minimum values of PGB functions
φzi (α, ε, S) and ϕzi (α, ε, S).

Here, the original objective Q is a non-convex function
in general because both φi and ϕi can be non-convex
functions. If φi and ϕi are both linear functions, then
we have φi(α) = φzi (α, 0, ∅) and ϕi(α) = ϕzi (α, 0, ∅)
(for all α and z) and hence the PGB necessary con-
dition of local minima recovers the following known
statement: every local minimum of original Q is a
global minimum of original Q.

The PGB condition of local minima can be also un-
derstood based on the following geometric interpreta-
tion. For the geometric interpretation, we consider
two spaces – the parameter space Rdz and the output
space Rm(dφ+dϕ) – and the map from the parameter
space to the output space, which is defined by Φ :
z ∈ Rdz 7→ (φ1(z)>, ϕ1(z)>, . . . , φm(z)>, ϕm(z)>)> ∈

Rm(dφ+dϕ). Then, in the output space, we can
intuitively consider the “tangent” space TΦ(z) =
span({∂1Φ(z), . . . , ∂dzΦ(z)}) + {Φ(z)}, where the sum
of the two sets represents the Minkowski sum of the
sets.1 Then, given a ε (≤ ε0), the span of the set of
all vectors of the “tangent” spaces TΦ(z+εv) at all per-

turbed points z + εv, defined by T̃Φ(z+εv) = span({f ∈
Rm(dφ+dϕ) : (∃v ∈ V[θ, ε])[f ∈ TΦ(z+εv)]}), is exactly
equal to the space of the outputs of the PGB functions.

Therefore, from the geometric viewpoint, the PGB
necessary condition of local minima states that the
output Φ(z) at any local minimum z is globally op-
timal in the span of the “tangent” spaces T̃Φ(z). The
PGB condition of local minima translates the local op-
timality in the parameter space Rdz into the global
optimality in the span of the “tangent” spaces in the
output space Rm(dφ+dϕ).

The PGB necessary condition of local minima is an ex-
tension of theorem 2 in a previous study (Kawaguchi
et al., 2019) to the problem with a regularization term
and a general transformation of the objective func-
tion. Accordingly, beyond the elimination of local
minima, the PGB necessary condition of local minima
entails the previously proven statements of no bad lo-
cal minima for deep linear neural networks (Laurent
and Brecht, 2018) and deep nonlinear residual neu-
ral networks (Kawaguchi and Bengio, 2019) (since the
PGB necessary condition of local minima is strictly
more general than theorem 2 by Kawaguchi et al. 2019,
which was shown to entail those statements).

With our extension, the PGB necessary condition of
local minima can be now used to study the effects of
various transformations of objective functions and reg-
ularization terms, including the elimination of local
minima, as shown in the next section.

4 Application of PGB necessary
condition for elimination of local
minima

In this section, we introduce a novel and concise proof
for Theorem 1 based on the PGB necessary condition
of local minima, which shows that all suboptimal local
minima can be eliminated because the global minimum
value of the PGB model is indeed the global minimum
value of the original model. From the geometric view-
point, this is because the PGB model is shown to be
expressive in that the span of the “tangent” spaces
TΦ(z+εv) contains the output space Rmdφ × {0} where

1In special cases (e.g., when rank(∂Φ(z)) is constant in
a neighborhood of z), TΦ(z) is indeed a tangent space of a
local manifold embedded in the output space. In general,
TΦ(z) and T̃Φ(z) are the affine subspaces of the output space

Rm(dφ+dϕ).
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0 ∈ Rmdϕ . In Appendix B, we also provide an alter-
native proof of Theorem 1 without the PGB necessary
condition, which is intended to be more detailed with
elementary facts but less elegant than the following
proof via the PGB necessary condition.

Proof of Theorem 1. Let θ be fixed. Let (a, b,W )
be a local minimum of L̃|θ(a, b,W ) := L̃(θ, a, b,W ).
Let θ̄ ∈ Rdθ̄ be the vector containing (a, b,W ), de-
fined by θ̄ = (a>, b>, vec(W )>)>. We apply the
PGB necessary condition of local minima by set-
ting Q(θ̄) = L̃|θ(a, b,W ) with φi(θ̄) = g(xi; a, b,W ),
ϕi(θ̄) = (a2

1, . . . , a
2
dy

)>, Qi(q) = `(f(xi; θ) + q, yi),

and Ri(q) = λ
∑dy
j=1 qj . Then, for all i ∈ {1, . . . ,m},

the functions Qi and Ri are differentiable and con-
vex, and the functions φi and ϕi are differentiable.

Furthermore, we can rewrite φi(θ̄) =
∑dy
k=1 ak∂akφi(θ̄)

and ϕi(θ̄) = ρ
∑dy
k=1 ak∂akϕi(θ̄) with ρ = 1/2 for all

i ∈ {1, . . . ,m} and all θ̄ ∈ Rdθ̄ . These satisfy the
assumptions of the PGB necessary condition of local
minima of Q(θ̄) = L̃|θ(a, b,W ).

From the PGB necessary condition of local minima of
Q(θ̄) = L̃|θ(a, b,W ), there exists ε0 > 0 such that for
any ε ∈ [0, ε0),

Q(θ̄)− ρ− 1

ρm

m∑
i=1

∂Ri(ϕi(θ̄))ϕi(θ̄) (2)

≤ inf
S⊆finV[θ̄,ε],

α∈Rdz×|S|

Q̃ε,θ̄(α, S) ≤ inf
S⊆finV̄[θ̄,ε],

α∈Rdz×|S|

Q̃ε,θ̄(α, S),

where V[θ̄, ε] is the set of all vectors v ∈ Rdθ̄ such
that ‖v‖2 ≤ 1, φi(θ̄ + εv) = φi(θ̄), and ϕi(θ̄ + εv) =
ϕi(θ̄) for all i ∈ {1, . . . ,m}. Then, the subset V̄[θ̄, ε] ⊂
V[θ̄, ε] is defined by V̄[θ̄, ε] = {(a>, b>, vec(W )>)> :
(a>, b>, vec(W )>)> ∈ V[θ̄, ε], a = 0}.

