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Abstract

Within the framework of probably approximately cor-
rect Markov decision processes (PAC-MDP), much the-
oretical work has focused on methods to attain near op-
timality after a relatively long period of learning and
exploration. However, practical concerns require the at-
tainment of satisfactory behavior within a short period
of time. In this paper, we relax the PAC-MDP condi-
tions to reconcile theoretically driven exploration meth-
ods and practical needs. We propose simple algorithms
for discrete and continuous state spaces, and illustrate
the benefits of our proposed relaxation via theoretical
analyses and numerical examples. Our algorithms also
maintain anytime error bounds and average loss bounds.
Our approach accommodates both Bayesian and non-
Bayesian methods.

Introduction
The formulation of sequential decision making as a Markov
decision process (MDP) has been successfully applied to a
number of real-world problems. MDPs provide the ability to
design adaptable agents that can operate effectively in un-
certain environments. In many situations, the environment
we wish to model has unknown aspects, and thus the agent
needs to learn an MDP by interacting with the environment.
In other words, the agent has to explore the unknown aspects
of the environment to learn the MDP. A considerable amount
of theoretical work on MDPs has focused on efficient ex-
ploration, and a number of principled methods have been
derived with the aim of learning an MDP to obtain a near-
optimal policy. For example, Kearns and Singh (2002) and
Strehl and Littman (2008a) considered discrete state spaces,
whereas Bernstein and Shimkin (2010) and Pazis and Parr
(2013) examined continuous state spaces.

In practice, however, heuristics are still commonly used
(Li 2012). The focus of theoretical work (learning a near-
optimal policy within a polynomial yet long time) has appar-
ently diverged from practical needs (learning a satisfactory
policy within a reasonable time). In this paper, we modify
the prevalent theoretical approach to develop theoretically
driven methods that come close to practical needs.
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Preliminaries

An MDP (Puterman 2004) can be represented as a tu-
ple (S,A,R, P, γ), where S is a set of states, A is a set
of actions, P is the transition probability function, R is
a reward function, and γ is a discount factor. The value
of policy π at state s, V π(s), is the cumulative (dis-
counted) expected reward, which is given by: V π(s) =

E

[ ∞∑
i=0

γiR (si, π(si), si+1) | s0 = s, π

]
, where the expec-

tation is over the sequence of states si+1 ∼ P (S|si, π(si))
for all i ≥ 0. Using Bellman’s equation, the value of the op-
timal policy or the optimal value, V ∗(s), can be written as
V ∗(s) = maxa

∑
s′ P (s

′|s,a))[R(s, a, s′) + γV ∗(s′)].
In many situations, the transition function P and/or the

reward function R are initially unknown. Under such condi-
tions, we often want a policy of an algorithm at time t, At,
to yield a value V At(st) that is close to the optimal value
V ∗(st) after some exploration. Here, st denotes the current
state at time t. More precisely, we may want the following:
for all ε > 0 and for all δ = (0, 1), V At(st) ≥ V ∗(st) − ε,
with probability at least 1 − δ when t ≥ τ , where τ is the
exploration time. The algorithm with a policyAt is said to
be “probably approximately correct” for MDPs (PAC-MDP)
(Strehl 2007) if this condition holds with τ being at most
polynomial in the relevant quantities of MDPs. The notion of
PAC-MDP has a strong theoretical basis and is widely appli-
cable, avoiding the need for additional assumptions, such as
reachability in state space (Jaksch, Ortner, and Auer 2010),
access to a reset action (Fiechter 1994), and access to a par-
allel sampling oracle (Kearns and Singh 1999).

However, the PAC-MDP approach often results in an al-
gorithm over-exploring the state space, causing a low reward
per unit time for a long period of time. Accordingly, past
studies that proposed PAC-MDP algorithms have rarely pre-
sented a corresponding experimental result, or have done so
by tuning the free parameters, which renders the relevant al-
gorithm no longer PAC-MDP (Strehl, Li, and Littman 2006;
Kolter and Ng 2009; Sorg, Singh, and Lewis 2010). This
problem was noted in (Kolter and Ng 2009; Brunskill 2012;
Kawaguchi and Araya 2013). Furthermore, in many prob-
lems, it may not even be possible to guarantee V At close
to V ∗ within the agent’s lifetime. Li (2012) noted that, de-
spite the strong theoretical basis of the PAC-MDP approach,
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heuristic-based methods remain popular in practice. This
would appear to be a result of the above issues. In summary,
there seems to be a dissonance between a strong theoretical
approach and practical needs.

Bounded Optimal Learning
The practical limitations of the PAC-MDP approach lie in
their focus on correctness without accommodating the time
constraints that occur naturally in practice. To overcome the
limitation, we first define the notion of reachability in model
learning, and then relax the PAC-MDP objective based on
it. For brevity, we focus on the transition model.

Reachability in Model Learning
For each state-action pair (s, a), let M(s,a) be a set of all
transition models and P̂t(·|s, a) ∈ M(s,a) be the current
model at time t (i.e., P̂t(·|s, a) : S → [0,∞)). Define
S′(s,a) to be a set of possible future samples as S′(s,a) =

{s′|P (s′|s, a) > 0}. Let f(s,a) : M(s,a) × S′(s,a) → M(s,a)

represent the model update rule; f(s,a) maps a model (in
M(s,a)) and a new sample (in S′(s,a)) to a corresponding
new model (in M(s,a)). We can then write L = (M,f) to
represent a learning method of an algorithm, where M =
∪(s,a)∈(S,A)M(s,a) and f = {f(s,a)}(s,a)∈(S,A).

