
Ordered SGD: A New Stochastic Optimization Framework for
Empirical Risk Minimization

Kenji Kawaguchi* Haihao Lu*

MIT Google Research

Abstract

We propose a new stochastic optimization
framework for empirical risk minimization
problems such as those that arise in ma-
chine learning. The traditional approaches,
such as (mini-batch) stochastic gradient de-
scent (SGD), utilize an unbiased gradient es-
timator of the empirical average loss. In
contrast, we develop a computationally ef-
ficient method to construct a gradient esti-
mator that is purposely biased toward those
observations with higher current losses. On
the theory side, we show that the proposed
method minimizes a new ordered modifica-
tion of the empirical average loss, and is guar-
anteed to converge at a sublinear rate to
a global optimum for convex loss and to a
critical point for weakly convex (non-convex)
loss. Furthermore, we prove a new gener-
alization bound for the proposed algorithm.
On the empirical side, the numerical experi-
ments show that our proposed method con-
sistently improves the test errors compared
with the standard mini-batch SGD in var-
ious models including SVM, logistic regres-
sion, and deep learning problems.

1 Introduction

Stochastic Gradient Descent (SGD), as the workhorse
training algorithm for most machine learning appli-
cations including deep learning, has been extensively
studied in recent years (e.g., see a recent review by
Bottou et al. 2018). At every step, SGD draws one
training sample uniformly at random from the train-
ing dataset, and then uses the (sub-)gradient of the

Proceedings of the 23rdInternational Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2020, Palermo,
Italy. PMLR: Volume 108. Copyright 2020 by the au-
thor(s).

loss over the selected sample to update the model pa-
rameters. The most popular version of SGD in prac-
tice is perhaps the mini-batch SGD (Bottou et al.,
2018; Dean et al., 2012), which is widely implemented
in the state-of-the-art deep learning frameworks, such
as TensorFlow (Abadi et al., 2016), PyTorch (Paszke
et al., 2017) and CNTK (Seide and Agarwal, 2016). In-
stead of choosing one sample per iteration, mini-batch
SGD randomly selects a mini-batch of the samples,
and uses the (sub-)gradient of the average loss over
the selected samples to update the model parameters.

Both SGD and mini-batch SGD utilize uniform sam-
pling during the entire learning process, so that the
stochastic gradient is always an unbiased gradient es-
timator of the empirical average loss over all samples.
On the other hand, it appears to practitioners that not
all samples are equally important, and indeed most of
them could be ignored after a few epochs of training
without affecting the final model (Katharopoulos and
Fleuret, 2018). For example, intuitively, the samples
near the final decision boundary should be more im-
portant to build the model than those far away from
the boundary for classification problems. In particu-
lar, as we will illustrate later in Figure 1, there are
cases when those far-away samples may corrupt the
model by using average loss. In order to further ex-
plore such structures, we propose an efficient sampling
scheme on top of the mini-batch SGD. We call the re-
sulting algorithm ordered SGD, which is used to learn
a different type of models with the goal to improve the
testing performance.

The above motivation of ordered SGD is related to
that of importance sampling SGD, which has been
extensively studied recently in order to improve the
convergence speed of SGD (Needell et al., 2014; Zhao
and Zhang, 2015; Alain et al., 2015; Loshchilov and
Hutter, 2015; Gopal, 2016; Katharopoulos and Fleuret,
2018). However, our goals, algorithms and theoretical
results are fundamentally different from those in the
previous studies on importance sampling SGD. Indeed,
all aforementioned studies are aimed to accelerate the

*equal contribution

Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk Minimization

minimization process for the empirical average loss,
whereas our proposed method turns out to minimize
a new objective function by purposely constructing a
biased gradient.

Our main contributions can be summarized as follows:
i) we propose a computationally efficient and easily
implementable algorithm, ordered SGD, with princi-
pled motivations (Section 3), ii) we show that ordered
SGD minimizes an ordered empirical risk with sub-
linear rate for convex and weakly convex (non-convex)
loss functions (Section 4), iii) we prove a generaliza-
tion bound for ordered SGD (Section 5), and iv) our
numerical experiments show ordered SGD consistently
improved mini-batch SGD in test errors (Section 6).

2 Empirical Risk Minimization

Empirical risk minimization is one of the main tools
to build a model in machine learning. Let D =
((xi, yi))

n
i=1 be a training dataset of n samples where

xi ∈ X ⊆ Rdx is the input vector and yi ∈ Y ⊆ Rdy is
the target output vector for the i-th sample. The goal
of empirical risk minimization is to find a prediction
function f(· ; θ) : Rdx → Rdy , by minimizing

L(θ) :=
1

n

n∑
i=1

Li(θ) +R(θ), (1)

where θ ∈ Rdθ is the parameter vector of the prediction
model, Li(θ) := `(f(xi; θ), yi) with the function ` :
Rdy × Y → R≥0 is the loss of the i-th sample, and
R(θ) ≥ 0 is a regularizer. For example, in logistic
regression, f(x; θ) = θTx is a linear function of the
input vector x, and `(a, y) = log(1 + exp(−ya)) is the
logistic loss function with y ∈ {−1, 1}. For a neural
network, f(x; θ) represents the pre-activation output
of the last layer.

3 Algorithm

In this section, we introduce ordered SGD and pro-
vide an intuitive explanation of the advantage of or-
dered SGD by looking at 2-dimension toy examples
with linear classifiers and small artificial neural net-
works (ANNs). Let us first introduce a new notation
q-argmax as an extension to the standard notation
argmax:

Definition 1. Given a set of n real numbers
(a1, a2, . . . , an), an index subset S ⊆ {1, 2, . . . , n},
and a positive integer number q ≤ |S|, we define
q-argmaxj∈S aj such that Q ∈ q-argmaxj∈S aj is a
set of q indexes of the q largest values of (aj)j∈S ; i.e.,
q-argmaxj∈S aj = argmaxQ⊆S,|Q|=q

∑
i∈Q ai.

Algorithm 1 Ordered Stochastic Gradient Descent
(ordered SGD)

1: Inputs: an initial vector θ0 and a learning rate
sequence (ηk)k

2: for t = 1, 2, . . . do
3: Randomly choose a mini-batch of samples: S ⊆

{1, 2, . . . , n} such that |S| = s.
4: Find a set Q of top-q samples in S in term of

loss values: Q ∈ q-argmaxi∈SLi(θ
t).

5: Compute a subgradient g̃t of the top-q sam-
ples LQ(θt): g̃t ∈ ∂LQ(θt) where LQ(θt) =
1
q

∑
i∈Q Li(θ

t)+R(θt) and ∂LQ is the set of sub-

gradient1of function LQ.
6: Update parameters θ: θt+1 = θt − ηtg̃t

Algorithm 1 describes the pseudocode of our proposed
algorithm, ordered SGD. The procedures of ordered
SGD follow those of mini-batch SGD except the fol-
lowing modification: after drawing a mini-batch of size
s, ordered SGD updates the parameter vector θ based
on the (sub-)gradient of the average loss over the top-q
samples in the mini-batch in terms of individual loss
values (lines 4 and 5 of Algorithm 1). This modifi-
cation is used to purposely build and utilize a biased
gradient estimator with more weights on the samples
having larger losses. As it can be seen in Algorithm
1, ordered SGD is easily implementable, requiring to
change only a single line or few lines on top of a mini-
batch SGD implementation.

Figure 1 illustrates the motivation of ordered SGD
by looking at two-dimensional toy problems of binary
classification. To avoid an extra freedom due to the
hyper-parameter q, we employed a single fixed proce-
dure to set the hyper-parameter q in the experiments
for Figure 1 and other experiments in Section 6, which
is further explained in Section 6. The details of the ex-
perimental settings for Figure 1 are presented in Sec-
tion 6 and in Appendix C.

It can be seen from Figure 1 that ordered SGD adapts
better to imbalanced data distributions compared with
mini-batch SGD. It can better capture the information
of the smaller sub-clusters that contribute less to the
empirical average loss L(θ): e.g., the small sub-clusters
in the middle of Figures 1a and 1b, as well as the
small inner ring structure in Figures 1c and 1d (the two
inner rings contain only 40 data points while the two
outer rings contain 960 data points). The smaller sub-
clusters are informative for training a classifier when
they are not outliers or by-products of noise. A sub-

1The sub-gradient for (non-convex) ρ-weakly convex
function LQ at θt is defined as {g|LQ(θ) ≥ LQ(θt)+ 〈g, θ−
θt〉 − ρ

2
‖θ − θt‖2, ∀θ} (Rockafellar and Wets, 2009).