Since (a, b,W ) is a local minimum and hence the par-
tial derivatives with respect to (a, b) are zeros, we

have that for all k ∈ {1, 2, . . . , dy}, ak ∂L̃(θ,a,b,W )
∂ak

=
1
m

∑m
i=1(∇`yi(f(xi; θ) + g(xi; a, b,W )))kak exp(w>k x+

bk) + 2λak = ∂L̃(θ,a,b,W )
∂bk

+ 2λa2
k = 2λa2

k = 0, which

implies that ak = 0 for all k ∈ {1, 2, . . . , dy}, since
2λ 6= 0. Since a = 0, it proves statement (ii), and we
have L(θ) = L̃|θ(a, b,W ), (∂akϕi(θ̄ + εv))k = 2ak = 0
for all v ∈ V̄[θ̄, ε], and ρ−1

ρm

∑m
i=1 ∂Ri(ϕi(θ̄))ϕi(θ̄) =

0. Since L(θ) = L̃|θ(a, b,W ) = Q(θ̄) = Q(θ̄) −
ρ−1
ρm

∑m
i=1 ∂Ri(ϕi(θ̄))ϕi(θ̄) with (2) and ∂akϕi(θ̄ +

εv) = 0 (for all v ∈ V̄[θ̄, ε]), we have that for any
θ′,

L(θ)− L(θ′) (3)

≤ inf
S⊆finV̄[θ̄,ε],

α∈Rdz×|S|

Q̃ε,θ̄(α, S)− L(θ′)

= inf
S⊆finV̄[θ̄,ε],

α∈Rdθ̄×|S|

1

m

m∑
i=1

Qi(φ
θ̄
i (α, ε, S))− `(f(xi; θ

′), yi)

≤ 0,

where the last inequality is to be shown to hold in the
following.

Since φθ̄i (α, ε, S) can differ for different indexes i
only through different inputs xi, we can rewrite
φθ̄xi(α, ε, S) = φθ̄i (α, ε, S). We then rearrange the sum
in the last line of (3):

1

m

m∑
i=1

Qi(φ
θ̄
xi(α, ε, S))− `(f(xi; θ

′), yi)

=
1

m

m′∑
j=1

∑
i∈Ij

Qi(φ
θ̄
x̄j (α, ε, S))− `(f(x̄j ; θ

′), yi).

where {I1, . . . , Im′} is a partition2 of the set
{1, . . . ,m} such that for any x ∈ Ij and x′ ∈ Ij′ ,
x = x′ if j = j′, and x 6= x′ if j 6= j′. Here, we write
x̄j := x with a representative x ∈ Ij .

Let St ∈ Rdθ̄ be the vector containing (â(t), b̂(t), Ŵ (t)).
Since a = 0, we have φi(θ̄ + εSt) = φi(θ̄) for

all vectors St containing any (â(t), b̂(t), Ŵ (t)) with
â(t) = 0. In other words, for any finite |S| and

any ((b̂(t), Ŵ (t)))
|S|
t=1 with ‖St‖2 ≤ 1, there exists

S ⊆fin V̄[θ̄, ε] such that φθ̄x̄j (α, ε, S)k = exp(w>k x̄j +

bk)
∑|S|
t=1 α

(t)
k exp(ε((ŵ

(t)
k )>x̄j+ b̂

(t)
k )) (by letting â(t) =

0 for all t). Therefore, given m′ distinct input points

x̄1, . . . , x̄m′ , fix ((b̂(t), Ŵ (t)))
|S|
t=1 such that the rank

of the matrix M ∈ Rm′×|S| with entries Mj,t =

exp((ŵ
(t)
k )>x̄j + b̂

(t)
k ) is m′ with a sufficiently large fi-

nite |S|. Then, by letting Mj,t(ε) ∈ Rm′×|S| be the

matrix with entries Mj,t(ε) = exp(ε((ŵ
(t)
k )>x̄j + b̂

(t)
k )),

the function ψ(ε) = det(Mj,t(ε)Mj,t(ε)
>) is an analytic

function of ε. Since ψ is analytic and ψ(1) 6= 0, either
the zeros of ψ are isolated or ψ(ε) 6= 0 for all ε. In
both cases, there exists ε ∈ [0, ε0) such that ψ(ε) 6= 0.
Fix a ε ∈ [0, ε0) with ψ(ε) 6= 0. Then, since Mj,t(ε)
has rank m′, for any θ′, there exists α such that for all
j ∈ {1, . . . ,m′},

φθ̄x̄j (α, ε, S) = f(x̄j ; θ
′)− f(x̄j ; θ).

Therefore, the last inequality in (3) holds, and hence
for any θ′, L(θ) ≤ L(θ′), which proves statement (i).

2That is, I1 ∪ · · · ∪ Im′ = {1, . . . ,m}, Ij ∩ Ij′ = ∅ for
all j 6= j′, and Ij 6= ∅ for all j ∈ {1, . . . ,m′}.
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5 Failure mode of eliminating
suboptimal local minima

Our theoretical results in the previous sections have
shown that, for a wide range of deep learning tasks,
all suboptimal local minima can be removed by adding
one neuron per output unit. This might be surprising
given the fact that dealing with suboptimal local min-
ima in general is known to be challenging in theory.

However, for the worst case scenario, the following the-
orem illuminates a novel failure mode for the elimina-
tion of suboptimal local minima. Theorem 4 holds
true for the previous results (Liang et al., 2018) (as
we discuss further in Section 7) and hence provides a
novel failure mode for elimination of local minima in
general, apart from our Theorems 1 and 2. Our result
in this paper is the first result that points out this type
of failure mode for elimination of local minima. The
proof of Theorem 4 is presented in Appendix C.

Theorem 4. Let Assumption 1 hold, or let Assump-
tions 2 and 3 hold. Then, for any θ, if θ is not a global
minimum of L, there is no local minimum (a, b,W ) ∈
Rdy × Rdy × Rdx×dy of L̃|θ(a, b,W ) := L̃(θ, a, b,W ).
Furthermore, there exists a tuple (`, f, {(xi, yi)}mi=1)
and a suboptimal stationary point θ of L such that
∂L̃(θ,a,b,W )

∂θ = 0 for all (a, b,W ) ∈ Rdy ×Rdy ×Rdx×dy .

Therefore, on the one hand, Theorems 1 and 2 state
that if an algorithm can find a local minimum of L̃,
then it can find a global minimum of L (via a local min-
imum of L̃). On the other hand, Theorem 4 suggests
that if an algorithm moves toward a local minimum of
L̃ by simply following (negative) gradient directions,
then either it moves toward a global minimum θ of
L or the norm of (a, b,W ) approaches infinity. By
monitoring the norm of (a, b,W ), we can detect this
failure mode. This suggests a hybrid approach of local
and global optimization algorithms beyond a pure lo-
cal gradient-based method, with a mechanism to mon-
itor the increase in the norm of (a, b,W ).

6 Examples

The previous sections show that one can eliminate sub-
optimal local minima, and there remains a detectable
failure mode for gradient-based optimization methods
after elimination. In this section, we provide numerical
and analytical examples to illustrate these phenomena.
Through these examples, we show that using L̃ instead
of L can help training deep neural networks in ‘good’
cases while it may not help in ‘bad’ cases.