The set of h-reachable models, ML,t,h,(s,a),
is recursively defined as ML,t,h,(s,a) ={
P̂ ′ ∈M(s,a)|P̂ ′ = f(s,a)(P̂ , s

′) for some P̂ ∈

ML,t,h−1,(s,a) and s′ ∈ S′(s,a)
}

with the boundary

conditionMt,0,(s,a) = {P̂t(·|s, a)}.
Intuitively, the set of h-reachable models,ML,t,h,(s,a) ⊆

M(s,a), contains the transition models that can be obtained
if the agent updates the current model at time t using
any combination of h additional samples s′1, s

′
2, . . . , s

′
h ∼

P (S|s, a). Note that the set of h-reachable models is de-
fined separately for each state-action pair. For example,
ML,t,h,(s1,a1) contains only those models that are reachable
using the h additional samples drawn from P (S|s1, a1).

We define the h-reachable optimal value V d∗L,t,h(s) with
respect to a distance function d as

V d∗L,t,h(s) = max
a

∑
s′

P̂ d∗L,t,h(s′|s, a)[R(s, a, s′) + γV d∗L,t,h(s′)],

where

P̂ d∗L,t,h(·|s, a) = argmin
P̂∈ML,t,h,(s,a)

d(P̂ (·|s, a), P (·|s, a)).

Intuitively, the h-reachable optimal value, V d∗L,t,h(s), is the
optimal value estimated with the “best” model in the set of
h-reachable models (here, the term “best” is in terms of the
distance function d(·, ·)).

PAC in Reachable MDP
Using the concept of reachability in model learning, we de-
fine the notion of “probably approximately correct” in an

h-reachable MDP (PAC-RMDP(h)). Let P(x1, x2, . . . , xn)
be a polynomial in x1, x2, . . . , xn and |MDP| be the com-
plexity of an MDP (Li 2012).

Definition 1. (PAC-RMDP(h)) An algorithm with a policy
At and a learning method L is PAC-RMDP(h) with respect
to a distance function d if for all ε > 0 and for all δ = (0, 1),

1) there exists τ = O(P(1/ε, 1/δ, 1/(1 − γ), |MDP|, h)) such
that for all t ≥ τ ,

V At(st) ≥ V d∗L,t,h(st)− ε

with probability at least 1− δ, and
2) there exists h∗(ε, δ) = O(P(1/ε, 1/δ, 1/(1 − γ), |MDP|))

such that for all t ≥ 0,

|V ∗(st)− V d∗L,t,h∗(ε,δ)(st)|≤ ε.

with probability at least 1− δ.

The first condition ensures that the agent efficiently learns
the h-reachable models. The second condition guarantees
that the learning method L and the distance function d are
not arbitrarily poor.

In the following, we relate PAC-RMDP(h) to PAC-MDP
and near-Bayes optimality. The proofs are given in the ap-
pendix at the end of this paper.

Proposition 1. (PAC-MDP) If an algorithm is PAC-
RMDP(h∗(ε, δ)), then it is PAC-MDP, where h∗(ε, δ) is given
in Definition 1.

Proposition 2. (Near-Bayes optimality) Consider model-
based Bayesian reinforcement learning (Strens 2000). Let
H be a planning horizon in the belief space b. Assume
that the Bayesian optimal value function, V ∗b,H , converges
to the H-reachable optimal function such that, for all ε >
0, |V d∗L,t,H(st) − V ∗b,H(st, bt)|≤ ε for all but polynomial
time steps. Then, a PAC-RMDP(H) algorithm with a pol-
icy At obtains an expected cumulative reward V At(st) ≥
V ∗b,H(st, bt)−2ε for all but polynomial time steps with prob-
ability at least 1− δ.

Note that V At(st) is the actual expected cumulative reward
with the expectation over the true dynamics P , whereas
V ∗b,H(st, bt) is the believed expected cumulative reward with
the expectation over the current belief bt and its belief
evolution. In addition, whereas the PAC-RMDP(H) con-
dition guarantees convergence to an H-reachable optimal
value function, Bayesian optimality does not1. In this sense,
Proposition 2 suggests that the theoretical guarantee of PAC-
RMDP(H) would be stronger than that of near-Bayes opti-
mality with an H step lookahead.

Summarizing the above, PAC-RMDP(h∗(ε, δ)) implies
PAC-MDP, and PAC-RMDP(H) is related to near-Bayes op-
timality. Moreover, as h decreases in the range (0, h∗) or
(0, H), the theoretical guarantee of PAC-RMDP(h) becomes

1A Bayesian estimation with random samples converges to the
true value under certain assumptions. However, for exploration, the
selection of actions can cause the Bayesian optimal agent to ig-
nore some state-action pairs, removing the guarantee of the con-
vergence. This effect was well illustrated by Li (2009, Example 9).