Kenji Kawaguchi*, Haihao Lu*

(a) with linear classifier (b) with linear classifier (c) with small ANN (d) with tiny ANN

Figure 1: Decision boundaries of mini-batch SGD predictors (top row) and ordered SGD predictors (bottom
row) with 2D synthetic datasets for binary classification. In these examples, ordered SGD predictors correctly
classify more data points than mini-batch SGD predictors, because a ordered SGD predictor can focus more on
a smaller yet informative subset of data points, instead of focusing on the average loss dominated by a larger
subset of data points.

cluster of data points would be less likely to be an
outlier as the size of the sub-cluster increases. The
value of q in ordered SGD can control the size of sub-
clusters that a classifier should be sensitive to. With
smaller q, the output model becomes more sensitive
to smaller sub-clusters. In an extreme case with q =
1 and n = s, ordered SGD minimizes the maximal
loss (Shalev-Shwartz and Wexler, 2016) that is highly
sensitive to every smallest sub-cluster of each single
data point.

4 Optimization Theory

In this section, we answer the following three ques-
tions: (1) what objective function does ordered SGD
solve as an optimization method, (2) what is the con-
vergence rate of ordered SGD for minimizing the new
objective function, and (3) what is the asymptotic
structure of the new objective function.

Similarly to the notation of order statistics, we first
introduce the notation of ordered indexes: given a
model parameter θ, let L(1)(θ) ≥ L(2)(θ) ≥ · · · ≥
L(n)(θ) be the decreasing values of the individual
losses L1(θ), . . . , Ln(θ), where (j) ∈ {1, . . . , n} (for all
j ∈ {1, . . . , n}). That is, {(1), . . . , (n)} as a perturba-
tion of {1, . . . , n} defines the order of sample indexes
by loss values. Throughout this paper, whenever we
encounter ties on the values, we employ a tie-breaking
rule in order to ensure the uniqueness of such an or-
der.2 Theorem 1 shows that ordered SGD is a stochas-
tic first-order method for minimizing the new ordered

2In the case of ties, the order is defined by the order of
the original indexes (1, 2, . . . , n) of L1(θ), . . . , Ln(θ); i.e., if
Li1(θ) = Li2(θ) and i1 < i2, then i1 appears before i2 in
the sequence ((1), (2), . . . , (n)).

empirical loss Lq(θ).

Theorem 1. Consider the following objective func-
tion:

Lq(θ) :=
1

q

n∑
j=1

γjL(j)(θ) +R(θ), (2)

where the parameter γj depends on the tuple (n, s, q),
and is defined by

γj :=

∑q−1
l=0

(
j−1
l

)(
n−j
s−l−1

)(
n
s

) . (3)

Then, ordered SGD is a stochastic first-order method
for minimizing Lq(θ) in the sense that g̃t used in or-
dered SGD is an unbiased estimator of a (sub-)gradient
of Lq(θ).

Although the order of individual losses change with
different θ, Lq is a well-defined function. For any given
θ, the order of individual losses is fixed and Lq(θ) has
a unique value, which means Lq(θ) is a function of θ.

All proofs in this paper are deferred to Appendix A.
As we can see from Theorem 1, the objective function
minimized by ordered SGD (i.e., Lq(θ)) depends on the
hyper-parameters of the algorithm through the values
of γj . Therefore, it is of practical interest to obtain
deeper understandings on how the hyper-parameters
(n, s, q) affects the objective function Lq(θ) through γj .
The next proposition presents the asymptotic value of
γj (when n → ∞), which shows that a rescaled γj
converges to the cumulative distribution function of a
Beta distribution:

Proposition 1. Denote z = j
n and γ(z) :=∑q−1

l=0 z
l(1− z)s−l−1 s!

l!(s−l−1)! . Then, it holds that

lim
j,n→∞,j/n=z

γj =
1

n
γ(z).

Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk Minimization

(a) (s, q) = (10, 3) (b) (s, q) = (100, 30) (c) (s, q) = (100, 60)

Figure 2: γ̂(z) and γ(z) for different (n, s, q) where γ̂ is a rescaled version of γj : γ̂(j/n) = nγj .

Moreover, it holds that 1 − 1
sγ(z) is the cumulative

distribution function of Beta(z; q, s− q).

To better illustrate the structure of γj in the non-
asymptotic regime, Figure 2 plots γ̂(z) and γ(z) for
different values of (n, s, q) where γ̂(z) is a rescaled ver-
sion of γj defined by γ̂(j/n) = nγj (and the value of
γ̂(·) between j/n and (j + 1)/n is defined by linear
interpolation for better visualization). As we can see
from Figure 2, γ̂(z) monotonically decays. In each sub-
figure, with fixed s, q, the cliff gets smoother and γ̂(z)
converges to γ(z) as n increases. Comparing Figures
2a and 2b, we can see that as s, q and n all increase
proportionally, the cliff gets steeper. Comparing Fig-
ures 2b and 2c, we can see that with fixed n and q, the
cliff shifts to the right as q increases.

As a direct extension of Theorem 1, we can now ob-
tain the computational guarantees of ordered SGD for
minimizing Lq(θ) by taking advantage of the classic
convergence results of SGD:

Theorem 2. Let (θt)Tt=0 be a sequence generated by
ordered SGD (Algorithm 1). Suppose that Li(·) is G1-
Lipschitz continuous for i = 1, . . . , n, and R(·) is G2-
Lipschitz continuous. Suppose that there exists a finite
θ∗ ∈ argminθ Lq(θ) and Lq(θ

∗) is finite. Then, the
following two statements hold:

(1) (Convex setting). If Li(·) and R(·) are both con-
vex, for any step-size ηt, it holds that

min
0≤t≤n

E[Lq(θ
t)− Lq(θ∗)]

≤
2(G2

1 +G2
2)
∑T
t=0 η

2
t + ‖θ∗ − θ0‖2

2
∑T
t=0 ηt

.

(2) (Weakly convex setting) Suppose that Li(·) is ρ-
weakly convex (i.e., Li(θ) + ρ

2‖θ‖
2 is convex) and

R(·) is convex. Recall the definition of Moreau
envelope: Lλq (θ) := minβ{Lq(β) + 1

2λ‖β − θ‖2}.
Denote θ̄T as a random variable taking value in
{θ0, θ1, . . . , θT } according to the probability distri-

bution P(θ̄T = θt) = ηt∑T
t=0 ηt

. Then for any con-

stant ρ̂ > ρ, it holds that

E[‖∇L1/ρ̂
q (θ̄T)‖2]

≤ ρ̂

ρ̂− ρ

(
L

1/ρ̂
q (θ0)− Lq(θ∗)

)
+ ρ̂(G2

1 +G2
2)
∑T
t=0 η

2
t∑T

t=0 ηt
.

Theorem 2 shows that in particular, if we choose ηt ∼
O(1/

√
t), the optimality gap mint Lq(θ

t)−Lq(θ∗) and

E[‖∇L1/ρ̂
q (θ̄T)‖2] decay at the rate of Õ(1/

√
t) (note

that limT→∞

∑T
t=0 η

2
t∑T

t=0 ηt
= 0 with ηt ∼ O(1/

√
t)).

The Lipschitz continuity assumption in Theorem 2 is
a standard assumption for the analysis of stochastic
optimization algorithms. This assumption is generally
satisfied with logistic loss, hinge loss and Huber loss
without any constraints on θt, and with square loss
when one can presume that θt stays in a compact space
(which is typically the case being interested in prac-
tice). For the weakly convex setting, E‖∇ϕ1/2ρ(θk)‖2
(appeared in Theorem 2 (2)) is a natural measure of
the near-stationarity for a non-differentiable weakly
convex function ϕ : θ 7→ ϕ(θ) (Davis and Drusvy-
atskiy, 2018). The weak convexity (also known as neg-
ative strong convexity or almost convexity) is a stan-
dard assumption for analyzing non-convex optimiza-
tion problem in optimization literature (Davis and
Drusvyatskiy, 2018; Allen-Zhu, 2017). With a stan-
dard loss criterion such as logistic loss, the individual
objective Li(·) with a neural network using sigmoid
or tanh activation functions is weakly convex (neural
network with ReLU activation function is not weakly
convex and falls out of our setting).