6.1 Numerical examples

Figures 1 illustrates the novel failure mode proven by
Theorem 4. Note that there exist local minima of L̃

near θ = 0.8 in bounded (and open) subspaces that are
also global minima. Although there exist local minima
of L̃ in bounded subspaces, there is no local minimum
of L|θ(a, b,W ) with a fixed suboptimal θ. The setting
used for plotting Figure 1 is summarized in Example 1,
where the dataset consists of only one sample (x1, y1).

Example 1. Let m = 1, dy = 1, x1 = 0, and y1 = −1.
In addition, let L(θ) = `(f(x1; θ), y1) = (max(0, 1 −
y1f(x1; θ))3. Let f(x1; θ) = 5(−0.3e−16∗(θ−0.2)2 −
0.7e−32∗(θ−0.8)2

+ 0.5) for a simple illustration. Be-
cause x1 = 0, we can think of this function as a model
with an extra parameter θ′, the effect of which dis-
appears as θ′x1 = 0 (e.g., f(x1; θ) = f̄(x1; θ, θ′) =

5(−0.3e−16∗(θ′x+θ−0.2)2 − 0.7e−32∗(θ′x+θ−0.8)2

+ 0.5)).

A classical proof using the Weierstrass theorem to
guarantee the existence of the optimal solutions in a
(nonempty) subspace S ⊆ Rd requires a lower semi-
continuity of the objective function L̃ and the existence
of a q ∈ S for which the set {q′ ∈ S : L̃(q′) ≤ L̃(q)}
is compact (e.g., see Bertsekas 1999 for more discus-
sion on the existence of optimal solutions). In the
above example, for the function L̃|θ(a, b,W ) with a
fixed suboptimal θ, the former condition of lower semi-
continuity is satisfied, whereas the latter condition of
compactness is not.

While Figures 1 provides one of the ‘bad-case’ exam-
ples, Appendix D and the following section provide
some of the ‘good-case’ examples where using L̃ in-
stead of L helps optimization of L.

6.2 Analytical examples

To further understand the properties of eliminating
suboptimal local minima in an analytical manner, this
section presents several analytical examples. Example
2 shows a general case where using L̃ instead of L helps
a gradient-based optimization method. For the simple
illustration of the failure mode, Example 3 uses a single
data point and squared loss. Example 4 is the version
of Examples 3 with two data points and shows that
the value of L̃ can also approach a suboptimal value.
Finally, Example 5 illustrates the existence of a local
minimum of L̃ via only the existence of a standard
global minimum θ of L. In Appendix E, Examples 6
and 7 show the same phenomena as those in Examples
3 and 4 with a smoothed hinge loss.

Example 2. Let A[θ] = 1
m [(∂f(x1;θ)

∂θ )>, . . . , (∂f(xm;θ)
∂θ

)>] ∈ Rdθ×(mdy) be a matrix, and r[ϕ] =
[∇`y1

(ϕ(x1))>, . . . ,∇`ym(ϕ(xm))>]> ∈ Rmdy be a
column vector given a function ϕ : Rdx → Rdy .
The modified objective L̃ helps a gradient-based
method by creating extra decreasing directions as
r[f(·; θ) + g(·; a, b,W )] /∈ Null(A[θ]) even when



Kenji Kawaguchi, Leslie Pack Kaelbling

0 0.2 0.4 0.6 0.8 1
0

10

20

30

(a) objective function L (b) modified function L̃ (c) negative gradient directions of L̃

Figure 1: Illustration of the failure mode suggested by Theorem 4. In sub-figure (a), the original objective func-
tion L has a suboptimal local minimum near θ = 0.2 and global minimum near θ = 0.8. In sub-figures (b) and
(c), it can be observed that even with the modified objective function L̃, if θ is initially near the suboptimal local
minimum (0.2), a pure gradient-based local optimization algorithm can still converge to the suboptimal local min-
imum as θ → 0.2 and can diverge in b as b→∞. In sub-figure (c), the arrows represent the negative normalized
gradient vectors at each point. In sub-figures (b) and (c), the function L̃ is plotted along the coordinates (θ, b)
by setting other parameters to be solutions (a∗,W ∗) of each objective, minimizea,W L̃|θ,b(a,W ) = L̃(θ, a, b,W ),
at each given point (θ, b).

r[f(·; θ)] ∈ Null(A[θ]). This also helps optimization
when r[f(·; θ)] is approximately in Null(A[θ]) while
r[f(·; θ) + g(·; a, b,W )] is not.

Example 3. Let m = 1 and dy = 1. In addition, let
L(θ) = `(f(x1; θ), y1) = (f(x1; θ)− y1)2. Accordingly,
L̃(θ, a, b,W ) = (f(x1; θ)+a exp(w>x1+b)−y1)2+λa2.
Let θ be a non-global minimum of L as f(x1; θ) 6= y1.
In particular, let us first consider the case of f(x1; θ) =
2 and y1 = 1. Then, L(θ) = 1 and L̃(θ, a, b,W ) =
1 + 2a exp(w>x1 + b) + a2 exp(2w>x1 + 2b) + λa2. If
(a, b,W ) is a local minimum, from the stationary point

conditions of L̃(θ,a,b,W )
∂a = 0 and L̃(θ,a,b,W )

∂b = 0, we

must have a = 0, yielding that L̃(θ, a, b,W ) = 1. How-
ever, a point with a = 0 is not a local minimum (with
finite (b, w)), because with a < 0 and |a| > 0 being
sufficiently small, L̃(θ, a, b,W ) = 1−2|a| · exp(w>x1 +
b) + |a|2(exp(2w>x1 + 2b) + λ) < 1. Hence, there is
no local minimum (a, b,W ) ∈ R ×R ×Rdx of L̃|θ. In-
deed, if we set a = − exp(−1/ε) and b = 1/ε − w>x1,
L̃(θ, a, b,W ) = λ exp(−2/ε) → 0 as ε → 0, and hence
as a → 0− and b → ∞. This illustrates the case
in which (a, b) does not attain a solution in R × R.
The identical conclusion holds with the general case of
f(x1; θ) 6= y1 by following the same steps of reasoning.

