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1. Introduction

Deep learning with neural networks has seen great practical
success with a significant impact in the fields of computer vision,
machine learning and artificial intelligence. In addition to its
practical success, deep learning has been theoretically studied
and shown to have strong expressive powers. For example, neural
networks with one hidden layer can approximate any continuous
functions (Barron, 1993; Leshno, Lin, Pinkus, & Schocken, 1993),
and deeper neural networks can approximate functions of certain
classes with fewer parameters (Livni, Shalev-Shwartz, & Shamir,
2014; Montufar, Pascanu, Cho, & Bengio, 2014; Telgarsky, 2016).

However, one of the major concerns in both theory and prac-
tice is that training a deep learning model requires us to deal with
highly non-convex and high-dimensional optimization. Finding
a global minimum of a general non-convex function or of a
certain non-convex function induced by some specific neural
networks is known to be NP-hard (Blum & Rivest, 1992; Murty
& Kabadi, 1987), which would pose no serious challenge if only
it were not high-dimensional (Kawaguchi, Kaelbling, & Lozano-
Pérez, 2015; Kawaguchi, Maruyama, & Zheng, 2016). Therefore,
to guarantee a desirable property with respect to a global mini-
mum, it is hoped that non-convex high-dimensional optimization
in deep learning allows additional structures or assumptions to
make the problem tractable. Accordingly, for deep networks, sev-
eral recent studies have proven the existence of desirable loss
landscape structures with respect to a global minimum (e.g., ev-
ery local minimum is a global minimum) under the strong as-
sumptions of the model simplifications (Choromanska, Henaff,
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Mathieu, Ben Arous, & LeCun, 2015; Kawaguchi, 2016) and of
significant over-parameterization (Nguyen & Hein, 2017, 2018).
Even for shallow networks with a single hidden layer, many
positive results have been achieved often by making strong as-
sumptions, for example, requiring the use of model simplification,
significant over-parameterization, and Gaussian inputs (Andoni,
Panigrahy, Valiant, & Zhang, 2014; Brutzkus & Globerson, 2017;
Du & Lee, 2018; Ge, Lee, & Ma, 2017; Goel & Klivans, 2017; Li &
Yuan, 2017; Sedghi & Anandkumar, 2014; Soltanolkotabi, 2017;
Soudry & Hoffer, 2017; Zhong, Song, Jain, Bartlett, & Dhillon,
2017).

For deep networks, a remaining open question is whether
one can guarantee such a desirable property with respect to a
global minimum under practical conditions without degrading
the practical performance. Accordingly, instead of considering
a desirable property with respect to a standard global mini-
mum, Shamir (2018) showed under practical conditions that a
specific type of deep neural network, namely deep residual net-
work (ResNet) with a single output unit (a scalar-valued output),
has no local minimum with a value higher than the global mini-
mum value of corresponding scalar-valued basis-function models.
However, Shamir (2018) remarked that, because networks with
multiple-output units (vector-valued outputs) are common in deep
learning practice, it is important to ask whether this result can
be extended to the case of multiple-output units, the answer of
which is unclear and left to future research.

As a step towards establishing the optimization theory in deep
learning, this paper presents theoretical results that provide an
answer to the open question remarked in Shamir (2018). More-
over, this paper proves a tight estimate of the local minimum
value, which shows that not only the local minimum values
of deep ResNets with multiple output units are no worse than
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the global minimum value of corresponding vector-valued basis-
function models, but also further improvements on the quality
of local minima are guaranteed via non-negligible residual rep-
resentations. Mathematically, one can consider a map that takes
a classical machine-learning model (a basis-function model with
an arbitrary fixed basis or set of features) as input, and outputs
a deep version of the classical model. One can then ask what
structure this “deepening” map preserves. Within this context,
this paper proves that, in a type of deep ResNets, depth with
nonlinearity (i.e., the “deepening” map from the set of basis-
function models to the set of deep ResNets) does not create “bad”
local minima (i.e., local minima with loss values that are worse
than the global minimum value of the basis-function models).

2. Preliminaries

The Residual Network (ResNet) is a class of neural networks
that is commonly used in practice with state-of-the-art perfor-
mances in many applications (He, Zhang, Ren, & Sun, 2016a,
2016b; Kim, Kwon Lee, & Mu Lee, 2016; Xie, Girshick, Dol-
lar, & He, 2017; Xiong, Wu, Alleva, Droppo, Huang, & Stolcke,
2018). When compared to standard feedforward neural networks,
ResNets introduce skip connections, which adds the output of
some previous layer directly to the output of some following
layer. A main idea of ResNet is that these skip connections allow
each layer to focus on fitting the residual of the target output
that is not covered by the previous layer’s output. Accordingly,
we may expect that a trained ResNet is no worse than a trained
shallower network consisting of fewer layers only up to the pre-
vious layer. However, because of the non-convexity, it is unclear
whether ResNets exhibit this behavior, instead of getting stuck
around some arbitrarily poor local minimum.