5 Generalization Bound

This section presents the generalization theory for
ordered SGD. To make the dependence on a train-
ing dataset D explicit, we define L(θ;D) :=
1
n

∑n
i=1 Li(θ;D) and Lq(θ;D) := 1

q

∑m
j=1 γjL(j)(θ;D)

by rewriting Li(θ;D) = Li(θ) and L(j)(θ;D) =

Kenji Kawaguchi*, Haihao Lu*

L(j)(θ), where ((j))nj=1 defines the order of sample in-
dexes by the loss value, as stated in Section 4. Denote
ri(θ;D) =

∑n
j=1 1{i = (j)}γj where (j) depends on

(θ,D). Given an arbitrary set Θ ⊆ Rdθ , we define
Rn(Θ) as the (standard) Rademacher complexity of
the set {(x, y) 7→ `(f(x; θ), y) : θ ∈ Θ}:

Rn(Θ) = ED̄,ξ

[
sup
θ∈Θ

1

n

n∑
i=1

ξi`(f(x̄i; θ), ȳi)

]
,

where D = ((x̄i, ȳi))
n
i=1, and ξ1, . . . , ξn are in-

dependent uniform random variables taking values
in {−1, 1} (i.e., Rademacher variables). Given a
tuple (`, f,Θ,X ,Y), define M as the least upper
bound on the difference of individual loss values:
|`(f(x; θ), y)−`(f(x′; θ), y′)| ≤M for all θ ∈ Θ and all
(x, y), (x′, y′) ∈ X ×Y. For example, M = 1 if ` is the
0-1 loss function. Theorem 3 presents a generalization
bound for ordered SGD:

Theorem 3. Let Θ be a fixed subset of Rdθ . Then,
for any δ > 0, with probability at least 1 − δ over an
iid draw of n examples D = ((xi, yi))

n
i=1, the following

holds for all θ ∈ Θ:

E(x,y)[`(f(x; θ), y)] (4)

≤ Lq(θ;D) + 2Rn(Θ) +
Ms

q

√
ln(1/δ)

2n
−Qn(Θ; s, q),

where Qn(Θ; s, q) := ED̄[infθ∈Θ

∑n
i=1(ri(θ;D̄)

q −
1
n)`(f(x̄i; θ), ȳi)] ≥ 0.

The expected error E(x,y)[`(f(x; θ), y)] in the left-hand
side of Equation (4) is a standard objective for general-
ization, whereas the right-hand side is an upper bound
with the dependence on the algorithm parameters q
and s. Let us first look at the asymptotic case when
n → ∞. Let Θ be constrained such that Rn(Θ) → 0
as n → ∞, which has been shown to be satisfied
for various models and sets Θ (Bartlett and Mendel-
son, 2002; Mohri et al., 2012; Bartlett et al., 2017;
Kawaguchi et al., 2017). With s/q being bounded, the
third term in the right-hand side of Equation (4) dis-
appear as n → ∞. Thus, it holds with high probabil-
ity that E(x,y)[`(f(x; θ), y)] ≤ Lq(θ;D)−Qn(Θ; s, q) ≤
Lq(θ;D), where Lq(θ;D) is minimized by ordered SGD
as shown in Theorem 1 and Theorem 2. From this
viewpoint, ordered SGD minimizes the expected error
for generalization when n→∞.

A special case of Theorem 3 recovers the standard gen-
eralization bound of the empirical average loss (e.g.,
Mohri et al., 2012), That is, if q = s, ordered SGD
becomes the standard mini-batch SGD and Equation

(4) becomes

E(x,y)[`(f(x; θ), y)] ≤ L(θ;D) + 2Rn(Θ) +M

√
ln 1

δ

2n
,

(5)

which is the standard generalization bound (e.g.,
Mohri et al., 2012). This is because if q = s, then
ri(θ;D̄)

q = 1
n and hence Qn(Θ; s, q) = 0.

For the purpose of a simple comparison of ordered
SGD and (mini-batch) SGD, consider the case where

we fix a single subset Θ ⊆ Rdθ . Let θ̂q and θ̂s be
the parameter vectors obtained by ordered SGD and
(mini-batch) SGD respectively as the results of train-
ing. Then, when n→∞, with s/q being bounded, the
upper bound on the expected error for ordered SGD
(the right hand-side of Equation 4) is (strictly) less
than that for (mini-batch) SGD (the right hand-side

of Equation 5) if Qn(Θ; s, q)+L(θ̂s;D)−Lq(θ̂q;D) > 0

or if L(θ̂s;D)− Lq(θ̂q;D) > 0.

For a given model f , whether Theorem 3 provides a
non-vacuous bound depends on the choice of Θ. In Ap-
pendix B, we discuss this effect as well as a standard
way to derive various data-dependent bounds from
Theorem 3.

6 Experiments

In this section, we empirically evaluate ordered SGD
with various datasets, models and settings. To avoid
an extra freedom due to the hyper-parameter q, we
introduce a single fixed setup of the adaptive values
of q as the default setting: q = s at the beginning of
training, q = bs/2c once train acc ≥ 80%, q = bs/4c
once train acc ≥ 90%, q = bs/8c once train acc ≥
95%, and q = bs/16c once train acc ≥ 99.5%, where
train acc represents training accuracy. The value of q
was automatically updated at the end of each epoch
based on this simple rule. This rule was derived based
on the intuition that in the early stage of training, all
samples are informative to build a rough model, while
the samples around the boundary (with larger losses)
are more helpful to build the final classifier in later
stage. In the figures and tables of this section, we refer
to ordered SGD with this rule as ‘OSGD’, and ordered
SGD with a fixed value q = q̄ as ‘OSGD: q = q̄’.

Experiment with fixed hyper-parameters. For
this experiment, we fixed all hyper-parameters a pri-
ori across all different datasets and models by using a
standard hyper-parameter setting of mini-batch SGD,
instead of aiming for state-of-the-art test errors for
each dataset with a possible issue of over-fitting to
test and validation datasets (Dwork et al., 2015; Rao
et al., 2008). We fixed the mini-batch size s to be 64,

Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk Minimization

Table 1: Test errors (%) of mini-batch SGD and ordered SGD (OSGD). The last column labeled “Improve”
shows relative improvements (%) from mini-batch SGD to ordered SGD. In the other columns, the numbers
indicate the mean test errors (and standard deviations in parentheses) over ten random trials. The first column
shows ‘No’ for no data augmentation, and ‘Yes’ for data augmentation.

Data Aug Datasets Model mini-batch SGD OSGD Improve

No Semeion Logistic model 10.76 (0.35) 9.31 (0.42) 13.48

No MNIST Logistic model 7.70 (0.06) 7.35 (0.04) 4.55

No Semeion SVM 11.05 (0.72) 10.25 (0.51) 7.18

No MNIST SVM 8.04 (0.05) 7.66 (0.07) 4.60

No Semeion LeNet 8.06 (0.61) 6.09 (0.55) 24.48

No MNIST LeNet 0.65 (0.04) 0.57 (0.06) 11.56

No KMNIST LeNet 3.74 (0.08) 3.09 (0.14) 17.49

No Fashion-MNIST LeNet 8.07 (0.16) 8.03 (0.26) 0.57

No CIFAR-10 PreActResNet18 13.75 (0.22) 12.87 (0.32) 6.41

No CIFAR-100 PreActResNet18 41.80 (0.40) 41.32 (0.43) 1.17

No SVHN PreActResNet18 4.66 (0.10) 4.39 (0.11) 5.95

Yes Semeion LeNet 7.47 (1.03) 5.06 (0.69) 32.28

Yes MNIST LeNet 0.43 (0.03) 0.39 (0.03) 9.84

Yes KMNIST LeNet 2.59 (0.09) 2.01 (0.13) 22.33

Yes Fashion-MNIST LeNet 7.45 (0.07) 6.49 (0.19) 12.93

Yes CIFAR-10 PreActResNet18 8.08 (0.17) 7.04 (0.12) 12.81

Yes CIFAR-100 PreActResNet18 29.95 (0.31) 28.31 (0.41) 5.49

Yes SVHN PreActResNet18 4.45 (0.07) 4.00 (0.08) 10.08

the weight decay rate to be 10−4, the initial learning
rate to be 0.01, and the momentum coefficient to be
0.9. See Appendix C for more details of the experi-
mental settings. The code to reproduce all the results
is publicly available at: [the link is hidden for anony-
mous submission].