Example 4. Let m = 2 and dy = 1. In addition,
L(θ) = (f(x1; θ)− y1)2 + (f(x2; θ)− y2)2. Let us con-
sider the case of f(x1; θ) = f(x2; θ) = 0, y1 = 1, and
y2 = −1. Then, L(θ) = 2. If (a, b,W ) is a local min-
imum, we must have a = 0 similarly to Example 3,
yielding that L̃(θ, a, b,W ) = 2. On the other hand,

L̃(θ, a, b,W ) (4)

= 2− 2a(exp(w>x1 + b)− exp(w>x2 + b)) + ϕ(a2),

where ϕ(a2) = a2 exp(2w>x1 + 2b) + a2 exp(2w>x2 +
2b) + λa2. Note that, with a sufficiently small |a| > 0,
the term ϕ(a2) becomes negligible. Let x1 6= x2.
In this case, our θ with f(x1; θ) = f(x2; θ) = 0 is
not a global minimum. Then, a point with a = 0
can be shown to be not a local minimum as fol-
lows. If exp(w>x1 + b) > exp(w>x2 + b), with
a > 0 being sufficiently small, L̃(θ, a, b,W ) < 2. If
exp(w>x1 + b) < exp(w>x2 + b), with a < 0 and
|a| being sufficiently small, L̃(θ, a, b,W ) < 2. If
exp(w>x1 + b) = exp(w>x2 + b), since x1 6= x2,
we can perturb w with an arbitrarily small magni-
tude to make exp(w>x1 + b) 6= exp(w>x2 + b), and
hence we can yield the above cases. Thus, a point
with a = 0 is not a local minimum. Therefore, there
is no local minimum (a, b,W ) of L̃|θ. Indeed, since
x1 6= x2, if we set a = exp(−1/ε), b = 1/ε − w>x1,
and w = − 1

ε (x2 − x1), L̃(θ, a, b,W ) = (exp(−‖x2 −
x1‖22/ε))+1)2 +λ exp(−2/ε)→ 1, as ε→ 0, and hence
as a → 0−, b → ∞ and ‖w‖ → ∞, illustrating the
case in which (a, b,W ) does not attain a solution in
R× R× Rdx .

Example 5. Consider the exact same example as in
Example 4, with the exception that x1 = x2. In this
case, a θ with f(x1; θ) = f(x2; θ) = 0 is a global min-
imum unlike in Example 4. A point with a = 0 is
indeed a local minimum of L̃, which can be seen in
Equation (4) where for all a, 2− 2a(exp(w>x1 + b)−
exp(w>x1 + b)) + ϕ(a2) = 2 + ϕ(a2) ≥ 2.
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7 Related work

There have been many analyses regarding the op-
timization of deep neural networks with significant
over-parameterization (Nguyen and Hein, 2017; Allen-
Zhu et al., 2018; Du et al., 2018; Zou et al., 2018)
and model simplification (Choromanska et al., 2015;
Kawaguchi, 2016; Hardt and Ma, 2017; Bartlett et al.,
2019; Du and Hu, 2019). In contrast, this paper stud-
ies the problem in the regime without significant over-
parameterization or model simplification.

Our results are also different when compared to the
previous study by Liang et al. (2018). First, we have
solved the open problem left in the previous study; i.e.,
our theoretical results are applicable to practical set-
tings and neural networks with multiple output units
and common loss functions. The results in the previ-
ous study are applicable to a neural network with a
single output unit for binary classification with partic-
ular smoothed hinge loss functions that are not used in
common practice. In particular, the previous results
are not applicable to multi-class classification or re-
gression with any loss criteria, or binary classification
with standard loss criteria (e.g., cross entropy loss and
smoothed hinge loss without twice differentiability).

Second, we proved and demonstrated the failure mode
of eliminating local minima as a key contribution via
Theorem 4 as well as numerical and analytical exam-
ples. The failure mode proven in Theorem 4 also holds
true for the results in the previous study.3 Indeed, Ex-
amples 1, 6, and 7 as well as Figure 1 directly illus-
trate the failure mode of the results in the previous pa-
per. The previous study does not discuss any possible
failure mode of eliminating local minima and, in fact,
states that good neural networks are “just one neuron
away” from bad neural networks (with suboptimal lo-
cal optima). Our Theorem 4 together with analytical
examples prove that such “good” neural networks with
an added neuron are still subject to their own failure
mode, opening up the need of future research.

Third, this paper has introduced a novel and concise
proof based on the PGB necessary condition as well
as a longer but more elementary proof. Our proof
introduced new insight into why we can eliminate sub-
optimal local minima; i.e., the global minimum value
of the perturbable gradient basis of an added network
is indeed the global minimum value of L(θ) (see Sec-
tion 4 for more details). Beyond the elimination of
local minima and the particular modification L̃, the
PGB condition can be used to analyze other models

3 This is because the assumptions of Theorem 4 are
implied by the assumptions used in the previous study,
and the construction of the tuple (`, f, {(xi, yi)}mi=1, θ) in
the proof also accommodates the setting in the previous
study.

and modifications, and it might be helpful to design
new modifications of the objective functions.

In addition to the use of the PGB necessary condi-
tion, our proofs also differ from the previous proofs
because the scope and the assumptions of the results
are different. Indeed, the analyses of one dimensional
output with y ∈ {−1,+1} (the previous study) and
high-dimensional output with y ∈ Rdy (this paper)
are naturally different. For example, when the matrix
f(X; θ) = [f(x1; θ), ..., f(xm; θ)] is rank-deficient, all
outputs must be simply zero as f(X; θ) = 0 in the
previous study, whereas f(X; θ) can be any one of in-
finitely many non-zero (rank-deficient) matrices in this
paper. Unlike the previous study, our proofs also can-
not invoke properties of discrete points and second-
order Taylor expansions because we do not assume
y ∈ {−1,+1} (together with the particular smoothed
hinge loss) and twice differentiability.

8 Conclusion

In this paper, we proved that if an algorithm finds a lo-
cal minimum of a modified objective function L̃, then
it immediately recovers a global minimum of the orig-
inal objective function L of an arbitrary deep neural
network. However, Theorem 4 together with analytical
examples showed that if an algorithm simply follows
negative gradient directions toward a local minimum
of L̃, either it moves toward a global minimum θ of
L or the norm of (a, b,W ) approaches infinity. This
suggested a hybrid approach of local and global opti-
mization algorithms, with a mechanism to monitor the
norm of (a, b,W ).

From a theoretical viewpoint, we have shown a reduc-
tion of the problem of getting stuck around an arbi-
trarily poor local minimum into the detectable prob-
lem of the divergence of the norm. This proven reduc-
tion might be useful as a future proof technique in a
theoretical literature and as a foundation of a future
algorithm in practice.