2.1. Model

To study the non-convex optimization problems of ResNets,
both the previous study (Shamir, 2018) and this paper consider
a type of arbitrarily deep ResNets, for which the pre-activation
output h(x, W, V, 0) € RY of the last layer can be written as

h(x, W,V,0) = W(x + Vz(x, 0)). (1)

Here, W e R%*% v e R%*% and ¢ consist of trainable
parameters, x € R% is the input vector in any fixed feature space
embedded in R%, and z(x,0) € R% represents the outputs of
arbitrarily deep residual functions parameterized by 6. Also, d,
is the number of output units, d, is the number of input units,
and d, represents the dimension of the outputs of the residual
functions.

There is no assumption on the structure of z(x, 8), and z(x, 6)
is allowed to represent some possibly complicated deep resid-
ual functions that arise in deep ResNets with non-differentiable
nonlinear activation functions such as rectified linear units (Re-
LUs). This is in contrast to the ResNet models with linear ac-
tivation functions that were studied previously (Bartlett, Helm-
bold, & Long, 2019; Hardt & Ma, 2017). For example, the model
in Eq. (1) can represent arbitrarily deep nonlinear pre-activation
ResNets (He et al., 2016b) (with ReLUs or other activation func-
tions), which are widely used in practice. To facilitate and simplify
theoretical study, Shamir (2018) assumed that every entry of the
matrix V is unconstrained and fully trainable (e.g., instead of V
representing convolutions). This paper adopts this assumption,
following the previous study.

Remark 1 (On Arbitrary Fixed Basis). All of our results hold true
with x in any fixed feature space embedded in R%. Indeed, an
input x to neural networks represents an input in any such feature

space (instead of only in a raw input space); e.g., given raw input
X" and any feature map ¢ : X > ¢(x®") € R% (including
identity as ¢(x™") = x™), we write x = ¢(x"™") with dy = dg.

Remark 2 (On Bias Terms). All of our results hold true for the
model with or without bias terms; i.e., given original x°"¢"a and
zoriginal(y 0) we can always set x = [(x°"¢" )T 11T e R% and
z(x,0) = [(z°7¢"(x, 0))", 1]7 € R% to account for bias terms if
desired.

2.2. Optimization problem

The previous study (Shamir, 2018) and this paper consider the
following optimization problem:
minimize LW, V. 6) = Exy [£(h(x, W, V. 6). y)] (2)
where W, V, 6 are unconstrained, £ : R x ) — R (need not be
surjective) is some loss function to be specified, and y € Y € R%

is the target vector. Here, w is an arbitrary probability measure
on the space of the pair (x,y) such that whenever the partial

derivative ow vy€(h(x, W,V,0),y) : = W exists, the
identity,
ow LW, V, 0) = By y~u[0w vil(h(x, W, V, 8), y)], (3)

holds at every local minimum (W, V, 8) (of L)'; for example, an
empirical measure p with a training dataset ((x;, y;))iL, of finite
size m always satisfies this condition.

Therefore, all the results in this paper always hold true for the
standard training error objective,

1 m
LW, V.0)= — > " th(xi, W, V., 0). 1)
i=1

(when u is set to be the empirical measure), (4)

because L(W, V,0) = Ey -, [L(h(x, W,V,0),y)] = [€(h(x, W,
V.0),y)du(x,y) = &30 L(h(xi, W,V,6),y;), where the last
equality used the empirical measure y = % Z;”:] 8(x;,y;) With the
Dirac measures d(x,y,). In general, the objective function L(W, V, )
in Egs. (2) and (4) is non-convex even in (W, V) with a convex
map h — £(h,y).

This paper analyzes the quality of the local minima in Eq. (2)
in terms of the global minimum value L, of the basis-function
models Rx with an arbitrary fixed basis x (e.g., x = ¢(x™"W) with
some feature map ¢) that is defined as

Ly = igf]Ex,yw [£(Rx, y)],

where {x} in the symbol LZ‘X} represents the basis or the set of
features. Similarly, given a parameter 60, define L, ,, 4, to be

the global minimum values of the basis-function models (R/Vx +
RP)z(x, 0)) with a fixed basis ¢g(x) = [x" z(x,0)"]" as

Loy = . 11{115(2) By [ERVX 4+ RPZ(x, 6), y)].

In other words, L, ,, 4, is the global minimum value with respect

to the matrices R and R® while the parameter @ is fixed. Here,

{x, z(x, 0)} in the symbol L}, ,, 4, represents the basis or the set of

features. Following convention, we define infS$ to be the infimum
of a subset S of R (the set of affinely extended real numbers). In

Ta simple sufficient condition to satisfy Eq. (3) is for dw vy€(h(x, W, V,8),y)
to be bounded in the neighborhood of every local minimum (W,V,6) of
L. Different sufficient conditions to satisfy Eq. (3) can be easily obtained
by applying various convergence theorems (e.g., the dominated convergence
theorem) to the limit (in the definition of derivative) and the integral (in the
definition of expectation).
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other words, if S has no lower bound, infS = —oo and inf @ = oc.
This is consistent with the condition that the codomain of £ is R.