Table 1 compares the testing performance of ordered
SGD and mini-batch SGD for different models and
datasets. Table 1 consistently shows that ordered SGD
improved mini-batch SGD in test errors. The table
reports the mean and the standard deviation of test
errors (i.e., 100 × the average of 0-1 losses on test
dataset) over 10 random experiments with different
random seeds. The table also summarises the relative
improvements of ordered SGD over mini-batch SGD,
which is defined as [100× ((mean test error of mini-
batch SGD) - (mean test error of ordered SGD)) /
(mean test error of mini-batch SGD)]. Logistic model
refers to linear multinomial logistic regression model,
SVM refers to linear multiclass support vector ma-
chine, LeNet refers to a standard variant of LeNet
(LeCun et al., 1998) with ReLU activations, and Pre-
ActResNet18 refers to pre-activation ResNet with 18
layers (He et al., 2016).

Figure 3 shows the test error and the average train-
ing loss of mini-batch SGD and ordered SGD versus

the number of epoch. As shown in the figure, ordered
SGD with the fixed q value also outperformed mini-
batch SGD in general. In the figures, the reported
training losses refer to the standard empirical average
loss 1

n

∑n
i=1 Li(θ) measured at the end of each epoch.

When compared to mini-batch SGD, ordered SGD had
lower test errors while having higher training losses in
Figures 3a, 3d and 3g, because ordered SGD optimizes
over the ordered empirical loss instead. This is consis-
tent with our motivation and theory of ordered SGD
in Sections 3, 4 and 5. The qualitatively similar be-
haviors were also observed with all of the 18 various
problems as shown in Appendix C.

Moreover, ordered SGD is a computationally efficient
algorithm. Table 2 shows the wall-clock time in illus-
trative four experiments, whereas Table 4 in Appendix
C summarizes the wall-clock time in all experiments.
The wall-clock time of ordered SGD measures the time
spent by all computations of ordered SGD, including
the extra computation of finding top-q samples in a
mini-batch (line 4 of Algorithm 1). The extra com-
putation is generally negligible and can be completed
in O(s log q) or O(s) by using a sorting/selection al-
gorithm. The ordered SGD algorithm can be faster
than mini-batch SGD because ordered SGD only com-
putes the (sub-)gradient g̃t of the top-q samples (in

Kenji Kawaguchi*, Haihao Lu*

(a) MNIST & Logistic (b) MNIST & LeNet (c) KMNIST (d) CIFAR-10

(e) Semeion & LeNet (f) KMNIST (g) CIFAR-100 (h) SVHN

Figure 3: Test error and training loss (in log scales) versus the number of epoch. These are without data
augmentation in subfigures (a)-(d), and with data augmentation in subfigures (e)-(h). The lines indicate the
mean values over 10 random trials, and the shaded regions represent intervals of the sample standard deviations.

Table 2: Average wall-clock time (seconds) per epoch
with data augmentation. PreActResNet18 was used
for CIFAR-10, CIFAR-100, and SVHN, while LeNet
was used for MNIST and KMNIST.

Datasets mini-batch SGD OSGD

MNIST 14.44 (0.54) 14.77 (0.41)

KMNIST 12.17 (0.33) 11.42 (0.29)

CIFAR-10 48.18 (0.58) 46.40 (0.97)

CIFAR-100 47.37 (0.84) 44.74 (0.91)

SVHN 72.29 (1.23) 67.95 (1.54)

line 5 of Algorithm 1). As shown in Tables 2 and 4,
ordered SGD was faster than mini-batch SGD for all
larger models with PreActResNet18. This is because
the computational reduction of the back-propagation
in ordered SGD can dominate the small extra cost of
finding top-q samples in larger problems.

Experiment with different q values. Figure 4
shows the effect of different fixed q values for CIFAR-
10 with PreActResNet18. Ordered SGD improved the

Figure 4: Effect of different q values with CIFAR-10.

test errors of mini-batch SGD with different fixed q
values. We also report the same observation with dif-
ferent datasets and models in Appendix C.

Experiment with different learning rates and
mini-batch sizes. Figures 5 and 6 in Appendix C
consistently show the improvement of ordered SGD
over mini-batch SGD with different different learning
rates and mini-batch sizes.

Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk Minimization

Table 3: Test errors (%) by using the best learning rate
of mini-batch SGD with various data augmentation
methods for CIFAR-10.

Data Aug mini-batch SGD OSGD Improve

Standard 6.94 6.46 6.92

RE 3.24 3.06 5.56

Mixup 3.31 3.05 7.85

Experiment with the best learning rate, mixup,
and random erasing. Table 3 summarises the ex-
perimental results with the data augmentation meth-
ods of random erasing (RE) (Zhong et al., 2017) and
mixup (Zhang et al., 2017; Verma et al., 2019) by us-
ing CIFAR-10 dataset. For this experiment, we pur-
posefully adopted the setting that favors mini-batch
SGD. That is, for both mini-batch SGD and ordered
SGD, we used hyper-parameters tuned for mini-batch
SGD. For RE and mixup data, we used the same tuned
hyper-parameter settings (including learning rates)
and the codes as those in the previous studies that
used mini-batch SGD (Zhong et al., 2017; Verma et al.,
2019) (with WRN-28-10 for RE and with PreActRes-
Net18 for mixup). For standard data augmentation,
we first searched the best learning rate of mini-batch
SGD based on the test error (purposefully overfitting
to the test dataset for mini-batch SGD) by using the
grid search with learning rates of 1.0, 0.5, 0.1, 0.05.
0.01, 0.005, 0.001, 0.0005, 0.0001. Then, we used the
best learning rate of mini-batch SGD for ordered SGD
(instead of using the best learning rate of ordered SGD
for ordered SGD). As shown in Table 3, ordered SGD
with hyper-parameters tuned for mini-batch SGD still
outperformed fine-tuned mini-batch SGD with the dif-
ferent data augmentation methods.

7 Related work and extension

Although there is no direct predecessor of our work,
the following fields are related to this paper.

Other mini-batch stochastic methods. The pro-
posed sampling strategy and our theoretical analyses
are generic and can be extended to other (mini-batch)
stochastic methods, including Adam (Kingma and Ba,
2014), stochastic mirror descent (Beck and Teboulle,
2003; Nedic and Lee, 2014; Lu, 2017; Lu et al., 2018;
Zhang and He, 2018), and proximal stochastic subgra-
dient methods (Davis and Drusvyatskiy, 2018). Thus,
our results open up the research direction for further
studying the proposed stochastic optimization frame-
work with different base algorithms such as Adam and
AdaGrad. To illustrate it, we presented ordered Adam
and reported the numerical results in Appendix C.

Importance Sampling SGD. Stochastic gradient
descent with importance sampling has been an ac-

tive research area for the past several years (Needell
et al., 2014; Zhao and Zhang, 2015; Alain et al.,
2015; Loshchilov and Hutter, 2015; Gopal, 2016;
Katharopoulos and Fleuret, 2018). In the convex set-
ting, (Zhao and Zhang, 2015; Needell et al., 2014) show
that the optimal sampling distribution for minimizing
L(θ) is proportional to the per-sample gradient norm.
However, maintaining the norm of gradient for individ-
ual samples can be computationally expensive when
the dataset size n or the parameter vector size dθ is
large in particular for many applications of deep learn-
ing. These importance sampling methods are inher-
ently different from ordered SGD in that importance
sampling is used to reduce the number of iterations for
minimizing L(θ), whereas ordered SGD is designed to
learn a different type of models by minimizing the new
objective function Lq(θ).

Average Top-k Loss. The average top-k loss is in-
troduced by Fan et al. (2017) as an alternative to the
empirical average loss L(θ). The ordered loss function
Lq(θ) differs from the average top-k loss as shown in
Section 4. Furthermore, our proposed framework is
fundamentally different from the average top-k loss.
First, the algorithms are different – the stochastic
method proposed in Fan et al. (2017) utilizes duality of
the function and is unusable for deep neural networks
(and other non-convex problems), while our proposed
method is a modification of mini-batch SGD that is us-
able for deep neural networks (and other non-convex
problems) and scales well for large problems. Second,
the optimization results are different, and in particu-
lar, the objective functions are different and we have
convergence analysis for weakly convex (non-convex)
functions. Finally, the focus of generalization property
is different – Fan et al. (2017) focuses on the calibration
for binary classification problem, while we focus on the
generalization bound that works for general classifica-
tion and regression problems.

Random-then-Greedy Procedure. Ordered SGD
randomly picks a subset of samples and then greed-
ily utilizes a part of the subset, which is related to
the random-then-greedy procedure proposed recently
in the different topic – the greedy weak learner for
gradient boosting (Lu and Mazumder, 2018).