Algorithm 1 Discrete PAC-RMDP
Parameter: h ≥ 0

for time step t = 1, 2, 3, . . . do
Action: Take action based on Ṽ A(st) in Equation (1)
Observation: Save the sufficient statistics
Estimate: Update the model P̂t,0

weaker than previous theoretical objectives. This accommo-
dates the practical need to improve the trade-off between the
theoretical guarantee (i.e., optimal behavior after a long pe-
riod of exploration) and practical performance (i.e., satisfac-
tory behavior after a reasonable period of exploration) via
the concept of reachability. We discuss the relationship to
bounded rationality (Simon 1982) and bounded optimality
(Russell and Subramanian 1995) as well as the correspond-
ing notions of regret and average loss in the appendix.

Discrete Domain
To illustrate the proposed concept, we first consider a sim-
ple case involving finite state and action spaces with an un-
known transition function P . Without loss of generality, we
assume that the reward function R is known.

Algorithm
Let Ṽ A(s) be the internal value function used by the algo-
rithm to choose an action. Let V A(s) be the actual value
function according to true dynamics P . To derive the algo-
rithm, we use the principle of optimism in the face of uncer-
tainty, such that Ṽ A(s) ≥ V d∗L,t,h(s) for all s ∈ S. This can
be achieved using the following internal value function:

Ṽ A(s) = max
a,

P̃∈ML,t,h,(s,a)

∑
s′

P̃ (s′|s, a)[R(s, a, s′) + γṼ A(s′)] (1)

The pseudocode is shown in Algorithm 1. In the follow-
ing, we consider the special case in which we use the sam-
ple mean estimator (which determines L). That is, we use
P̂t(s

′|s, a) = nt(s, a, s
′)/nt(s, a), where nt(s, a) is the num-

ber of samples for the state-action pair (s, a), and nt(s, a, s′)
is the number of samples for the transition from s to s′ given
an action a. In this case, the maximum over the model in
Equation (1) is achieved when all future h observations are
transitions to the state with the best value. Thus, Ṽ A can
be computed by Ṽ A(s) = maxa

∑
s′∈S

nt(s,a,s′)
nt(s,a)+h

[R(s, a, s′)+

γṼ A(s′)] + maxs′
h

nt(s,a)+h
[R(s, a, s′) + γṼ A(s′)].

Analysis
We first show that Algorithm 1 is PAC-RMDP(h) for all
h ≥ 0 (Theorem 1), maintains an anytime error bound and
average loss bound (Corollary 1 and the following discus-
sion), and is related with previous algorithms (Remarks 1
and 2). We then analyze its explicit exploration runtime (Defi-
nition 3). We assume that Algorithm 1 is used with the sam-
ple mean estimator, which determines L. We fix the distance
function as d(P̂ (·|s, a), P (·|s, a)) = ‖P̂ (·|s, a) − P (·|s, a)‖1.
The proofs are given in the appendix.

Theorem 1. (PAC-RMDP) LetAt be a policy of Algorithm 1. Let
z = max(h, ln(2|S||S||A|/δ)

ε(1−γ)
). Then, for all ε > 0, for all δ =

(0, 1), and for all h ≥ 0,

1) for all but at most O
(

z|S||A|
ε2(1−γ)2

ln |S||A|
δ

)
time steps,

V At(st) ≥ V d∗L,t,h(st)− ε, with probability at least 1− δ, and
2) there exist h∗(ε, δ) = O(P(1/ε, 1/δ, 1/(1− γ), |MDP|)) such

that |V ∗(st)−V d∗L,t,h∗(ε,δ)(st)|≤ εwith probability at least
1− δ.

Definition 2. (Anytime error) The anytime error εt,h ∈ R is the
smallest value such that V At(st) ≥ V d∗L,t,h(st)− εt,h.

Corollary 1. (Anytime error bound) With probabil-
ity at least 1 − δ, if h ≤ ln(2|S||S||A|/δ)

ε(1−γ)
, εt,h =

O

(
3

√
|S||A|

t(1− γ)3
ln
|S||A|
δ

ln
2|S||S||A|

δ

)
; otherwise,

εt,h = O
(√

h|S||A|
t(1−γ)2

ln |S||A|
δ

)
.

The anytime T -step average loss is equal to 1
T

∑T
t=1(1 −

γT+1−t)εt,h. Moreover, in this simple problem, we can relate Al-
gorithm 1 to a particular PAC-MDP algorithm and a near-Bayes
optimal algorithm.

Remark 1. (Relation to MBIE) Let m = O( |S|
ε2(1−γ)4

+
1

ε2(1−γ)4
ln |S||A|

ε(1−γ)δ
). Let h∗(s, a) = n(s,a)z(s,a)

1−z(s,a)
, where

z(s, a) = 2
√

2[ln(2|S| − 2)− ln(δ/(2|S||A|m))]/n(s, a).
Then, Algorithm 1 with the input parameter h = h∗(s, a)
behaves identically to a PAC-MDP algorithm, Model
Based Interval Estimation (MBIE) (Strehl and Littman
2008a), the sample complexity of which is O( |S||A|ε3(1−γ)6 (|S|
+ ln |S||A|

ε(1−γ)δ ) ln
1
δ ln

1
ε(1−γ) )).