In summary, this paper has advanced theoretical
understanding of the properties of the optimization
landscape in the regime that has not been stud-
ied well by previous research with significant over-
parameterization or model simplification. Beyond the
elimination of local minima, this paper has introduced
the proof technique based the PGB necessary condi-
tion of local minima that can be used to study general
machine learning models and transformations of ob-
jective functions.
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Appendix

A Proofs of Theorem 3

Let z ∈ Rdz be an arbitrary local minimum of Q. From the convexity and differentiability of Qi and Ri, we have
that

1

m

m∑
i=1

Qi(φ
z
i (α, ε, S)) +Ri(ϕ

z
i (α, ε, S)) (5)

≥ 1

m

m∑
i=1

Qi(φi(z)) +Ri(ϕi(z)) + ∂Qi(φi(z))(φ
z
i (α, ε, S)− φi(z)) + ∂Ri(ϕi(z))(ϕ

z
i (α, ε, S)− ϕi(z))

= Q(z) +
1

m

m∑
i=1

∂Qi(φi(z))φ
z
i (α, ε, S) + ∂Ri(ϕi(z))ϕ

z
i (α, ε, S)− ∂Qi(φi(z))φi(z)− ∂Ri(ϕi(z))ϕi(z).

Since z is a local minimum of Q, by the definition of a local minimum, there exists ε1 > 0 such that Q(z) ≤ Q(z′)
for all z′ ∈ B(z, ε1). Then, for any ε ∈ [0, ε1/2) and any ν ∈ V[z, ε], the vector (z + εv) is also a local minimum
because

Q(z + εv) = Q(z) ≤ Q(z′),

for all z′ ∈ B(z + εv, ε1/2) ⊆ B(z, ε1), where the set inclusion follows from the triangle inequality. This satisfies
the definition of a local minimum for (z + εv). Since the composition and the sums of differentiable functions
are differentiable, the vector (z+ εv) is a differentiable local minimum. Therefore, from the first-order necessary
condition of differentiable local minima, there exists ε0 > 0 such that for any ε ∈ [0, ε0), any v ∈ V[θ, ε], and any
k ∈ {1, . . . , dθ},

∂kQ(z + εv) =
1

m

m∑
i=1

∂Qi(φi(θ))∂kφi(z + εv) + ∂Ri(ϕi(θ))∂kϕi(z + εv) = 0, (6)

where we used the fact that φi(z) = φi(z + εv) and ϕi(z) = ϕi(z + εv) for any v ∈ V[z, ε]. From (6), there exists
ε0 > 0 such that for any ε ∈ [0, ε0), any S ⊆fin V[θ, ε] and any α ∈ Rdθ×|S|,

1

m

m∑
i=1

∂Qi(φi(z))φ
z
i (α, ε, S) + ∂Ri(ϕi(z))ϕ

z
i (α, ε, S) (7)

=

dz∑
k=1

|S|∑
j=1

αk,j

(
1

m

m∑
i=1

∂Qi(φi(z))∂kφi(z + εSj) + ∂Ri(ϕi(z))∂kϕi(z + εSj)

)
= 0

where the second line follows the definition of φzi (α, ε, S) and ϕzi (α, ε, S), and the last line follows (6).

Furthermore,

1

m

m∑
i=1

∂Qi(φi(z))φi(z) + ∂Ri(ϕi(z))ϕi(z)± (1/ρ)∂Ri(ϕi(z))ϕi(z) (8)

=

dz∑
k=1

h(z)k

(
1

m

m∑
i=1

∂Qi(φi(z))∂kφi(z) + ∂Ri(ϕi(z))∂kϕi(z)

)
+ (1− 1/ρ)

1

m

m∑
i=1

∂Ri(ϕi(z))ϕi(z)

= (1− 1/ρ)
1

m

m∑
i=1

∂Ri(ϕi(z))ϕi(z)
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where the second line follows the assumption of the existence of a function h for writing φi(z) and ϕi(z), and
the last line follows (6).

Substituting (7) and (8) into (5), there exists ε0 > 0 such that for any ε ∈ [0, ε0), any S ⊆fin V[θ, ε] and any
α ∈ Rdθ×|S|,

1

m

m∑
i=1

Qi(φ
z
i (α, ε, S)) +Ri(ϕ

z
i (α, ε, S)) ≥ Q(z)− (1− 1/ρ)

1

m

m∑
i=1

∂Ri(ϕi(z))ϕi(z).

This proves the main statement of the theorem. In the case of ρ = 1, this shows that on the one hand, there
exists ε0 > 0 such that for any ε ∈ [0, ε0), Q(z) ≤ inf{ 1

m

∑m
i=1Qi(φ

z
i (α, ε, S))+Ri(ϕ

z
i (α, ε, S)) : S ⊆fin V[z, ε], α ∈

Rdz×|S|}. On the other hand, since φi(z) =
∑dz
k=1 h(z)k∂kφi(z) and ϕi(z) = ρ

∑dz
k=1 h(z)k∂kϕi(z) with ρ = 1,

we have that Q(z) ≥ inf{ 1
m

∑m
i=1Qi(φ

z
i (α, ε, S))+Ri(ϕ

z
i (α, ε, S)) : S ⊆fin V[z, ε], α ∈ Rdz×|S|}. Combining these

yields the desires statement for the equality in the case of ρ = 1.

B Proofs of eliminating local minima

A high level idea behind the proofs of Theorems 1 and 2 in this section (instead of the proof via the PGB
necessary condition) follows the idea utilized by Kawaguchi (2016) for deep linear networks. That is, we first
obtain possible candidate local minima θ̃ via the first-order necessary condition (i.e., {(θ, a, b,W ) : a = 0}), and
then consider small perturbations of those candidate local minima. From the definition of local minima, the value
at a possible local minimum θ̃ must be less than or equal to the value at any sufficiently small perturbations
of the given local minimum θ̃. This condition imposes strong constraints on those candidate local minima, and
turns out to be sufficient to prove the desired result with appropriate perturbations and rearrangements, together
with the interpolation result with polynomial or simply based on linear algebra (i.e., we can interpolate m′ points
via polynomial as the corresponding matrix has rank m′).

In all the proofs of Theorems 1 and 2 (including the proof with the PGB necessary condition), we let θ be
arbitrary so that we can prove the failure mode of eliminating the suboptimal local minima in the next section
(Theorem 4) by reusing these proofs. Let `y(q) = `(q, y), and let ∇`y(ϕ(q)) = (∇`y)(ϕ(q)) be the gradient ∇`y
evaluated at an output ϕ(q) of a function ϕ.