8 Conclusion

We have presented an efficient stochastic first-order
method, ordered SGD, for learning an effective pre-
dictor in machine learning problems. We have shown
that ordered SGD minimizes a new ordered empiri-
cal loss Lq(θ), based on which we have developed the
optimization and generalization properties of ordered
SGD. The numerical experiments confirmed the effec-
tiveness of our proposed algorithm.

Kenji Kawaguchi*, Haihao Lu*

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A.,
Dean, J., Devin, M., Ghemawat, S., Irving, G., Is-
ard, M., et al. (2016). Tensorflow: A system for
large-scale machine learning. In 12th {USENIX}
Symposium on Operating Systems Design and Im-
plementation ({OSDI} 16), pages 265–283.

Alain, G., Lamb, A., Sankar, C., Courville, A., and
Bengio, Y. (2015). Variance reduction in sgd by
distributed importance sampling. arXiv preprint
arXiv:1511.06481.

Allen-Zhu, Z. (2017). Natasha: Faster non-convex
stochastic optimization via strongly non-convex pa-
rameter. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages
89–97. JMLR. org.

Bartlett, P. L., Foster, D. J., and Telgarsky, M. J.
(2017). Spectrally-normalized margin bounds for
neural networks. In Advances in Neural Informa-
tion Processing Systems, pages 6240–6249.

Bartlett, P. L. and Mendelson, S. (2002). Rademacher
and gaussian complexities: Risk bounds and struc-
tural results. Journal of Machine Learning Re-
search, 3(Nov):463–482.

Beck, A. and Teboulle, M. (2003). Mirror descent
and nonlinear projected subgradient methods for
convex optimization. Operations Research Letters,
31(3):167–175.

Bottou, L., Curtis, F. E., and Nocedal, J. (2018). Op-
timization methods for large-scale machine learning.
Siam Review, 60(2):223–311.

Boyd, S. and Mutapcic, A. (2008). Stochastic subgra-
dient methods. Lecture Notes for EE364b, Stanford
University.

Davis, D. and Drusvyatskiy, D. (2018). Stochas-
tic subgradient method converges at the rate
O(k−1/4) on weakly convex functions. arXiv
preprint arXiv:1802.02988.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin,
M., Mao, M., Senior, A., Tucker, P., Yang, K., Le,
Q. V., et al. (2012). Large scale distributed deep
networks. In Advances in neural information pro-
cessing systems, pages 1223–1231.

Dwork, C., Feldman, V., Hardt, M., Pitassi, T., Rein-
gold, O., and Roth, A. (2015). The reusable hold-
out: Preserving validity in adaptive data analysis.
Science, 349(6248):636–638.

Fan, Y., Lyu, S., Ying, Y., and Hu, B. (2017). Learn-
ing with average top-k loss. In Advances in Neural
Information Processing Systems, pages 497–505.

Gopal, S. (2016). Adaptive sampling for SGD by ex-
ploiting side information. In International Confer-
ence on Machine Learning, pages 364–372.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Iden-
tity mappings in deep residual networks. In Euro-
pean Conference on Computer Vision, pages 630–
645. Springer.

Katharopoulos, A. and Fleuret, F. (2018). Not all
samples are created equal: Deep learning with im-
portance sampling. In International Conference on
Machine Learning, pages 2530–2539.

Kawaguchi, K., Kaelbling, L. P., and Bengio, Y.
(2017). Generalization in deep learning. arXiv
preprint arXiv:1710.05468.

Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner,
P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324.

Loshchilov, I. and Hutter, F. (2015). Online batch se-
lection for faster training of neural networks. arXiv
preprint arXiv:1511.06343.

Lu, H. (2017). ” relative-continuity” for non-lipschitz
non-smooth convex optimization using stochastic
(or deterministic) mirror descent. arXiv preprint
arXiv:1710.04718.

Lu, H., Freund, R., and Mirrokni, V. (2018). Accel-
erating greedy coordinate descent methods. In In-
ternational Conference on Machine Learning, pages
3263–3272.

Lu, H. and Mazumder, R. (2018). Random-
ized gradient boosting machine. arXiv preprint
arXiv:1810.10158.

Mohri, M., Rostamizadeh, A., and Talwalkar, A.
(2012). Foundations of machine learning. MIT
press.

Nedic, A. and Lee, S. (2014). On stochastic subgradi-
ent mirror-descent algorithm with weighted averag-
ing. SIAM Journal on Optimization, 24(1):84–107.

Needell, D., Ward, R., and Srebro, N. (2014). Stochas-
tic gradient descent, weighted sampling, and the
randomized kaczmarz algorithm. In Advances
in Neural Information Processing Systems, pages
1017–1025.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang,
E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L.,
and Lerer, A. (2017). Automatic differentiation in
pytorch. In Autodiff Workshop at Conference on
Neural Information Processing Systems.

Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk Minimization

Rao, R. B., Fung, G., and Rosales, R. (2008). On the
dangers of cross-validation. an experimental evalua-
tion. In Proceedings of the 2008 SIAM international
conference on data mining, pages 588–596. SIAM.

Rockafellar, R. T. and Wets, R. J.-B. (2009). Vari-
ational analysis, volume 317. Springer Science &
Business Media.

Seide, F. and Agarwal, A. (2016). Cntk: Microsoft’s
open-source deep-learning toolkit. In Proceedings of
the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
2135–2135. ACM.

Shalev-Shwartz, S. and Wexler, Y. (2016). Minimizing
the maximal loss: How and why. In International
Conference on Machine Learning, pages 793–801.

Verma, V., Lamb, A., Beckham, C., Najafi, A.,
Mitliagkas, I., Lopez-Paz, D., and Bengio, Y. (2019).
Manifold mixup: Better representations by interpo-
lating hidden states. In International Conference on
Machine Learning, pages 6438–6447.

Weston, J., Watkins, C., et al. (1999). Support vec-
tor machines for multi-class pattern recognition. In
Esann, volume 99, pages 219–224.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz,
D. (2017). mixup: Beyond empirical risk minimiza-
tion. arXiv preprint arXiv:1710.09412.

Zhang, S. and He, N. (2018). On the convergence rate
of stochastic mirror descent for nonsmooth noncon-
vex optimization. arXiv preprint arXiv:1806.04781.

Zhao, P. and Zhang, T. (2015). Stochastic optimiza-
tion with importance sampling for regularized loss
minimization. In international conference on ma-
chine learning, pages 1–9.

Zhong, Z., Zheng, L., Kang, G., Li, S., and Yang, Y.
(2017). Random erasing data augmentation. arXiv
preprint arXiv:1708.04896.

Kenji Kawaguchi*, Haihao Lu*

Appendix

A Proofs

In Appendix A, we provide complete proofs of the theoretical results.

A.1 Proof of Theorem 1

Proof. We just need to show that g̃ is an unbiased estimator of a sub-gradient of Lq(θ) at θt, namely Eg̃ ∈ ∂Lq(θt).

At first, it holds that

Eg̃t =
1

q
E
∑
i∈Q

gti + gtR =
1

q

n∑
i=1

P (i ∈ Q)gti + gtR =
1

q

n∑
j=1

P ((j) ∈ Q)gt(j) + gtR ,

where gti ∈ ∂Li(θt) is a sub-gradient of Li at θt and gtR ∈ ∂R(θt). In the above equality chain, the third equality
is simply the definition of expectation, and the last equality is because ((1), (2), . . . , (n)) is a permutation of
(1, 2, . . . , n).

For any given index j, define Aj = ((1), (2), . . . , (j − 1)), then

P ((j) ∈ Q) = P ((j) ∈ q-argmaxi∈SLi(θ))
= P ((j) ∈ S and S contains at most q − 1 items in Aj)
= P ((j) ∈ S)P (S contains at most q − 1 items in Aj |(j) ∈ S)

= P ((j) ∈ S)
∑q−1
l=0 P (S contains l items in Aj |(j) ∈ S) .

(6)

Notice that S is randomly chosen from sample index set (1, 2, . . . , n) without replacement. There are in total(
n
s

)
different sets S such that |S| = s. Among them, there are

(
n−1
s−1

)
different sets S which contains the index

(j), thus

P ((j) ∈ S) =

(
n−1
s−1

)(
n
s

) . (7)

Given the condition (j) ∈ S, S contains l items in Aj means S contains s− l−1 items in {(j+1), (j+2) . . . , (n)},
thus there are

(
j−1
l

)(
n−j
s−l−1

)
such possible set S, whereby it holds that

P (S contains l items in Aj |(j) ∈ S) =

(
j−1
l

)(
n−j
s−l−1

)(
n−1
s−1

) . (8)

Substituting Equations (7) and (8) into Equation (6), we arrive at

P ((j) ∈ T) =

(
n−1
s−1

)(
n
s

) q−1∑
l=0

(
j−1
l

)(
n−j
s−l−1

)(
n−1
s−1

) =

∑q−1
l=0

(
j−1
l

)(
n−j
s−l−1

)(
n
s

) = γj .