Remark 2. (Relation to BOLT) Let h = H , whereH is a planning
horizon in the belief space b. Assume that Algorithm 1 is used with
an independent Dirichlet model for each (s, a), which determines
L. Then, Algorithm 1 behaves identically to a near-Bayes optimal
algorithm, Bayesian Optimistic Local Transitions (BOLT) (Araya-
López, Thomas, and Buffet 2012), the sample complexity of which
is O(H

2|S||A|
ε2(1−γ)2

ln |S||A|
δ

).

As expected, the sample complexity for PAC-RMDP(h)
(Theorem 1) is smaller than that for PAC-MDP (Remark 1)
(at least when h ≤ |S|(1 − γ)−3), but larger than that for
near-Bayes optimality (Remark 2) (at least when h ≥ H).
Note that BOLT is not necessarily PAC-RMDP(h), because
misleading priors can violate both conditions in Definition
1.

Further Discussion An important observation is that,
when h ≤ |S|

ε(1−γ)
ln |S||A|

δ
, the sample complexity of Algo-

rithm 1 is dominated by the number of samples required
to refine the model, rather than the explicit exploration
of unknown aspects of the world. Recall that the internal
value function Ṽ A is designed to force the agent to explore,
whereas the use of the currently estimated value function
V d∗L,t,0(s) results in exploitation. The difference between Ṽ A
and V ∗L,t,0(s) decreases at a rate of O(h/nt(s, a)), whereas
the error between V A and V d∗L,t,0(s) decreases at a rate of
O(1/

√
nt(s, a)). Thus, Algorithm 1 would stop the explicit

exploration much sooner (when Ṽ A and V d∗L,t,0(s) become



close), and begin exploiting the model, while still refining it,
so that V d∗L,t,0(s) tends to V A. In contrast, PAC-MDP algo-
rithms are forced to explore until the error between V A and
V ∗ becomes sufficiently small, where the error decreases at
a rate of O(1/

√
nt(s, a)). This provides some intuition to

explain why a PAC-RMDP(h) algorithm with small h may
avoid over-exploration, and yet, in some cases, learn the true
dynamics to a reasonable degree, as shown in the experimen-
tal examples.

In the following, we formalize the above discussion.

Definition 3. (Explicit exploration runtime) The explicit explo-
ration runtime is the smallest integer τ such that for all t ≥ τ ,
|Ṽ At(st)− V d∗L,t,0(st)|≤ ε.

Corollary 2. (Explicit exploration bound) With probability at
least 1 − δ, the explicit exploration runtime of Algorithm 1 is
O( h|S||A|

ε(1−γ) Pr[AK ]
ln |S||A|

δ
) = O( h|S||A|

ε2(1−γ)2
ln |S||A|

δ
), where AK

is the escape event defined in the proof of Theorem 1.

If we assume Pr[AK ] to stay larger than a fixed constant,
or to be very small (≤ ε(1−γ)

3Rmax
) (so that Pr[AK ] does not ap-

pear in Corollary 2 as shown in the corresponding case anal-
ysis for Theorem 1), the explicit exploration runtime can be
reduced toO(h|S||A|

ε(1−γ)
ln |S||A|

δ
). Intuitively, this happens when

the given MDP does not have low yet not-too low probability
and high-consequence transition that is initially unknown.
Naturally, such a MDP is difficult to learn, as reflected in
Corollary 2.

Experimental Example
We compare the proposed algorithm with MBIE (Strehl and
Littman 2008a), variance-based exploration (VBE) (Sorg,
Singh, and Lewis 2010), Bayesian Exploration Bonus (BEB)
(Kolter and Ng 2009), and BOLT (Araya-López, Thomas,
and Buffet 2012). These algorithms were designed to be
PAC-MDP or near-Bayes optimal, but have been used with
parameter settings that render them neither PAC-MDP nor
near-Bayes optimal. In contrast to the experiments in previ-
ous research, we present results with ε set to several theoret-
ically meaningful values2 as well as one theoretically non-
meaningful value to illustrate its property3. Because our al-
gorithm is deterministic with no sampling and no assump-
tions on the input distribution, we do not compare it with
algorithms that use sampling, or rely heavily on knowledge
of the input distribution.

2MBIE is PAC-MDP with the parameters δ and ε. VBE is PAC-
MDP in the assumed (prior) input distribution with the parame-
ter δ. BEB and BOLT are near-Bayes optimal algorithms whose
parameters β and η are fully specified by their analyses, namely
β = 2H2 and η = H . Following Araya-López, Thomas, and
Buffet (2012), we set β and η using the ε′-approximated horizon
H ≈ dlogγ(ε′(1−γ))e = 148. We use the sample mean estimator
for the PAC-MDP and PAC-RMDP(h) algorithms, and an indepen-
dent Dirichlet model for the near-Bayes optimal algorithms.

3We can interpolate their qualitative behaviors with values of ε
other than those presented here. This is because the principle be-
hind our results is that small values of ε causes over-exploration
due to the focus on the near-optimality.
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Figure 1: Average total reward per time step for the Chain
Problem. The algorithm parameters are shown as PAC-
RMDP(h), MBIE(ε, δ), VBE(δ), BEB(β), and BOLT(η).