B.1 Proof of Theorem 1 without the PGB necessary condition

Proof of Theorem 1. Let θ be fixed. Let (a, b,W ) be a local minimum of L̃|θ(a, b,W ) := L̃(θ, a, b,W ). Let
L̃|(θ,W )(a, b) = L̃(θ, a, b,W ). Since `y : q 7→ `(q, y) is assumed to be differentiable, L̃|(θ,W ) is also differentiable
(since a sum of differentiable functions is differentiable, and a composition of differentiable functions is differen-
tiable). From the definition of a stationary point of a differentiable function L̃|(θ,W ), for all k ∈ {1, 2, . . . , dy},
ak

∂L̃(θ,a,b,W )
∂ak

= 1
m

∑m
i=1(∇`yi(f(xi; θ)+g(xi; a, b,W )))kak exp(w>k x+bk)+2λak = ∂L̃(θ,a,b,W )

∂bk
+2λa2

k = 2λa2
k = 0,

which implies that ak = 0 for all k ∈ {1, 2, . . . , dy}, since 2λ 6= 0. Therefore, we have that

a = 0. (9)

This yields g(x; a, b,W ) = 0, and
L̃(θ, a, b,W ) = L(θ).

We now consider perturbations of a local minimum (a, b,W ) of L|θ with a = 0. Note that, among other equivalent
definitions, a function h : Rd → R is said to be differentiable at q ∈ Rd if there exist a vector ∇h(q) and a function
ϕ(q; ·) (with its domain being a deleted neighborhood of the origin 0 ∈ Rd) such that lim∆q→0 ϕ(q; ∆q) = 0, and

h(q + ∆q) = h(q) +∇h(q)>∆q + ‖∆q‖ϕ(q; ∆q),

for any non-zero vector ∆q ∈ Rd that is sufficiently close to 0 ∈ Rd (e.g., see fundamental increment lemma
and the definition of differentiability for multivariable functions). Thus, with sufficiently small perturbations
∆a ∈ Rdy and ∆W =

[
∆w1 ∆w2 . . . ∆wdy

]
∈ Rdx×dy , there exists a function ϕ such that
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L̃(θ, a+ ∆a, b,W + ∆W )

=
1

m

m∑
i=1

`yi(f(xi; θ) + ∆gi) + λ‖∆a‖22

=
1

m

m∑
i=1

`yi(f(xi; θ)) +∇`yi(f(xi; θ))
>∆gi + ‖∆gi‖2ϕ(f(xi; θ); ∆gi) + λ‖∆a‖22,

where lim∆q→0 ϕ(f(xi; θ); ∆q) = 0 and ∆gi = g(xi; ∆a, b,W + ∆W )). Here, the last line follows the definition
of the differentiability of `yi , since g(xi; ∆a, b,W + ∆W )k = ∆ak exp(w>k xi + ∆w>k xi + bk) is arbitrarily small
with sufficiently small ∆ak and ∆wk.

Combining the above two equations, since (a, b,W ) is a local minimum, we have that, for any sufficiently small
∆a and ∆w,

L̃(θ, a+ ∆a, b,W + ∆W )− L̃(θ, a, b,W )

=
1

m

m∑
i=1

∇`yi(f(xi; θ))
>∆gi +

1

m

m∑
i=1

‖∆gi‖2ϕ(f(xi; θ); ∆gi) + λ‖∆a‖22

≥ 0.

Rearranging with ∆a = εv such that ε > 0 and ‖v‖2 = 1, and with ∆g̃i = g(xi; v, b,W + ∆W ),

ε

m

m∑
i=1

∇`yi(f(xi; θ))
>∆g̃i ≥ −

ε

m

m∑
i=1

‖∆g̃i‖2ϕ(f(xi; θ); ε∆g̃i)− λε2‖v‖22,

since ∆gi = ε∆g̃i. With ε > 0, this implies that

1

m

m∑
i=1

∇`yi(f(xi; θ))
>∆g̃i ≥ −

1

m

m∑
i=1

‖∆g̃i‖2ϕ(f(xi; θ); ε∆g̃i)− λε‖v‖22.

Since ϕ(f(xi; θ); ε∆g̃i)→ 0 and λε‖v‖22 → 0 as ε→ 0 (ε 6= 0),

m∑
i=1

∇`yi(f(xi; θ))
>g(xi; v, b,W + ∆W ) ≥ 0.

For any k ∈ {1, 2, . . . , dy}, by setting vk′ = 0 for all k′ 6= k, we have that

vk

m∑
i=1

(∇`yi(f(xi; θ)))k exp(w>k xi + ∆w>k xi + bk) ≥ 0,

for any vk ∈ R such that |vk| = 1. With vk ∈ {−1, 1},
m∑
i=1

(∇`yi(f(xi; θ)))k exp(w>k xi + bk) exp(∆w>k xi) = 0.

By setting ∆wk = ε̄kuk such that ε̄k > 0 and ‖u‖2 = 1,

∞∑
t=0

ε̄tk
t!

m∑
i=1

(∇`yi(f(xi; θ)))k exp(w>k xi + bk)(u>k xi)
t = 0,

since exp(q) = limT→∞
∑T
t=0

qt

t! and a finite sum of limits of convergent sequences is the limit of the finite sum.
Rewriting this using zt =

∑m
i=1(∇`yi(f(xi; θ)))k exp(w>k xi + bk)(u>k xi)

t,

lim
T→∞

T∑
t=0

ε̄tk
t!
zt = 0. (10)
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We now show that zp = 0 for all p ∈ N0 by induction. Consider the base case with p = 0. Equation (10) implies
that

lim
T→∞

(
z0 +

T∑
t=1

ε̄tk
t!
zt

)
= z0 + lim

T→∞

T∑
t=1

ε̄tk
t!
zt = 0

since limT→∞
∑T
t=1

ε̄tk
t! zt exists (which follows that limT→∞

∑T
t=0

ε̄tk
t! zt = 0 exists). Here, limT→∞

∑T
t=1

ε̄tk
t! zt → 0

as ε̄ → 0, and hence z0 = 0. Consider the inductive step with the inductive hypothesis that zt = 0 for all
t ≤ p− 1. Similarly to the base case, Equation (10) implies

p−1∑
t=0

ε̄tk
t!
zt +

ε̄pk
p!
zp + lim

T→∞

T∑
t=p+1

ε̄tk
t!
zt = 0.

Multiplying p!/ε̄pk on both sides, since
∑p−1
t=0

ε̄tk
t! zt = 0 from the inductive hypothesis,

zp + lim
T→∞

T∑
t=p+1

ε̄t−pk p!

t!
zt = 0.