Therefore,

Eg̃t =
1

q

n∑
j=1

P ((j) ∈ Q)gt(j) + gtR =
1

q

n∑
j=1

γjg
t
(j) + gtR ∈ ∂Lq(θt) ,

where the last inequality is due to the aditivity of sub-gradient (for both convex and weakly convex function)

A.2 Proof of Proposition 1

We just need to show that

lim
j,n→∞,j/n=z

γj =

q−1∑
l=0

1

n

(
j

n

)l(
n− j
n

)s−l−1
s!

l!(s− l − 1)!
, (9)

Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk Minimization

then we finish the proof by changing variable z = j
n .

At first, the Stirling’s approximation yields that when n and j are both sufficiently large, it holds that(
n

j

)
∼
√

n

2πj(n− j)
nn

jj(n− j)n−j
. (10)

Thus,

lim
j,n→∞,j/n=z

(
n−s
j−1−l

)(
n−1
j−1

) =

nn−s

jj−1−l(n−j)n−j−s+1+l

nn−1

jj−1(n−j)n−j
=
jl(n− j)s−l−1

ns−1
=

(
j

n

)l(
n− j
n

)s−l−1

, (11)

where the first equality utilize Equation (10) and the fact that s, l, 1 are negligible in the limit case (except the
exponent terms).

On the other hand, it holds by rearranging the factorial numbers that

1

n

(
n−s
j−1−l

)(
n−1
j−1

) s!

l!(s− l − 1)!
=

(
j−1
l

)(
n−j
s−l−1

)(
n
s

) . (12)

Combining Equations (11) and (12) and summing l, we arrive at Equation (9).

By noticing s > q, it holds that

d

dz
γ(z) =

q−1∑
l=1

lzl−1(1− z)s−l−1 s!

l!(s− l − 1)!
−
q−1∑
l=0

(s− l − 1)zl(1− z)s−l−2 s!

l!(s− l − 1)!

=

q−1∑
l=1

zl−1(1− z)s−l−1 s!

(l − 1)!(s− l − 1)!
−
q−1∑
l=0

zl(1− z)s−l−2 s!

l!(s− l − 2)!

=

q−2∑
l=0

zl(1− z)s−l−2 s!

l!(s− l − 2)!
−
q−1∑
l=0

zl(1− z)s−l−2 s!

l!(s− l − 2)!

= −zq−1(1− z)s−q−1 s!

l!(s− l − 2)!

∝ −zq−1(1− z)s−q−1.

In other word, 1− 1
sγ(z) is the cumulative of Beta(q, s− q) when n→∞.

A.3 Proof of Theorem 2

Proof. Notice that g̃t is a sub-gradient of LQ(θt) where LQ(θt) = 1
q

∑
i∈Q Li(θ

t) + R(θt). Suppose g̃t =
1
q

∑
i∈Q gi(θ

t) + gR(θt) where gi(θ
t) is a sub-gradient of Li(θ

t) and gR(θt) is a sub-gradient of R(θt). Then

‖g̃t‖2 =

∥∥∥∥∥∥1

q

∑
i∈Q

gi(θ
t) + gR(θt)

∥∥∥∥∥∥
2

≤ 2

∥∥∥∥∥∥1

q

∑
i∈Q

gi(θ
t)

∥∥∥∥∥∥
2

+
∥∥gR(θt)

∥∥2

 ≤ 2(G2
1 +G2

2) . (13)

Meanwhile, it follows Theorem 1 that g̃t is an unbiased estimator of a sub-gradient of Lq(θ
t). Together with

Equation (13), we obtain the statement (1) by the analysis of convex stochastic sub-gradient descent in Boyd
and Mutapcic (2008).

Furthermore, suppose Li(θ)+ ρ
2‖θ‖

2 is convex for any i, then Lq(θ)+ ρ
2‖θ‖

2 = 1
q

∑n
j=1 γj

(
L(j)(θ) + ρ

2‖θ‖
2
)
+R(θ)

is also convex, whereby Lq(θ) is ρ-weakly convex. We obtain the statement (2) by substituting into Theorem 2.1
in Davis and Drusvyatskiy (2018).

Kenji Kawaguchi*, Haihao Lu*

A.4 Proof of Theorem 3

Before proving Theorem 3, we first show the following proposition, which gives an upper bound for γj :

Proposition 2. For any j ∈ {1, . . . , n}, γj ≤ s
n .

Proof. The value of γj is equal to the probability of ordered SGD choosing the j-th sample in the ordered sequence
(L(1)(θ;D), . . . , L(n)(θ;D)), which is at most the probability of mini-batch SGD choosing the j-th sample. The
probability of mini-batch SGD choosing the j-th sample is s

n .

We are now ready to prove Theorem 3 by finding an upper bound on supθ∈Θ E(x,y)[`(f(x; θ), y)]−Lq(θ;D) based
on McDiarmid’s inequality.

Proof of Theorem 3. Define Φ(D) = supθ∈Θ E(x,y)[`(f(x; θ), y)] − Lq(θ;D). In this proof, our objective is to
provide the upper bound on Φ(D) by using McDiarmid’s inequality. To apply McDiarmid’s inequality to Φ(D),
we first show that Φ(D) satisfies the remaining condition of McDiarmid’s inequality. Let D and D′ be two
datasets differing by exactly one point of an arbitrary index i0; i.e., Di = D′i for all i 6= i0 and Di0 6= D′i0 . Then,
we provide an upper bound on Φ(D′)− Φ(D) as follows:

Φ(D′)− Φ(D) ≤ sup
θ∈Θ

Lq(θ;D)− Lq(θ;D′).

= sup
θ∈Θ

1

q

n∑
j=1

γj(L(j)(θ;D)− L(j)(θ;D′))

≤ sup
θ∈Θ

1

q

n∑
j=1

|γj ||L(j)(θ;D)− L(j)(θ;D′)|

≤ sup
θ∈Θ

1

q

s

n

n∑
j=1

|L(j)(θ;D)− L(j)(θ;D′)|

where the first line follows the property of the supremum, sup(a)− sup(b) ≤ sup(a− b), the second line follows
the definition of Lq, and the last line follows Proposition 2 (|γj | ≤ s

n).

We now bound the last term
∑n
j=1 |L(j)(θ;D) − L(j)(θ;D′)|. This requires a careful examination because

|L(j)(θ;D) − L(j)(θ;D′)| 6= 0 for more than one index j (although D and D′ differ only by exactly one point).
This is because it is possible to have (j;D) 6= (j;D′) for many indexes j where (j;D) = (j) in L(j)(θ;D) and
(j;D′) = (j) in L(j)(θ;D′). To analyze this effect, we now conduct case analysis. Define l(i;D) such that (j) = i
where j = l(i;D); i.e., Li(θ;D) = L(l(i;D))(θ;D).

Consider the case where l(i0;D′) ≥ l(i0;D). Let j1 = l(i0;D) and j2 = l(i0;D′). Then,

n∑
j=1

|L(j)(θ;D)− L(j)(θ;D′)| =
j2−1∑
j=j1

|L(j)(θ;D)− L(j)(θ;D′)|+ |L(j2)(θ;D)− L(j2)(θ;D′)|

=

j2−1∑
j=j1

|L(j)(θ;D)− L(j+1)(θ;D)|+ |L(j2)(θ;D)− L(j2)(θ;D′)|

=

j2−1∑
j=j1

(L(j)(θ;D)− L(j+1)(θ;D)) + L(j2)(θ;D)− L(j2)(θ;D′)

= L(j1)(θ;D)− L(j2)(θ;D′)
≤M,

where the first line uses the fact that j2 = l(i0;D′) ≥ l(i0;D) = j1 where i0 is the index of samples differing in
D and D′. The second line follows the equality (j;D′) = (j + 1;D) from j1 to j2 − 1 in this case. The third line
follows the definition of the ordering of the indexes. The fourth line follows the cancellations of the terms from
the third line.

Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk Minimization

Consider the case where l(i0;D′) < l(i0;D). Let j1 = l(i0;D′) and j2 = l(i0;D). Then,

n∑
j=1

|L(j)(θ;D)− L(j)(θ;D′)| = |L(j1)(θ;D)− L(j1)(θ;D′)|+
j2∑

j=j1+1

|L(j)(θ;D)− L(j)(θ;D′)|

= |L(j1)(θ;D)− L(j1)(θ;D′)|+
j2∑

j=j1+1

|L(j)(θ;D)− L(j−1)(θ;D)|

= L(j1)(θ;D)− L(j1)(θ;D′) +

j2∑
j=j1+1

(L(j)(θ;D)− L(j−1)(θ;D))

= L(j1)(θ;D′)− L(j2)(θ;D)

≤M.

where the first line uses the fact that j1 = l(i0;D′) < l(i0;D) = j2 where i0 is the index of samples differing in
D and D′. The second line follows the equality (j;D′) = (j − 1;D) from j1 + 1 to j2 in this case. The third line
follows the definition of the ordering of the indexes. The fourth line follows the cancellations of the terms from
the third line.

Therefore, in both cases of l(i0;D′) ≥ l(i0;D) and l(i0;D′) < l(i0;D), we have that

Φ(D′)− Φ(D) ≤ s

q

M

n
.

Similarly, Φ(D) − Φ(D′) ≤ s
q
M
n , and hence |Φ(D) − Φ(D′)| ≤ s

q
M
n . Thus, by McDiarmid’s inequality, for any

δ > 0, with probability at least 1− δ,

Φ(D) ≤ ED̄[Φ(D̄)] +
Ms

q

√
ln(1/δ)

2n
.

Moreover, since

n∑
i=1

ri(θ;D)Li(θ;D) =

n∑
j=1

γj

n∑
i=1

1{i = (j)}Li(θ;D) =

n∑
j=1

γjL(j)(θ;D),

we have that

Lq(θ;D) =
1

q

n∑
i=1

ri(θ;D)Li(θ;D) +R(θ).

Therefore,

ED̄[Φ(D̄)]

= ED̄
[
sup
θ∈Θ

E(x̄′,ȳ′)[`(f(x̄′; θ), ȳ′)]− L(θ; D̄) + L(θ; D̄)− Lq(θ; D̄)

]
≤ ED̄

[
sup
θ∈Θ

E(x̄′,ȳ′)[`(f(x̄′; θ), ȳ′)]− L(θ; D̄)

]
−Qn(Θ; s, q)

≤ ED̄,D̄′

[
sup
θ∈Θ

1

n

n∑
i=1

(`(f(x̄′i; θ), ȳ
′
i)− `(f(x̄i; θ), ȳi))

]
−Qn(Θ; s, q)

≤ Eξ,D̄,D̄′

[
sup
θ∈Θ

1

n

n∑
i=1

ξi(`(f(x̄′i; θ), ȳ
′
i)− `(f(x̄i; θ), ȳi))

]
−Qn(Θ; s, q)

≤ 2Rn(Θ)−Qn(Θ; s, q).

where the third line and the last line follow the subadditivity of supremum, the forth line follows the Jensen’s
inequality and the convexity of the supremum, the fifth line follows that for each ξi ∈ {−1,+1}, the distribution

Kenji Kawaguchi*, Haihao Lu*

of each term ξi(`(f(x̄′i; θ), ȳ
′
i) − `(f(x̄i; θ), ȳi)) is the distribution of (`(f(x̄′i; θ), ȳ

′
i) − `(f(x̄i; θ), ȳi)) since D̄ and

D̄′ are drawn iid with the same distribution. Therefore, for any δ > 0, with probability at least 1− δ,

Φ(D) ≤ 2Rn(Θ)−Qn(Θ; s, q) +
Ms

q

√
ln(1/δ)

2n
.

B Additional discussion

The subset Θ in Theorem 3 characterizes the hypothesis space that is {x 7→ f(x; θ) : θ ∈ Θ}. An impor-
tant subtlety here is that given a parameterized model f , one can apply Theorem 3 to a subset Θ that de-
pends on an algorithm and a distribution (but not directly on a dataset) such as Θ = {θ ∈ Rdy : (∃D ∈
A)[θ is the possible output of ordered SGD given (f,D)]} where A is a fixed set of the training datasets such
that D ∈ A with high probability. Thus, even for the exact same model f and problem setting, Theorem 3 might
provide non-vacuous bounds for some choices of Θ but not for other choices of Θ.

Moreover, we can easily obtain data-dependent bounds from Theorem 3 by repeatedly applying Theorem 3 to
several subsets Θ and taking an union bound. For example, given a sequence (Θk)k∈N+ , by applying Theorem 3
to each Θk with δ = δ′ 6

π2k2 (for each k) and by taking a union bound over all k ∈ N+, the following statement
holds: for any δ′ > 0, with probability at least 1− δ′ over an iid draw of n examples D = ((xi, yi))

n
i=1, we have

that for all k ∈ N+ and θ ∈ Θk,

E(x,y)[`(f(x; θ), y)] ≤ Lq(θ;D) + 2Rn(Θk) +
Ms

q

√
ln(π2k2/6δ′)

2n
−Qn(Θk; s, q).

For example, let us choose Θk = {θ ∈ Rdy : ‖θ‖ ≤ ck} with some constants c1 < c2 < · · · . Then, when we

obtain a θ̂q after training based on a particular training dataset D such that ck̄−1 < ‖θ̂q‖ ≤ ck̄ for some k̄,

we can conclude the following: with probability at least 1 − δ′, E(x,y)[`(f(x; θ), y)] ≤ Lq(θ̂q;D) + 2Rn(Θk̄) +

Ms
q

√
ln(πk2/6δ′)

2n − Qn(Θk̄; s, q). This is data-dependent in the sense that Θk̄ is selected in the data-dependent

manner from (Θk)k∈N+ . This is in contrast to the fact that as logically indicated in the theorem statement, one
cannot directly apply Theorem 3 to a single subset Θ that directly depends on training dataset; e.g., one cannot
apply Theorem 3 to a singleton set Θ̂(D) = {θ̂(D)} where θ̂(D) is the output of training given D.

C Additional experimental results and details

C.1 Additional results

Wall-clock time. Table 4 summarises the wall-clock time values (in seconds) of mini-batch SGD and ordered
SGD. The wall-clock time was computed with identical, independent, and freed GPUs for fair comparison. The
wall-clock time measures the time of the whole computations, including the extra computation of finding a set Q
of top-q samples in S in term of loss values. As it can be seen, the extra computation of finding a set Q of top-q
samples is generally negligible. Furthermore, for larger scale problems, ordered SGD tends to be faster per epoch
because of the computational saving of not using the full mini-batch for the backpropagation computation.

Effect of different learning rates and mini-batch sizes. Figures 5 and 6 show the results with different
learning rates and mini-batch sizes. Both use the same setting as that for CIFAR-10 with no data augmentation
in others results shown in Table 1 and Figure 3. Figures 5 and 6 consistently show improvement of ordered SGD
over mini-batch SGD for all learning rates and mini-batch sizes.

Behaviors with different datasets. Figure 7 shows the behaviors of mini-batch SGD vs ordered SGD. As it
can be seen, ordered SGD generally improved mini-batch SGD in terms of test errors. With data argumentation,
we also tried linear logistic regression for the Semeion dataset, and obtained the mean test errors of 19.11 for
mini-batch SGD and 16.54 for ordered SGD (the standard deviations were 1.48 and 1.24); i.e., ordered SGD

Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk Minimization

Figure 5: Test error and training loss (in log scales) versus the number of epoch with CIFAR-10 and no data
augmentation by using different learning rates (LRs). The plotted values indicate the mean values over 10
random trials. The training loss values of LR=0.5 were ‘nan’ for both methods.

Figure 6: Test error versus the number of epoch with CIFAR-10 and no data augmentation by using different
mini-batch sizes s.

improved over mini-batch SGD, but the mean test errors without data-augmentation were better for both mini-
batch SGD and ordered SGD. This is because the data augmentation made it difficult to fit the augmented
training dataset with linear models.