We consider a five-state chain problem (Strens 2000),
which is a standard toy problem in the literature. In this prob-
lem, the optimal policy is to move toward the state farthest
from the initial state, but the reward structure explicitly en-
courages an exploitation agent, or even an ε-greedy agent,
to remain in the initial state. We use a discount factor of
γ = 0.95 and a convergence criterion for the value iteration
of ε′ = 0.01.

Figure 1 shows the numerical results in terms of the aver-
age reward per time step (average over 1000 runs). As can
be seen from this figure, the proposed algorithm worked bet-
ter. MBIE and VBE work reasonably if we discard the the-
oretical guarantee. As the maximum reward is Rmax = 1,
the upper bound on the value function is

∑∞
i=1 γ

iRmax =
1

1−γRmax = 20. Thus, ε-closeness does not yield any useful
information when ε ≥ 20. A similar problem was noted by
Kolter and Ng (2009) and Araya-López, Thomas, and Buffet
(2012).

In the appendix, we present the results for a problem
with low-probability high-consequence transitions, in which
PAC-RMDP(8) produced the best result.

Continuous Domain
In this section, we consider the problem of a continuous
state space and discrete action space. The transition func-
tion is possibly nonlinear, but can be linearly parameterized
as: s(i)

t+1 = θT(i)Φ(i)(st, at) + ζ
(i)
t , where the state st ∈ S ⊆

RnS is represented by nS state parameters (s(i) ∈ R with
i ∈ {1, . . . , ns}), and at ∈ A is the action at time t. We
assume that the basis functions Φ(i) : S × A → Rni are
known, but the weights θ ∈ Rni are unknown. ζ(i)

t ∈ R is the
noise term and given by ζ

(i)
t ∼ N (0, σ2

(i)). In other words,
P (s

(i)
t+1|st, at) = N (θT(i)Φ(i)(st, at), σ

2
(i)). For brevity, we fo-

cus on unknown transition dynamics, but our method is di-
rectly applicable to unknown reward functions if the reward
is represented in the above form. This problem is a slightly
generalized version of those considered by Abbeel and Ng
(2005), Strehl and Littman (2008b), and Li et al. (2011).



Algorithm
We first define the variables used in our algorithm, and then
explain how the algorithm works. Let θ̂(i) be the vector
of the model parameters for the ith state component. Let
Xt,i ∈ Rt×ni consist of t input vectors ΦT(i)(s, a) ∈ R1×ni

at time t. We then denote the eigenvalue decomposition of
the input matrix as XT

t,iXt,i = Ut,iDt,i(λ(1), . . . , λ(n))U
T
t,i,

where Dt,i(λ(1), . . . , λ(n)) ∈ Rni×ni represents a diag-
onal matrix. For simplicity of notation, we arrange the
eigenvectors and eigenvalues such that the diagonal ele-
ments of Dt,i(λ(1), . . . , λ(n)) are λ(1), . . . , λ(j) ≥ 1 and
λ(j+1), . . . , λ(n) < 1 for some 0 ≤ j ≤ n. We now
define the main variables used in our algorithm: zt,i :=
(XT

t,iXt,i)
−1, gt,i := Ut,iDt,i(

1
λ(1)

, . . . , 1
λ(j)

, 0, . . . , 0)UTt,i, and

wt,i := Ut,iDt,i(0, . . . , 0, 1(j+1), . . . , 1(n))U
T
t,i. Let ∆(i) ≥

sups,a|(θ(i) − θ̂(i))
TΦ(i)(s, a)| be the upper bound on the

model error. Define ς(M) =
√

2 ln(π2M2nsh/(6δ)) where
M is the number of calls for Ih (i.e., the number of comput-
ing r̃ in Algorithm 2).

With the above variables, we define the h-reachable model
interval Ih as
Ih(Φ(i)(s, a), Xt,i)/[h(∆(i) + ς(M)σ(i))] =

|ΦT(i)(s, a)gt,iΦ(i)(s, a)|+‖ΦT(i)(s, a)zt,i‖‖wt,iΦ(i)(s, a)‖.
The h-reachable model interval is a function that

maps a new state-action pair considered in the plan-
ning phase, Φ(i)(s, a), and the agent’s experience,
Xt,i, to the upper bound of the error in the model
prediction. We define the column vector consist-
ing of nS h-reachable intervals as Ih(s, a,Xt) =
[Ih(Φ(1)(s, a), Xt,1), . . . , Ih(Φ(nS)(s, a), Xt,nS )]T .

We also leverage the continuity of the internal value func-
tion Ṽ to avoid an expensive computation (to translate the
error in the model to the error in value).
Assumption 1. (Continuity) There exists L ∈ R such that, for all
s, s′ ∈ S, |Ṽ ∗(s)− Ṽ ∗(s′)|≤ L‖s− s′‖.

We set the degree of optimism for a state-action pair to
be proportional to the uncertainty of the associated model.
Using the h-reachable model interval, this can be achieved
by simply adding a reward bonus that is proportional to the
interval. The pseudocode for this is shown in Algorithm 2.