The loss value of neural networks in general can be greater
than L, at a local minimum. Consider the simple example of
ReLU networks with one-hidden layer of the form W®g(WMx),
where W) € R4 and W e R%*91 are trainable weight ma-
trices, and o represents the ReLU activation function as
(e(WDx)), = max(0, (Wx),) for all k € {1,...,d;}. Consider
an empirical measure o = 1 3" 8 ) and a point (W, W)
such that (WMx;), < —c foralli € {1,...,m} and all k €
{1,...,dy} for some ¢ > 0. Then, from the continuity of the map-
ping W > Wk, we have (WWx;), < 0 and (o(Wx)) =0
for all (i, k) and all W e B,(WM) for sufficiently small € > 0
(relative to ¢ > 0), where B.(W™) is an open ball of radius ¢
with the center at WV, Thus, if o >"i", €(0,y;) > L}, the point
(WM, W) is a local minimum at which the loss value is greater
than LZ‘X). More generally, one can construct similar examples with
a suboptimal activation pattern (L{W®x; > 0}, ..., 1{WWx,, >
0}) (where 1 is the indicator function) by noticing that the
activation pattern does not change locally in an sufficiently small
open ball, except at non-differentiable points. Therefore, it is not
true in general that there is no local minimum above the level
set of Ly, or Lj, ., 4y, =< Liy- Indeed, critical points (including local
minima) above a level set of an objective function corresponding
to some reference value have been studied in various non-convex
optimization problems, for example, tensor decompositions (Ge &
Ma, 2017).

2.3. Background

Given any fixed 0, let Ly(W,V) = L(W,V,0) be a func-
tion of (W, V). The main additional assumptions in the previous
study (Shamir, 2018) are the following:

PA1. The output dimension is one as d, = 1.

PA2. For any y, the map h +— £(h,y) is convex and twice
differentiable.

PA3. On any bounded subset of the domain of L, the function
Ly(W,V), its gradient VLy(W,V), and its Hessian
V2Ly(W, V) are all Lipschitz continuous in (W, V).

The previous work (Shamir, 2018) also implicitly requires for
Eq. (3) to hold at all relevant points for optimization, including ev-
ery local minimum (see the proof in the previous paper for more
detail), which is not required in this paper. Under these assump-
tions, along with an analysis for a simpler decoupled model (Wx+
Vz(x, 6)), the previous study (Shamir, 2018) provided a quanti-
tative analysis of approximate stationary points, and proved the
following main result for the optimization problem in Eq. (2).

Proposition 1 (Shamir, 2018). If PA1, PA2 and PA3 hold, every local
minimum (W, V, 0) of L satisfies

LW, V,0) < L.

The previous paper (Shamir, 2018) remarked that it is an
open question whether Proposition 1, along with quantitative
analysis of approximate stationary points, can be obtained for the
networks with d, > 1 multiple output units. Indeed, the appendix
of the earlier paper (Shamir, 2018) discussed why the extension
of Proposition 1 to the case of multiple-output units is important
yet challenging.

For the case of the single-output unit, in addition to the bound
on L(W, V, @) at local minima (Proposition 1), the previous paper
also proved another upper bound on L(W,V,#) at e-second-
order stationary points (¢-SOSPs) of Ly(W, V). Here, ¢-SOSPs are
potentially of interest because we can prove that gradient-based

algorithms converge to an e-SOSP in poly(1/e¢) iterations, by using
a generic proof for a general optimization problem under mild
assumptions. However, the set of all €-SOSPs is a superset of the
set of all local minima, and can contain many additional elements
(in addition to local minima) that would be efficiently avoidable
when exploiting a special structure and the prior information in a
particular problem. Furthermore, it was previously noted that the
proven upper bound on L(W, V, 8) at €-SOSPs can be arbitrarily
large if the norms of W and V are sufficiently large (Shamir,
2018). Indeed, an example was shown whereby L(W,V,0) =
1/2>0= L*x} at an €-SOSP for any € > 0. This suggests that even
in the case oti the single-output unit, the set of e-SOSPs (a superset
of the set of all local minima) contains too many elements (which
an appropriate algorithm for training ResNets would be able to
avoid) to guarantee a desired result without making additional
assumptions, for example, on the norms of W and V. Here, adding
a usual regularization term on the norms of W and V does not
resolve this issue because it changes the objective function and
can create additional local minima (Shamir, 2018). Accordingly,
this paper focuses on the set of local minima.

3. Main results

Our main results are presented in Section 3.1 for a general case
with arbitrary loss and arbitrary measure, and in Section 3.2 for
a concrete case with the squared loss and the empirical measure.

3.1. Result for arbitrary loss and arbitrary measure

This paper discards the above assumptions from the previous
literature, and adopts the following assumptions instead:

Assumption Al. The output dimension satisfies d, < min(dy, d,).
Assumption A2. For any y, the map h — £(h,y) is convex and
differentiable.

Assumptions A1 and A2 can be easily satisfied in many practical
applications in deep learning. For example, we usually have that
dy, = 10 K dy, d, in multi-class classification with MNIST, CIFAR-
10 and SVHN, which satisfies Assumption Al. Assumption A2 is
usually satisfied in practice as well, because it is automatically
satisfied by simply using a common ¢ such as squared loss, cross-
entropy loss, logistic loss and smoothed hinge loss among others.
Note that Assumption A2 does not impose convexity or differ-
entiability on neural networks h. Accordingly, all our results are
valid for non-convex ResNets with non-differentiable activation
functions such as ReLU.

Using these mild assumptions, we now state our main result
in Theorem 1 for arbitrary loss and arbitrary measure (including
the empirical measure).