Since limT→∞
∑T
t=p+1

ε̄t−pk p!

t! zt → 0 as ε̄ → 0, we have that zp = 0, which finishes the induction. Therefore, for
any k ∈ {1, 2, . . . , dy} and any p ∈ N0,

m∑
i=1

(∇`yi(f(xi; θ)))k exp(w>k xi + bk)(u>k xi)
p = 0. (11)

Let x ⊗ x be the tensor product of the vectors x and x⊗p = x ⊗ · · · ⊗ x where x appears p times. For a p-th
order tensor M ∈ Rd×···×d and p vectors u(1), u(2), . . . , u(p) ∈ Rd, defines

M(u
(1)
k , u

(2)
k , . . . , u

(p)
k ) =

∑
1≤i1···ip≤d

Mi1···ipu
(1)
i1
· · ·u(p)

ip
.

Let ξi,k = (∇`yi(f(xi; θ)))k exp(w>k xi + bk). Then, for any k ∈ {1, 2, . . . , dy} and any p ∈ N0,

max
u(1),...,u(p):

‖u(1)‖2=···=‖u(p)‖2=1

(
m∑
i=1

ξi,kx
⊗p
i

)
(u(1), . . . , u(p)) = max

u:‖u‖2=1

(
m∑
i=1

ξi,kx
⊗p
i

)
(u, u, . . . , u)

= max
u:‖u‖2=1

m∑
i=1

ξi,k(u>xi)
p = 0.

where the first line follows theorem 2.1 in (Zhang et al., 2012), and the last line follows Equation (11). This
implies that

m∑
i=1

(∇`yi(f(xi; θ)))k exp(w>k xi + bk) vec(x⊗pi ) = 0 ∈ Rd
p
x . (12)

Using Equation (12), we now prove statement (i). For any θ′, there exist p and ut,k (for t = 0, . . . , p and
k = 1, . . . , dy) such that

m(L(θ′)− L(θ)) ≥
m∑
i=1

∇`yi(f(xi; θ))
>(f(xi; θ

′)− f(xi; θ))

=

m′∑
j=1

∑
i∈Ij

∇`yi(f(xi; θ))
>(f(xi; θ

′)− f(xi; θ))
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=

m′∑
j=1

dy∑
k=1

(f(x̄j ; θ
′)− f(x̄j ; θ))k︸ ︷︷ ︸

=exp(w>k x̄j+bk)
∑p
t=0 u

>
t,k vec(x̄⊗tj )

∑
i∈Ij

∇`yi(f(xi; θ))k

=

p∑
t=0

dy∑
k=1

u>t,k

m∑
i=1

∇`yi(f(xi; θ))k exp(w>k xi + bk) vec(x⊗ti )︸ ︷︷ ︸
= 0 from Equation (12)

= 0,

where the first line follows from the assumption that `yi is convex and differentiable, and the third line follows
from the fact that x̄j = x for all x ∈ Ij . The forth line follows from the fact that the vector vec(x⊗ti ) contains
all monomials in xi of degree t, and m′ input points x̄1, . . . , x̄m′ are distinct, which allows the basic existence
(and construction) result of a polynomial interpolation of the finite m′ points; i.e., with p sufficiently large
(p = m′ − 1 is sufficient), for each k, there exists ut,k such that

∑p
t=0 u

>
t,k vec(x̄⊗tj ) = qj,k for any qj,k ∈ R for

all j ∈ {1, . . . ,m′} (e.g., see equation (1.9) in Gasca and Sauer 2000), in particular, including qj,k = (f(x̄j ; θ
′)−

f(x̄j ; θ))k exp(−w>k x̄j − bk).

Therefore, we have that, for any θ′, L(θ′) ≥ L(θ), which proves statement (i). Statement (ii) directly follows
from Equation (9).

B.2 Proof of Theorem 2

Proof of Theorem 2. Let θ be fixed. Let (a, b,W ) be a local minimum of L̃|θ(a, b,W ) := L̃(θ, a, b,W ). Then, for
any k ∈ {1, 2, . . . , dy}, there exist p and ut,k (for t = 0, . . . , p) such that

m∑
i=1

(∇`yi(f(xi; θ)))
2
k =

m′∑
j=1

|Ij |(∇`f∗(x̄j)(f(x̄j ; θ)))
2
k

=

p∑
t=0

u>t,k

m∑
i=1

(∇`yi(f(xi; θ)))k exp(w>k xi + bk) vec(x⊗ti )

= 0,

where the first line utilizes Assumption 3. The second line follows from the fact that since m′ input points
x̄1, . . . , x̄m′ are distinct, with p sufficiently large (p = m′ − 1 is sufficient), for each k, there exist ut,k for
t = 0, . . . , p such that

∑p
t=0 u

>
t,k vec(x⊗ti ) = (∇`f∗(x̄j)(f(x̄j ; θ)))k exp(−w>k x̄j − bk)|Ij |−1 (similarly to the proof

of Theorem 1). The third line follows from Equation (12). Here, Equation (12) still holds since it is obtained in
the proof of Theorem 1 under only the assumption that the function `yi : q 7→ `(q, yi) is differentiable for any
i ∈ {1, . . . ,m}, which is still satisfied by Assumption 2.

This implies that for all i ∈ {1, . . . ,m}, ∇`yi(f(xi; θ)) = 0, which proves statement (iii) because of Assumption
2. Statement (i) directly follows from Statement (iii). Statement (ii) directly follows from Equation (9).

C Proof of Theorem 4

The proofs of Theorems 1 and 2 (including the proof via the PGB necessary condition) are designed such that

the proof of Theorem 4 is simple, as shown below. Given a function ϕ(q) ∈ Rd and a vector v ∈ Rd′ , let ∂ϕ(q)
∂v

be a d× d′ matrix with each entry (∂ϕ(q)
∂v )i,j = ∂(ϕ(q))i

∂vj
.

Proof of Theorem 4. Let Assumption 1 hold (instead of Assumptions 2 and 3). In the both versions of our proofs
of Theorem 1, θ was arbitrary and (a, b,W ) was an arbitrary local minimum of L̃|θ(a, b,W ) := L̃(θ, a, b,W ).
Thus, the same proof proves that, for any θ, at every local minimum (a, b,W ) ∈ Rdy ×Rdy ×Rdx×dy of L̃|θ, θ is
a global minimum of L. Thus, based on the logical equivalence (p→ q ≡ ¬q → ¬p), if θ is a not global minimum
of L, then there is no local minimum (a, b,W ) ∈ Rdy × Rdy × Rdx×dy of L̃|θ, proving the first statement in the
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case of using Assumption 1. Instead of Assumption 1, if Assumptions 2 and 3 hold, then the exact same proof
as above (with Theorem 1 being replaced by Theorem 2) proves the first statement.