Analysis
Following previous work (Strehl and Littman 2008b; Li
et al. 2011), we assume access to an exact planning al-
gorithm. This assumption would be relaxed by using a
planning method that provides an error bound. We as-
sume that Algorithm 2 is used with least-squares estima-
tion, which determines L. We fix the distance function
as d(P̂ (·|s, a), P (·|s, a)) = |Es′∼P̂ (·|s,a)[s

′] − Es′∼P (·|s,a)[s
′]|

(since the unknown aspect is the mean, this choice makes
sense). In the following, we use n̄ to represent the average
value of {n(1), . . . , n(nS)}. The proofs are given in the ap-
pendix.
Lemma 3. (Sample complexity of PAC-MDP) For our prob-
lem setting, the PAC-MDP algorithm proposed by Strehl and
Littman (2008b) and Li et al. (2011) has sample complexity

Õ
(

n2
S n̄

2

ε5(1−γ)10

)
.

Algorithm 2 Linear PAC-RMDP

Parameter: h, δ Optional: ∆(i), L

Initialize: θ̂, ∆(i), and L
for time step t = 1, 2, 3, ... . . . do

Action: take an action based on
p̂(s′|s, a)← N (θ̂TΦ(s, a), σ2I)
r̃(s, a, s′)← R(s, a, s′) + L‖Ih(s, a,Xt−1)‖

Observation: Save the input-output pair (st+1,Φt(st, at))

Estimate:Estimate θ̂(i), ∆(i)(if not given), andL(if not given)

Theorem 2. (PAC-RMDP) Let At be the policy of Algorithm 2.
Let z = max(h2 ln m2nsh

δ
, L

2nS n̄ ln2m
ε3

ln nS
δ

). Then, for all ε >
0, for all δ = (0, 1), and for all h ≥ 0,

1) for all but at most m′ = O
(
zL2nS n̄ ln2m
ε3(1−γ)2

ln2 nS
δ

)
time steps

(with m ≤ m′), V At(st) ≥ V d∗L,t,h(st)− ε, with probability at
least 1− δ, and

2) there exists h∗(ε, δ) = O(P(1/ε, 1/δ, 1/(1−γ), |MDP|)) such
that |V ∗(st)−V d∗L,t,h∗(ε,δ)(st)|≤ εwith probability at least
1− δ.

Corollary 3. (Anytime error bound) With probability
at least 1 − δ, if h2 ln m2nsh

δ
≤ L2nS n̄ ln2m

ε3
ln nS

δ
,

εt,h = O

 5

√
L4n2

Sn̄
2 ln2 m

t(1− γ)
ln3 nS

δ

; otherwise,

εt,h = O
(
h2L2nS n̄ ln2m

t(1−γ)
ln2 nS

δ

)
.

The anytime T -step average loss is equal to 1
T

∑T
t=1(1 −

γT+1−t)εt,h.
Corollary 4. (Explicit exploration runtime) With proba-
bility at least 1 − δ, the explicit exploration runtime of

Algorithm 2 is O
(
h2L2nS n̄ lnm

ε2 Pr[Ak]
ln2 nS

δ
ln m2nsh

δ

)
=

O
(
h2L2nS n̄ lnm

ε3(1−γ)
ln2 nS

δ
ln m2nsh

δ

)
, where AK is the escape

event defined in the proof of Theorem 2.

Experimental Examples
We consider two examples: the mountain car problem (Sut-
ton and Barto 1998), which is a standard toy problem in
the literature, and the HIV problem (Ernst et al. 2006),
which originates from a real-world problem. For both ex-
amples, we compare the proposed algorithm with a directly
related PAC-MDP algorithm (Strehl and Littman 2008b;
Li et al. 2011). For the PAC-MDP algorithm, we present
the results with ε set to several theoretically meaningful
values and one theoretically non-meaningful value to il-
lustrate its property4. We used δ = 0.9 for the PAC-MDP
and PAC-RMDP algorithms5. The ε-greedy algorithm is ex-
ecuted with ε = 0.1. In the planning phase, L is estimated
as L← maxs,s′∈Ω|Ṽ A(s)− Ṽ A(s′)|/‖s− s′‖, where Ω is the
set of states that are visited in the planning phase (i.e., fitted

4See footnote 3 on the consideration of different values of ε.
5We considered δ = [0.5, 0.8, 0.9, 0.95], but there was no

change in any qualitative behavior of interest in our discussion.



value iteration and a greedy roll-out method). For both prob-
lems, more detailed descriptions of the experimental settings
are available in the appendix.

Mountain Car In the mountain car problem, the reward is
negative everywhere except at the goal. To reach the goal,
the agent must first travel far away, and must explore the
world to learn this mechanism. Each episode consists of
2000 steps, and we conduct simulations for 100 episodes.

The numerical results are shown in Figure 2. As in the
discrete case, we can see that the PAC-RMDP(h) algorithm
worked well. The best performance, in terms of the total re-
ward, was achieved by PAC-RMDP(10). Since this problem
required a number of consecutive explorations, the random
exploration employed by the ε-greedy algorithm did not al-
low the agent to reach the goal. As a result of exploration
and the randomness in the environment, the PAC-MDP al-
gorithm reached the goal several times, but kept exploring
the environment to ensure near-optimality. From Figure 2,
we can see that the PAC-MDP algorithm quickly converges
to good behavior if we discard the theoretical guarantee (the
difference between the values in the optimal value function
had an upper bound of 120, and the total reward had an up-
per bound of 2000. Hence, ε > 2000 does not yield a useful
theoretical guarantee).