Theorem 1. If Assumptions A1 and A2 hold, every local minimum
(W, V,0) of L satisfies

LW,V,0)= L>{kx] (LTX} - L?x,z(x,e)]) , (5)
global minimum value of >0 (always)

basis-function models with
an arbitrary fixed basis

further improvement term via
residual representation z(x,0)

or equivalently LW, V, 0) = L, ., 5y, < Liy-

Remark 3. From Theorem 1, one can see that if Assumptions A1l
and A2 hold, the objective function L(W, V, 8) has the following
properties:

(i) Every local minimum value is at most the global minimum
value of basis-function models with the arbitrary fixed
basis x as L(W, V, 0) < L.
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(ii) If z(x,0) is non-negligible such that L 0)
0, every local minimum value is strlctly less ti1an the
global minimum value of the basis-function models as
LW, V,0) <L,

By allowing the multiple output units, Theorem 1 provides
an affirmative answer to the open question remarked in Shamir
(2018) (see Section 2.3). Here, the set of our assumptions are
strictly weaker than the set of assumptions used to prove Propo-
sition 1 in the previous work (Shamir, 2018) (including all as-
sumptions implicitly made in the description of the model, op-
timization problem, and probability measure), in that the latter
implies the former but not vice versa. For example, one can
compare Assumptions Al and A2 against the previous paper’s
PA1, PA2 and PA3 in Section 2.3. We note that, in addition to
Proposition 1, the previous study (Shamir, 2018) analyzed the ap-
proximate stationary points, for which some additional continuity
assumption such as such PA2 and PA3 would be indispensable
(e.g., one can consider the properties around a point based on
those at the point via some continuity). In general, because the
set of all the approximate stationary points is the superset of the
set of all local minima, if all the approximate stationary points
are required to have the same property, then more assumptions
tend to be required. However, as discussed above, the consider-
ation of the approximate stationary points would not suffice to
guarantee a desired value of L or be necessary to have an efficient
optimization algorithm to train the ResNets.

If Assumption A2 is not satisfied and h + £(h,y) is a non-
convex function with a suboptimal local minimum h, and if
6 + z(x,0) is continuous, then a point (W, V, ) satisfying
h = h(x, W, V,0) is a suboptimal local minimum of (W, V, 6) >
£(h(x, W, V,0),y) with the arbitrary loss value £(h, y), because
of the continuity of (W, V,8) — h(x, W, V, 6). Therefore, Theo-
rem 1 or Remark 3(i) does not hold if h — £(h,y) is a general
non-convex function.

The statement of Theorem 1 vacuously holds true if there is no
minimizer. For example, a classical proof, using the Weierstrass
theorem to guarantee the existence of a minimizer in a (non-
empty) subspace S € RY requires a lower semi-continuity of L
and the existence of a g € S for which the set {¢’ € S : L(q') <
L(q)} is compact. There are various other conditions to ensure the
existence of a minimizer (e.g., see Bertsekas, 1999).

In addition to responding to the open question, Theorem 1
further states that the guarantee on the local minimum value
of ResNets can be much better than the global minimum value
of the basis-function models, depending on the quality of the
residual representation z(x, ). In Theorem 1, we always have that
(L% — Lix.z(e.0y)) = 0. This is because a basis-function model with
the basis ¢s(x) = [x" z(x,0)"]" achieves L}, by restricting the
coefficients of z(x, #) to be zero and minimizing only the rest.
Accordingly, if z(x, 6) is non-negligible ( {x 200.0)) # 0), the
local minimum value of ResNet is guaranteecl to be strictly better
than the global minimum value of the basis-function models, the
degree of which is abstractly quantified in Theorem 1 (i.e., L?‘X)

L{ 2x.6y) @nd concretely quantified in the next subsection.

3.2. Result for squared loss and empirical measure

To provide a concrete example of Theorem 1, this subsection
sets ¢ to be the squared loss and u to be the empirical measure.
That is, this subsection discards Assumption A2 and uses the
following assumptions instead:

Assumption B1. The map h +— £(h,y) represents the squared
loss as €(h,y) = |h —y|2.

Assumption B2. The u is the empirical measure as u =
1 m
m Zi:] Stxi.vn)-

Assumptions B1 and B2 imply that LW, V, 0) = % Z:“:] lh(x;, W,
V,0)—yi ||§. Let us define the matrix notation of relevant terms as
X=[x x xm]T € R™4 Y == [y ¥y, yml| €
R™4 and Z(X,0) = [z(x1, 0) z(xy,0) Z(Xm, 6)] €
R™<4 Let P[M] be the orthogonal projection matrix onto the
column space (or range space) of a matrix M. Let Py[M] be the
orthogonal projection matrix onto the null space (or kernel space)
of a matrix M. Let || - ||r be the Frobenius norm.

We now state a concrete example of Theorem 1 for the case
of the squared loss and the empirical measure.