Example 1 with the square loss or the smoothed hinge loss suffices to prove the second statement. However, to ob-
tain better theoretical insight, let us consider a more general construction of the desired tuples (`, f, {(xi, yi)}mi=1)

to prove the second statement. Let θ ∈ Rdθ . In addition, let A[θ] = 1
m [(∂f(x1;θ)

∂θ )> · · · (∂f(xm;θ)
∂θ )>] ∈ Rdθ×(mdy)

be a matrix, and r[ϕ] = [∇`y1(ϕ(x1))> · · · ∇`ym(ϕ(xm))>]> ∈ Rmdy be a column vector given a function
ϕ : Rdx → Rdy . Then,

∂L(θ)

∂θ
=

1

m

m∑
i=1

∇`yi(f(xi; θ))
> ∂f(xi; θ)

∂θ
= (A[θ]r[f(·; θ)])>,

and
∂L̃(θ, a, b,W )

∂θ
= (A[θ]r[f(·; θ) + g(·; a, b,W )])>.

Here, the equality A[θ]r[f(·; θ)] = 0 is equivalent to r[f(·; θ)] ∈ Null(A[θ]), where Null(A[θ]) is the null space of the
matrix A[θ]. Therefore, any tuple (`, f, {(xi, yi)}mi=1) such that r[f(·; θ)] ∈ Null(A[θ])⇒ r[f(·; θ)+g(·; a, b,W )] ∈
Null(A[θ]) at a suboptimal θ suffices to provide a proof for the second statement. An (infinite) set of tuples
(`, f, {(xi, yi)}mi=1) such that there exists a suboptimal θ of L with A[θ] = 0 (e.g., Example 1) satisfies this
condition, which proves the second statement.

D Additional numerical examples for good cases

For using L̃ instead of L, we show the failure mode and ‘bad-case’ scenarios in Section 6 and Appendix E.
Accordingly, to have a balance, this section considers some of ‘good-case’ scenarios where using L̃ instead of
L helps optimization of L. Figure 3 shows the histograms of training loss values after training with original
networks f minimizing L, and modified networks f̃ minimizing L̃ with and without the failure mode detector
based on Theorems 1, 2 and 4. We used a simple failure mode detector, which automatically restarted the
optimizer to a random point during training when ‖a‖2 + ‖b‖2 + ‖W‖2 ≥ 7. The histograms were plotted with
the results of 1000 random trials for Semeion dataset and of 100 random trials for KMNIST dataset, for each
method. Semeion (Brescia, 1994) is a dataset of handwritten digits and KMNIST (Clanuwat et al., 2018) is
a dataset of Japanese letters. We used the exact same experimental settings for both the original networks
f and the modified networks f̃ with and without the failure mode detector. We used a standard variant of
LeNet (LeCun et al., 1998) with ReLU activations: two convolutional layers with 64 5× 5 filters, followed by a
fully-connected layer with 1024 output units and the output layer. The AdaGrad optimizer was employed with
the mini-batch size of 64.

(a) Semeion (b) KMNIST

Figure 3: Histogram of loss values after training with original networks f minimizing L (original), modified
networks f̃ minimizing L̃ (elimination of local minima), and modified networks f̃ minimizing L̃ with the failure
mode detector (elimination & failure mode monitor). The plotted training loss values are the values of the
standard training objective L for both original networks f (minimizing L) and modified networks f̃ (minimizing
L̃) with and without the failure mode detector. The elimination of local minima helped a gradient-based method
for Semeion, and did not help it much for KMNIST. For KMNIST, the novel failure mode of the elimination was
detected by monitoring the norms of (a, b,W ) to restart and search a better subspace.
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E Additional numerical and analytical examples to illustrate the failure mode

Figure 4 illustrates the novel failure mode proven by Theorem 4. The setting used for plotting Figure 4 is exactly
same as that in Figure 1 (i.e., Example 1) except that `(f(x1; θ), y1) = (f(x1; θ)− y1)2 and y1 = f(x1; 0.8).

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

(a) original objective function L (b) modified objective function L̃ (c) negative gradient directions of L̃

Figure 4: Illustration of the failure mode suggested by Theorem 4 with the squared loss. The qualitatively
identical behavior as that in Figure 1 can be observed.

Examples 6 and 7 illustrate the same phenomena as those in Examples 3 and 4 with a smoothed hinge loss
instead of the squared loss.

Example 6. Let m = 1 and dy = 1. In addition, L(θ) = `(f(x1; θ), y1) = (max(0, 1− y1f(x1; θ))3. Accordingly,

L̃(θ, a, b,W ) = (max(0, 1 − y1f(x1; θ) − y1a exp(w>x1 + b))3 + λa2. Let θ be a non-global minimum of L as
f(x1; θ) 6= y1, in particular, by setting f(x1; θ) = −1 and y1 = 1. Then, L(θ) = 8. If (a, b,W ) is a local
minimum, we must have a = 0 similarly to Example 3, yielding that L̃(θ, a, b,W ) = 8. However, a point with
a = 0 is not a local minimum, since with a > 0 being sufficiently small,

L̃(θ, a, b,W ) = (2− a exp(w>x1 + b))3 + λa2 < 8.

Hence, there is no local minimum (a, b,W ) ∈ R × R × Rdx of L̃|θ. Indeed, if we set a = −2 exp(−1/ε) and
b = 1/ε − w>x1, L̃(θ, a, b,W ) = λ exp(−2/ε) → 0 as ε → 0, and hence as a → 0− and b → ∞. This illustrates
the case in which (a, b) does not attain a solution in R×R. The identical conclusion holds with the general case
of f(x1; θ) 6= y1 by following the same logic.

Example 7. Let m = 2 and dy = 1. In addition, L(θ) = (max(0, 1 − y1f(x1; θ))3 + (max(0, 1 − y2f(x2; θ))3.
Moreover, let x1 6= x2. Finally, let f(x1; θ) = −1, f(x2; θ) = 1, y1 = 1, and y2 = −1. If (a, b,W ) is a local
minimum, we must have a = 0 similarly to Example 3, yielding L̃(θ, a, b,W ) = 16. However, a point with a = 0
is not a local minimum, which follows from the perturbations of (a,W ) in the same manner as in Example 4.
Therefore, there is no local minimum (a, b,W ) of L̃|θ. Indeed, if we set a = 2 exp(−1/ε), b = 1/ε − w>x1, and
w = − 1

ε (x2 − x1),

L̃(θ, a, b,W ) = (2 + 2 exp(−‖x2 − x1‖22/ε))3 + λ exp(−2/ε)→ 8

as ε→ 0, and hence as a→ 0−, b→∞ and ‖w‖ → ∞, illustrating the case in which (a, b,W ) does not attain a
solution in R× R× Rdx .
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