Effect of different values of q. Figure 8 shows the behaviors of mini-batch SGD vs ordered SGD with
different q values. In the figure, label ‘ordered SGD’ corresponds to ordered SGD with the fixed adaptive rule,
and other labels (e.g., ‘ordered SGD: q = 10’) corresponds to ordered SGD with the fixed value of q over the whole
training procedure (e.g., with q = 10). All experiments in the figure were conducted with data augmentations.
PreActResNet18 was used for CIFAR-10, while LeNet was used for other datasets. As it can be seen in Figure
8, ordered SGD generally improved the test errors of mini-batch SGD, even with fixed q values. When the value
of q is fixed to be small as in q = 10, the small q value can be effective during the latter stage of training (e.g.,
Figure 8 b) while the training can be inefficient during the initial stage of training (e.g., Figure 8 c).

Results with ordered Adam. Table 5 compares the testing performance of ordered Adam and (standard)
Adam for different models and datasets. The table reports the mean and the standard deviation of test errors
(i.e., 100 × the average of 0-1 losses on test dataset) over 10 random experiments with different random seeds.
The procedures of ordered Adam follow those of Adam except the additional sample strategy (line 3 - 4 of
Algorithm 1). Table 5 shows that ordered Adam improved Adam for all settings, except CIFAR-10 with data
augmentation. For CIFAR-10 with data augmentation, ordered SGD preformed the best among mini-batch SGD,
Adam, ordered SGD, and ordered Adam, as it can be seen in Tables 1 and 5.

Kenji Kawaguchi*, Haihao Lu*

Table 4: Average wall-clock time (seconds) per epoch.

Data Aug Datasets Model mini-batch SGD ordered SGD difference

No Semeion Logistic model 0.15 (0.01) 0.15 (0.01) 0.00

No MNIST Logistic model 7.16 (0.27) 7.32 (0.24) -0.16

No Semeion SVM 0.17 (0.01) 0.17 (0.01) 0.00

No MNIST SVM 8.60 (0.31) 8.72 (0.29) -0.12

No Semeion LeNet 0.18 (0.01) 0.18 (0.01) 0.00

No MNIST LeNet 9.00 (0.34) 9.12 (0.27) -0.12

No KMNIST LeNet 9.23 (0.33) 9.04 (0.55) 0.19

No Fashion-MNIST LeNet 8.56 (0.48) 9.45 (0.31) -0.90

No CIFAR-10 PreActResNet18 45.55 (0.47) 43.72 (0.93) 1.82

No CIFAR-100 PreActResNet18 46.83 (0.90) 43.95 (1.03) 2.89

No SVHN PreActResNet18 71.95 (1.40) 66.94 (1.67) 5.01

Yes Semeion LeNet 0.28 (0.02) 0.28 (0.02) 0.00

Yes MNIST LeNet 14.44 (0.54) 14.77 (0.41) -0.32

Yes KMNIST LeNet 12.17 (0.33) 11.42 (0.29) 0.75

Yes Fashion-MNIST LeNet 12.23 (0.40) 12.38 (0.37) -0.14

Yes CIFAR-10 PreActResNet18 48.18 (0.58) 46.40 (0.97) 1.78

Yes CIFAR-100 PreActResNet18 47.37 (0.84) 44.74 (0.91) 2.63

Yes SVHN PreActResNet18 72.29 (1.23) 67.95 (1.54) 4.34

Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk Minimization

(a) Semeion & Logistic (b) MNIST & Logistic (c) Semeion & SVM (d) MNIST & SVM

(e) Semeion & LeNet (f) MNIST & LeNet (g) KMNIST (h) Fashion-MNIST

(i) CIFAR-10 (j) CIFAR-100 (k) SVHN (l) Semeion & LeNet

(m) MNIST & LeNet (n) KMNIST (o) Fashion-MNIST (p) CIFAR-10

(q) CIFAR-100 (r) SVHN

Figure 7: Test error and training loss (in log scales) versus epoch for all experiments with mini-batch SGD
and ordered SGD. These are without data augmentation in subfigures (a)-(k), and with data augmentation in
subfigures (l)-(r). The plotted values are the mean values over ten random trials.

Kenji Kawaguchi*, Haihao Lu*

(a) CIFAR-10 (b) KMNIST

(c) Fashion-MNIST (d) Semeion

Figure 8: Effect of different values of q.

Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk Minimization

Table 5: Test errors (%) of Adam and ordered Adam. The last column labeled “Improve” shows relative
improvements (%) from Adam to ordered Adam. In the other columns, the numbers indicate the mean test
errors (and standard deviations in parentheses) over ten random trials. The first column shows ‘No’ for no data
augmentation, and ‘Yes’ for data augmentation.

Data Aug Datasets Model Adam ordered Adam Improve

No Semeion Logistic model 12.12 (0.71) 10.37 (0.77) 14.46

No MNIST Logistic model 7.34 (0.03) 7.20 (0.03) 1.97

No Semeion SVM 11.45 (0.90) 10.91 (0.86) 4.71

No MNIST SVM 7.53 (0.03) 7.43 (0.02) 1.38

No Semeion LeNet 6.21 (0.64) 5.75 (0.42) 7.34

No MNIST LeNet 0.70 (0.04) 0.63 (0.04) 10.07

No KMNIST LeNet 3.14 (0.13) 3.13 (0.14) 0.60

No Fashion-MNIST LeNet 7.79 (0.17) 7.79 (0.21) 0.01

No CIFAR-10 PreActResNet18 13.21 (0.42) 12.98 (0.27) 1.68

No CIFAR-100 PreActResNet18 45.33 (0.89) 44.42 (0.72) 2.01

No SVHN PreActResNet18 4.72 (0.12) 4.64 (0.09) 1.52

Yes Semeion LeNet 5.80 (0.85) 5.70 (0.60) 1.74

Yes MNIST LeNet 0.45 (0.05) 0.44 (0.02) 3.10

Yes KMNIST LeNet 2.01 (0.08) 1.94 (0.16) 3.49

Yes Fashion-MNIST LeNet 6.61 (0.14) 6.56 (0.14) 0.82

Yes CIFAR-10 PreActResNet18 7.92 (0.28) 8.03 (0.13) -1.39

Yes CIFAR-100 PreActResNet18 32.24 (0.52) 32.03 (0.52) 0.65

Yes SVHN PreActResNet18 4.42 (0.12) 4.19 (0.11) 5.29

Kenji Kawaguchi*, Haihao Lu*

C.2 Additional details

For all experiments, mini-batch SGD and ordered SGD (as well as Adam and ordered Adam) were run with the
same machine and the same PyTorch codes except a single-line modification:

• loss = torch.mean(loss) for mini-batch SGD and Adam

• loss = torch.mean(torch.topk(loss, min(q, s), sorted=False, dim=0)[0]) for ordered SGD and
ordered Adam.

For 2-D illustrations in Figure 1. We used the (binary) cross entropy loss, s = 100, and 2 dimensional
synthetic datasets with n = 200 in Figures 1a–1b and n = 1000 in Figures 1c–1d. The artificial neural network
(ANN) used in Figures 1c and 1d is a fully-connected feedforward neural network with rectified linear units
(ReLUs) and three hidden layers, where each hidden layer contained 20 neurons in Figures 1c and 10 neurons in
Figures 1d.

For other numerical results. For mixup and random erasing, we used the same setting as in the corresponding
previous papers (Zhong et al., 2017; Verma et al., 2019). For others, we divided the learning rate by 10 at the
beginning of 10th epoch for all experiments (with and without data augmentation), and of 100th epoch for those

with data augmentation. With y ∈ {1, . . . , dy}, we used the cross entropy loss `(a, y) = − log
exp(ay)∑
k′ exp(ak′)

for

neural networks as well as multinomial logistic models, and a multiclass hinge loss `(a, y) =
∑
k 6=y max(0, 1 +

ak − ay) for SVMs (Weston et al., 1999). For the variant of LeNet, we used the following architecture with five
layers (three hidden layers):

1. Input layer

2. Convolutional layer with 64 5× 5 filters, followed by max pooling of size of 2 by 2 and ReLU.

3. Convolutional layer with 64 5× 5 filters, followed by max pooling of size of 2 by 2 and ReLU.

4. Fully connected layer with 1014 output units, followed by ReLU.

5. Fully connected layer with the number of output units being equal to the number of target classes.

	1 Introduction
	2 Empirical Risk Minimization
	3 Algorithm
	4 Optimization Theory
	5 Generalization Bound
	6 Experiments
	7 Related work and extension
	8 Conclusion
	A Proofs
	A.1 Proof of Theorem 1
	A.2 Proof of Proposition 1
	A.3 Proof of Theorem 2
	A.4 Proof of Theorem 3

	B Additional discussion
	C Additional experimental results and details
	C.1 Additional results
	C.2 Additional details