Theorem 2. If Assumptions Al, B1 and B2 hold, every local
minimum (W, V, 0) of L satisfies
LW,V,0)=

1 1
—|IPNIXIYIIZ  — =P [PNIXIZ(X, )] Y[E.  (6)
m m

global minimum value of
basis-function models with
an arbitrary fixed basis

>0 (always)
further improvement term via
residual representation Z(X,0)

As in Theorem 1, one can see in Theorem 2 that every local
minimum value is at most the global minimum value of the basis-
function models. When compared with Theorem 1, each term
in Theorem 2 is more concrete. The global minimum value of
the basis-function models is Ly = %HPN [X]Y||§, which is the
(averaged) norm of the target data matrix Y projected on to the
null space of X. The further improvement term via the residual
representation is
Ly

x}

. 1
~ Lz = —IPIPNIXIZOX, 1Y 17

1
—IIPPNIXIZ(X, 0)PyIX1Y 7.

This is the (averaged) norm of the residual Py[X]Y projected on to
the column space of Py[X]Z(X, 6). Therefore, a local minimum can
get the further improvement, if the residual Py[X]Y is captured
in the residual representation Z(X, #) that differs from X, as
intended in the residual architecture. More concretely, as the
column space of Z(X, 0) differs more from the column space
of X, the further improvement term |P[Py[X]Z(X, 9)]PN[X]Y||§
becomes closer to ||P[Z(X, 0)]Py [X]Yll%, which gets larger as the
residual Py[X]Y gets more captured by the column space of
Z(X,0).

Here, if the activation functions are linear, then the column
space of Z(X,0) is only the subspace of the column space of
X. Thus, the nonlinear activations in the residual representation
Z(X, 0) play a role in increasing the space over which the global
optimality can be guaranteed as L(W,V,0) = Likx.z(x,e)) < Lz‘x} at
local minima. The depth in the residual representation Z(X, 6)
also plays a role in representing a certain target residual with
fewer parameters in L(W,V,0) = L*x 2oy At local minima. In
other words, with regard to mimmizmg the number of parame-
ters, it has been shown that deep networks have an exponential
advantage over shallow networks for approximating certain tar-
get functions (Montufar et al., 2014; Pascanu, Montufar, & Bengio,
2014; Poggio, Mhaskar, Rosasco, Miranda, & Liao, 2017; Telgarsky,
2016).

4. Proof idea and additional results

This section provides overviews of the proofs of the theoretical
results. The complete proofs are provided in the Appendix at
the end of this paper. In contrast to the previous work (Shamir,
2018), this paper proves the estimate of the local minima with
the additional further improvement term and without assuming
the scalar output (PA1), twice differentiability (PA2) and Lipschitz
continuity (PA3). Accordingly, our proofs largely differ from those
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of the previous study (Shamir, 2018). A disadvantage of our proof
strategy is that, when ¢-SOSPs are of interest, an additional step
is required to analyze the points that are not local minima but
€-SOSPs.

Along with the proofs of the main results, this paper proves
the following lemmas. For a matrix M e R¥>?, vec(M) =
[Mi1,...,Mg1, M1, ...,Mgz,...,Mia,...,Mgq]" represents
the standard vectorization of the matrix M. Let M ® M’ be the
Kronecker product of matrices M and M'. Let I; be the identity
matrix of size d by d. Let rank(M) be the rank of a matrix M.

Lemma 1 (Derivatives of Predictor). The function h(x, W,V,0) is
differentiable with respect to (W, V) and the partial derivatives have
the following forms:

oh(x, W,V,0) T dy x(dydy)

IR I R Vz(x, 0 I Ry
3 vec(W) [(x +Vz(x,0)) ®I4,] €

and

oh(x,W,V,6

Ohix, W.V.0) _ [z(x,6)" ® W] e RY(dxdz)
dvec(V)

Lemma 2 (Necessary Condition of Local Minimum). If (W,V,0)
attains a local minimum of L,

Exy~ulz(x,0)D] =0 and Ey,~,.[xD] =0,
where

b (az(h,w
oh

) e R,
h=h(x,W,V,0)

4.1. Proof overview of lemmas

Lemma 1 follows a standard observation and a common
derivation. Lemma 2 is proven with a case analysis separately for
the case of rank(W) > d, and the case of rank(W) < d,.

In the case of rank(W) > d,, the statement of Lemma 2 fol-
lows from the first order necessary condition of local minimum,
ow.v)l(W, V, 0) = 0, along with the observation that the deriva-
tive of L with respect to (W, V) exists. In the case of rank(W) <
dy, instead of solely relying on the first order conditions, our proof
directly utilizes the definition of local minimum as follows. We
first consider a family of sufficiently small perturbations V of V
such that (W, V, 0) = L(W,V, #), and observe that if (W, V, 8) is
a local minimum, then (W, V, 6) must be a local minimum via the
definition of local minimum and the triangle inequality. Then, by
checking the first order necessary conditions of local minimum
for both (W,V,0) and (W, V,0), we obtain the statement of
Lemma 2.

The challenge of extending the results for the vector-valued
output case was discussed in the appendix of the earlier study
(Shamir, 2018). It was there stated that there is no stationary
point with a loss value above Lf,,, except possibly when rank(W) <
dy, and analyzing this case of rank(W) < d, constitutes a chal-
lenge. In the scalar-valued-output case (dy = 1), rank(W) < d,
implies W = 0 and h(x, W,V,0) = 0, which simplifies the
analysis significantly because one only needs to analyze the situ-
ation where the outputs of neural networks are zero for all inputs
x. However, in the vector-valued-output case, this is not true
because rank(W) < dy does not imply W = 0 or h(x, W,V,0) =
0. Our proof successfully addressed the case of rank(W) < d, for
the vectored-valued output by utilizing the fact that the particular
perturbations V of a local minimum remain local minima.