Simulated HIV Treatment This problem is described by
a set of six ordinary differential equations (Ernst et al. 2006).
An action corresponds to whether the agent administers two
treatments (RTIs and PIs) to patients (thus, there are four ac-
tions). Two types of exploration are required: one to learn the
effect of using treatments on viruses, and another to learn the
effect of not using treatments on immune systems. Learning
the former is necessary to reduce the population of viruses,
but the latter is required to prevent the overuse of treatments,
which weakens the immune system. Each episode consists
of 1000 steps (i.e., days), and we conduct simulations for 30
episodes.

As shown in Figure 3, the PAC-MDP algorithm worked
reasonably well with ε = 3010. However, the best total re-
ward did not exceed 3010, and so the PAC-MDP guarantee
with ε = 3010 does not seem to be useful. The ε-greedy algo-
rithm did not work well, as this example required sequential
exploration at certain periods to learn the effects of treat-
ments.

Conclusion
In this paper, we have proposed the PAC-RMDP framework
to bridge the gap between theoretical objectives and practi-
cal needs. Although the PAC-RMDP(h) algorithms worked
well in our experimental examples with small h, it is possi-
ble to devise a problem in which the PAC-RMDP algorithm
should be used with large h. In extreme cases, the algorithm
would reduce to PAC-MDP. Thus, the adjustable theoretical
guarantee of PAC-RMDP(h) via the concept of reachability
seems to be a reasonable objective.

Whereas the development of algorithms with traditional
objectives (PAC-MDP or regret bounds) requires the con-
sideration of confidence intervals, PAC-RMDP(h) concerns
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Figure 2: Total reward per episode for the mountain car
problem with PAC-RMDP(h) and PAC-MDP(ε).
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Figure 3: Total reward per episode for the HIV problem with
PAC-RMDP(h) and PAC-MDP(ε).

a set of h-reachable models. For a flexible model, the deriva-
tion of the confidence interval would be a difficult task, but
a set of h-reachable models can simply be computed (or
approximated) via lookahead using the model update rule.
Thus, future work includes the derivation of a PAC-RMDP
algorithm with a more flexible and/or structured model.
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Appendix A

A1. Proofs of Propositions 1 and 2
In this section, we present the proofs of Propositions 1 and 2.
Proposition 1. (PAC-MDP) PAC-RMDP(h∗(ε, δ)) implies PAC-MDP, where h∗(ε, δ) is given in Definition 1.

Proof. For any PAC-RMDP(h∗(ε, δ)) algorithm, Definition 1 implies that V A(st) ≥ V ∗h∗(st) − ε ≥ V ∗(st) − 2ε with probability at least
1− 2δ for all but polynomial time steps. This satisfies the condition of the PAC-MDP.

Proposition 2. (Near-Bayes optimality) Consider the model-based Bayesian reinforcement learning (Strens 2000). Let H be a planning
horizon in the belief space b. Assume that the Bayesian optimal value function, V ∗b,H , converges to the H-reachable optimal function such
that, for all ε > 0, |V ∗L,t,H(st) − V ∗b,H(st, bt)|≤ ε for all but polynomial time steps. Then, a PAC-RMDP(H) algorithm with a policy At
obtains an expected cumulative reward V At(st) ≥ V ∗b,H(st, bt)− 2ε for all but polynomial time steps with probability at least 1− δ.

Proof. It directly follows Definition 1 and the assumption. For all but polynomial time steps, with probability at least 1 − δ, V A(st) ≥
V ∗L,t,H(st)− ε ≥ V ∗b,H(st, bt)− 2ε.

A2. Relationship to Bounded Rationality and Bounded Optimality
As the concept of PAC-RMDP considers the inherent limitations of a decision maker, it shares properties with the concepts of
bounded rationality (Simon 1982) and bounded optimality (Russell and Subramanian 1995).

Bounded rationality and bounded optimality focus on limitations in the planning phase (e.g., computational resources). In
contrast, PAC-RMDP considers limitations in the learning phase (e.g., the agent’s lifetime). As in the case of bounded rational-
ity, the performance guarantee of a PAC-RMDP(h) algorithm can be arbitrary, depending on the choice of h. On the contrary,
bounded optimality solves the problem of arbitrariness, seemingly at the cost of applicability. It requires a strong notion of
optimality, similar to instance optimality; roughly, we must find the optimal algorithm given the available computational re-
sources. Automated optimization over the set of algorithms is a difficult task. Zilberstein (2008) claims that bounded optimality
is difficult to achieve, resulting in very few successful examples, and is not, in practice, as promising as other bounded rational
methods. However, in future research, it would be interesting to compare PAC-RMDP with a possible relaxation of PAC-MDP
based on a concept similar to bounded optimality.