4.2. Proof overview of theorems

Theorem 1 is proven by showing that from Lemma 2, ev-
ery local minimum (W, V,#) induces a globally optimal pre-
dictor of the form, RT¢y(x), in terms of the R, where R =
RW,V) == [W (WV)] and ¢s(x) == [x| 2(x,6)T]". This
yields that L(W,V,0) < L?X 2oy 10 the proof of Theorem 2,
we derive the specific forms of Lf, ,. 5, for the case of the
squared loss and the empirical measure, oI])taining the statement
of Theorem 2.

5. Conclusion

In this paper, we partially addressed an open problem on a
type of deep ResNets by showing that instead of having arbitrarily
poor local minima, all local minimum values are no worse than
the global minimum value of corresponding classical machine-
learning models, and are guaranteed to further improve via the
residual representation. The guarantee of further improvement
via the residual representation is a unique contribution of this
paper even for a single-output unit, in that it was not proven in
the previous study (Shamir, 2018). A deeper network with the
residual representation has been hypothesized to improve upon
a shallower network by using the residual representation to fit
the residual. This paper has proven this hypothesis to be true at
local minima through the further improvement via the residual
representation.

This paper considered the exact same (and more general)
optimization problem of ResNets as in the previous literature.
However, the optimization problem in this paper and the lit-
erature does not directly apply to some practical applications,
because the parameters in the matrix V are considered to be
unconstrained. To further improve the applicability, future work
would consider the problem with constrained V.
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Appendix A. Proofs of the lemmas

This appendix provides the complete proofs of Lemmas 1 and
2.

Proof of Lemma 1. The differentiability with respect to (W, V)
follows the fact that h(x, W, V, 0) is linear in W and affine in V
given other variables being fixed; i.e., with g(W, V) .= (W, V)+
b(W) := h(x, W, V, 8) (where g is linear in W and v is linear in
V), since g(W + W,V +V)=y(W,V)+ (W, V)+ (W, V)+
Y(W, V) + b(W) + b(W) (by the linearity of g in W and the
linearity of ¥ in V), we have that gW + W,V +V)—g(W,V) =
gW, V)+y (W, V)+ (W, V) where (W, V) - 0as WV — 0.

For the forms of partial derivatives, because vec(M;M,M3) =
(M; ® M;)vec(M,) (for matrices My, M, and M3 of appropriate
sizes), and because vec(h(x, W,V,0)) = h(x, W, V, ), we have
that

h(x, W, V., 0) = [(x+ Vz(x,0))" ® Iz, ]vec(W),
and
h(x, W, V,0) = Wx + [z(x,0)" @ W]vec(V).

Taking derivatives of h(x, W, V, 0) in these forms with respect to
vec(W) and vec(V') respectively yields the desired statement. O
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Proof of Lemma 2. This proof considers two cases in terms of
rank(W), and proves that the desired statement holds in both
cases. Note that from Lemma 1 and Assumption A2, £(h(x, W,
V,0),y) is differentiable with respect to (W, V), because a com-
position of differentiable functions is differentiable. From the
condition on w, this implies that L(W, V, 0) is differentiable with
respect to (W, V) at every local minimum (W, V, 6). Also, note
that since a W (or a V) in our analysis is either an arbitrary
point or a point depending on the u (as well as £ and h),
we can write Ey -, [g(x, y)W(u)] = [gx y)W(u)du(x,y) =
Exy~plg(x,y)IW(r) where g is some function of (x,y) and
W(un) = W with the possible dependence being explicit (the
same statement holds for V). Let z = z(x,0) and Ey, = Exy~,
for notational simplicity.

Case of rank(W) > d,: From the first order condition of local

minimum with respect to V,
LW, V,0) |:<8£(h,y) ) 8h(x,W,V,9)i|
- a vec(V)
h=h(x,W,V,6)
= Ey,[Dlz" @ W]]
= Eyy[vec(zDW)] = 0,

dvec(V)

where the second line follows Lemma 1. This implies that 0 =
Exy[zDW] = E, y[zD]W, which in turn implies that

IIEx,y [ZD] =0,

since rank(W) > d,.
Similarly, from the first order condition of local minimum with

respect to W,
oLw,v,0) E al(h,y) oh(x, W,V,8)
T avec(W)
h=h(x,W,V,0)
= Eyy[DI(x + V2)" ®I4,]]

d vec(W) oh
= Eyylvec((x + Vz)D)] = 0,

where the second line follows Lemma 1. This implies that

0 = Eyxyl(x + Vz)D]
= Exy[xD] + VEy ,[zD]
= Ex[xD]
where the last equality follows from that E, ,[zD] = 0.

Therefore, if (W, V, 8) is a local minimum and if rank(W) > d,,
we have that E, ,[zD] = 0 and E, ,[xD] = 0.

Case of rank(W) < d,: Let Null(M) be the null space of a matrix
M. Since W € R%*% and rank(W) < d, < min(dy, d;) < dy, we
have that Null(W) # {0} and there exists a vector u € R% such
that u € Null(W) and ||u||; = 1. Let u be such a vector, and define

\7(1)) =V+uw',

where v € R%. Since Wu = 0, we have that for any v € R%,
h(x, W, V(v),0) = h(x, W, V, 0),

and

LW, V(v),0)=LW,V,8).

If (W, V,#0)is alocal minimum, (W, V) must be a local minimum
with respect to (W, V) (given the fixed 6). If (W, V) is a local
minimum with respect to (W, V) (given the fixed #), by the
definition of a local minimum, there exists ¢ > 0 such that
Lw,v,0) < L(W',V’,0) for all (W’,V’) € B.(W,V), where
B.(W, V) is an open ball of radius € with the center at (W, V). For
any sufficiently small v € R% such that (W, V(v)) € B p(W, V),

if (W,V) is a local minimum, every (W,\?(v)) is also a local
minimum, because there exists ¢’ = ¢/2 > 0 such that

LW, V() = LW, V) < (W', V),

for all (W', V') € B«(W, V(v)) C B.(W, V) (the inclusion follows
the triangle inequality), which satisfies the definition of local
minimum for (W, V(v)).

Thus, for any such sufficiently small v € R%, we have that

LW, V(v), 0)

=0
dvec(W)

since otherwise, (W, V(v)) does not satisfy the first order nec-
essary condition of local minima (i.e., W can be moved to the
direction of the nonzero partial derivative with a sufficiently
small magnitude €’ € (0, €/2) and decrease the loss value, which
contradicts with (W, V(v)) being a local minimum). Hence, for
any such sufficiently small v € R%,

LW, V(v), 0 -
% = B, Ivec((x + V(»)2)D)] = 0,

which implies that
0 = Eyy[(x + V(v)z)D]
= Eyy[(x + Vz)D] + Ey ,[uv ' zD]

= uv'Ey,[zD],

AWW,V.0) _
b dvec(W)
% = Eyy[vec((x + Vz)D)] and hence E, y[(x 4+ Vz)D] = 0.
Since |[ull, = 1, by multiplying u" both sides from the left, we
have that for any sufficiently small v € R% such that (W, V(v)) €
Bej2(W, V),

v'E,,[zD] =0,

where the last line follows from the fact that 0 =

which implies that

Exy[zD] = 0.
AW.V.0) _
Then, from Tvec W) = 0,
0 = E,y[(x + Vz)D] = E,,[xD],

where the last equality follows from that E, ,[zD] = 0.

In summary, if (W, V, 6) is a local minimum, in both cases of
rank(W) > d, and rank(W) < d,, we have that E, ,[zD] = 0 and
Eyy[xD] = 0. O

Appendix B. Proofs of the theorems

This appendix provides the complete proofs of Theorems 1 and
2

Proof of Theorem 1. Let Ey, = E, ., for notational simplicity.
Define RW,V) = [W (WV)] e R¥*Utd) and ¢y(x) =
[xT z(x, (9)T]T € R%*4_Then, we have that

h(x, W, V,0) = R(W, V)gy(x),

and

LW, V,0) =LRW, V), 0) = Exy[(RW, V)ds(x), y)].

Since the map h +— {(h,y) is convex and an expectation of
convex functions is convex, E,,[£(h,y)] is convex in h. Since
a composition of a convex function with an affine function is

convex, LR(R, 0) is convex in R = R(W, V). Therefore, from the
convexity, if

AIR(R, 0) _
dvec(R)

then R is a global minimum of LR(R, 9).

’
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RWe now show that if (W,V,#) is a local minimum, then
(;Lvef g) |R RW.V) = =0, and hence R = R(W, V) is a global minimum
of LR(R 0). On the one hand, with the same calculations as in the

proofs of Lemmas 1 and 2, we have that

o [(2eny oh(x, W, V, 0)
- ah 3 vec(R)
h=h(x,W.V.0)

= Exy[Dlgo(x)" ® I4,]]
= VEC(EXA,y[QsQ(X)D])-
On the other hand, Lemma 2 states that if (W, V,#) is a local

minimum of L, we have that E, [z(x, 0)D] = 0 and E, y[xD] = 0,
yielding

Eay[$9(x)D] = Ey.y [[Z (X)fg)D]] o

and hence
AIR(R, 0)
d vec(R)

JIR(R, 0)
d vec(R)

=0.
R=R(W.V)

This implies that if (W, V, 0) is a local minimum, R = R(W, V)is a
global minimum of LR(R, 8) = LR(R(W, V), 6). Since L¥(R, 6) is the
objective function with the basis-function models R(W, V)¢q(x)
with the basis ¢y(x) = [x" z(x,0)"]", we have that

L(W, v, 9) = L?x,z(xﬁ)}'

On the other hand, we have (W, V,0) > L, 4, because
{(W,WV) : W e R¥*4k v ¢ REx%} < (RD Ry . RV ¢
RY*d R(2) ¢ Réy>dz} Therefore,

LW,V,0)= L*X 20 = L’{“X} - (L?‘X} - LTx,z(X,H)])' O

Proof of Theorem 2. From Theorem 1, we have that (W, V, ) =
L’{“x 2oy 1 this proof, we derive the specific forms of Lz‘x 2000}
for the case of the squared loss and the empirical measure. Let
Z = Z(X, 0) for notational simplicity. Since the map h + £(h, y)is
assumed to represent the squared loss in this theorem, the global
minimum value L}, ,, 5, of the basis-function models is the global
minimum value of

g(R) = ZnRT[x Z1" —ylnz—fn[x ZIR - Y|I}.
i=1

where R € R@&+d)xdy From convexity and dlfferentlablhty of
g(R), R is a global minimum if and only if = 0. Since

0g(R)
o vec(R)

8 vec

2
EVEC([X ZIR—Y) la, ® [X Z1]

= %vec(([X ZIR-Y)'[X Z]),

solving a?/ge(c’(zz)z) = 0 for all solutions of R yields that

i
[x zlr=[x z](x 2]"[x z])'[x 2]y,

and hence

[X Z]R=P[[x Z]]v.

Also, the same proof step obtains the fact that |P[X]Y — Yllﬁ =
Y — PIXIY||? = [Py[X]Y|2 is the global minimum value of
g'(R) = L|XR — Y||2, which is the objective function with the
basis-function models R x.

On the other hand, since the span of the columns of [X Z]
is the same as the span of the columns of [X Py [X]Z], we have

that P[[X Z]]=P[[X Pn[X]Z]], and
P[[x PyIX)Z]]

XX 0
=[x PN[X]Z][ 0 ZTPuXIZ

= P[X] + P[Py[X]Z],

:
} [x Pyix1Z]"

which yields
[X Z]R=(P[X]+ P[Py[X]Z])Y.

By plugging this into g(R), with tr(M
matrix M,

) denoting the trace of a

Lt 2oy = IIY — (PIX1+ P[Py [X1Z])Y |1}
= |Py[X]Y — P[Py [X]Z]Y |I}
= tr((Py[X]Y — P[Py[X1Z]Y)" (Py[X]Y — P[Py[X]Z]Y))
= Py[XIY |7 + IP[PNIX]Z]Y |1}
— 2tr((Py[X1Y) " P[PN[X]Z]Y)
= |PvIX]Y[I7 — [P[PNIXIZIY |7,

where the last line follows from the fact that tr((Py[X]Y)7
P[Py[X]Z]Y) = ||P[Py[X]Z]Y ||} since Py[X]P[Py[X]Z] = P[Py[X]Z]
= P[Py[X]Z]P[Py[X]Z]. O

Appendix C. On the assumption on the output dimension

The results presented in this paper assume that d, <
min(dy, d;) (Assumption Al). In many practical applications of
deep ResNets, we have d, < dy, with which we can rewrite
the assumption as min(dy, dy) < d,. However, it is non-trivial to
relax this assumption and to extend the results to the case where
min(dy, dy) > d,. To understand the challenge, consider deep
linear neural networks of the form WH+ADwH) ... wx with the
trainable weight parameters W € R%*4-1, where dyy; = d,
and dg = dy. Consider also the following optimization problem of
the deep linear neural networks:

minim — Z wHH Dy
WH+1), W(H) . W(l)

Wk, ), (C1)
with Assumption A2 being satisfied.

If min(dy, dy) < min(d;, ..., dy), the deep linear networks can be
reduced to linear models Vx with V € R%>% because

(WERIWE oD Wl ¢ pAxd-1) = (V7 ;v e RY X,

The above optimization problem in Eq. (C.1) can thus be solved
via the following convex optimization:

1 m
— > UV, ).
m i=1

If min(dy,dy) > min(dy,...,dy), however, this is no longer
true. The deep linear neural networks cannot then be reduced
to the linear model Vx without adding the constraint rank(V) <
min(dy, ..., dy) and solving the following non-convex optimiza-
tion problem:

1 m
— > Uvxi, yi)
m i=1

subject to rank(V) < min(dy, ..., dy).

minimize
\4

minimize
Vv

Notice that the assumption on the dimensions significantly alters
the corresponding optimization problem from convex to non-
convex. Indeed, together with the non-triviality of analyzing the
loss landscape of deep networks themselves (instead of analyzing
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that of the corresponding shallow networks), this was one of the
technical challenges resolved in the previous study (Kawaguchi,
2016) that successfully considered both cases min(d,, dy) >
min(dy, ..., dy) and min(d,, dy) < min(dq, ..., dy), with £ being
the squared loss. However, with ¢ being a general convex dif-
ferentiable loss, a recent study of deep linear networks (Laurent
& Brecht, 2018) still assumed min(d,, dy) < min(dy,...,dy).
This illustrates the non-triviality of the case min(d,,dy) >
min(dy, ..., dy), even for deep linear networks.

This issue also applies to the ResNets of the form h(x, W, V, 6)
= W(x + Vz(x, 6)) with min(dy, ..., dy) = d,. If min(d,, dy) > d,
then

(W, WV): W e RY*% v ¢ R%xdz)
SZ {(R(l)y R(Z)) : R(l) = Rddex, R(Z) e Rddez}.

Hence, Theorem 1 does not hold true in general, which therefore

demands a reconsideration of the definition of Lj, ,, ,,,. Whereas

this issue may be avoided by focusing on Lj,, instead of L, .., o,
the outcome of such an analysis would not be tight in the sense
that Lf .oy = Liy always and Ly . o < Ly if 2(x,6) is

non-negligible.
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