A3. Corresponding Notions of Regret and Average Loss
In the definition of PAC-RMDP(h), our focus is on learning useful models, enabling us to obtain high rewards in a short period
of time. Instead, one may wish to guarantee the worst total reward in a given time horizon T . There are several ways to achieve
this goal. One solution is to minimize the expected T -step regret bound rA(T ), given by

rA(T ) ≥ V ∗(s0, T )− V A(s0, T ). (1)

In this case, V ∗(s0, T ) = E
[∑T

i=0 γ
iR (s∗i , π

∗(si), s
∗
i+1)

]
, where the sequence of states s∗0, s∗1, . . . , s∗T with s∗0 = s0 is generated

when the agent follows the optimal policy π∗ from s0, and V A(s0, T ) = E
[∑T

i=0 γ
iR (si,Ai(si), si+1)

]
, where the sequence of

states s0, s1, . . . , sT is generated when the agent follows policyAi. Since one mistake in the early stages may make it impossible
to return to the optimal state sequence s∗i , all the regret approaches in the literature rely on some reachability assumptions in the
state space; for example, Jaksch, Ortner, and Auer (2010) assumed that every state was reachable from every other state within
a certain (average) number of steps.

Another approach is to minimize the expected T -step average loss bound rA(T ), which obviates the need for any reachability
assumptions in the state space:

`A(T ) ≥ 1

T

T∑
t=0

[
V ∗(st, T )− V A(st, T )

]
, (2)

where st is the state visited by algorithm A at time t. The value functions inside the sum are defined as V ∗(st, T ) =

E
[∑T−t

i=0 γ
iR (s∗t+i, π

∗(st+i), s
∗
t+i+1)

]
with s∗t = st and V A(s0, T ) = E

[∑T−t
i=0 γ

iR (s∗t+i,At(st+i), st+i+1)
]
. By averaging the

T -step regrets (i.e., losses) of the T initial states s0, s1, . . . , sT visited by A, the average loss mitigates the effects of irreversible
mistakes in the early stages that may dominate the regret.

The expected h-reachable regret bound rAh (T ) and average loss bound `Ah (T ) are defined as rAh (T ) ≥ V ∗L,t,h(s0, T )−V A(s0, T )

and `Ah (T ) ≥ 1
T

∑T
t=1

[
V ∗L,t,h(st, T )− V A(st, T )

]
. That is, they are the same as the standard expected regret and average loss,

respectively, with the exception that the optimal value function V ∗ has been replaced by the h-reachable optimal value function
V ∗L,t,h(st).



While the definition of PAC-RMDP(h) focuses on exploration, the proposed PAC-RMDP(h) algorithms maintain anytime
expected h-reachable average loss bounds and anytime error bounds, and thus the performances of our algorithms are expected
to improve with time, rather than after some number of exploration steps.

A4. Proofs of Theoretical Results for Algorithm 1
We first verify the main properties of Algorithm 1 and then analyze a practically relevant property of the algorithm in the
subsection of Further Discussion. We assume that Algorithm 1 is used with the sample mean estimator, which determines L.

Main Properties To compare the results with those of past studies, we assume that Rmax ≤ c for some fixed constant c. The
effect of this assumption can be seen in the proof of Theorem 1. Algorithm 1 requires no input parameter related to ε and δ. This
is because the required degree of optimism can be determined independently of the unknown aspect of the world. This means
that Theorem 1 holds at any time during an execution for a pair of corresponding ε and δ.

Lemma 1. (Optimism) For all s ∈ S and for all t, h ≥ 0, the internal value Ṽ At(s) used by Algorithm 1 is at least the h-reachable optimal
value V ∗L,t,h(s); Ṽ At(s) ≥ V ∗L,t,h(s).

Proof. The claim follows directly from the construction of Algorithm 1. It can be verified by induction on each step of the value iteration or
the roll-out in a planning algorithm.

Theorem 1. (PAC-RMDP) Let At be a policy of Algorithm 1. Let z = max(h, ln(2|S||S||A|/δ)
ε(1−γ)

). Then, for all ε > 0, for all δ = (0, 1), and
for all h ≥ 0,

1) for all but at most O
(

z|S||A|
ε2(1−γ)2

ln |S||A|
δ

)
time steps, V At(st) ≥ V ∗L,t,h(st)− ε, with probability at least 1− δ, and

2) there exists h∗(ε, δ) = O(P(1/ε, 1/δ, 1/(1− γ), |MDP|)) such that |V ∗(st)− V ∗L,t,h∗(ε,δ)(st)|≤ ε with probability at least 1− δ.

Proof. Let K be a set of state-action pairs where the agent has at least m samples (this corresponds to the set of known state-action pairs
described by Kearns and Singh (2002)). With the boundary condition V A(s, 0) = 0, define the mixed value function V A(s,H) with a finite
horizon H ′ = 1

1−γ ln 6Rmax
ε(1−γ)

as

V A(s,H ′) =

{∑
s′ P (s′|s,A(s))[R(s,A(s), s′) + γV A(s′, H ′ − 1)] if (s,A(s)) ∈ K

maxP̃∈ML,t,h,(s,a)

∑
s′ P̃ (s′|s,A(s))[R(s,A(s), s′) + γV A(s′, H ′ − 1)] otherwise

Let AK be the escape event in which a pair (s, a) /∈ K is generated for the first time when starting at state st, following policy At, and
transitioning based on the true dynamics P for H ′ steps. Then, for all t, h ≥ 0, with probability at least 1− δ/2,

V At(st) ≥ V At(st, H
′)− Rmax

1− γ Pr(Ak)− ε

6

≥ Ṽ At(st)−
Rmax
1− γ Pr(Ak)− ε

3
− Rmax

1− γ

(
h

m
+

√
2 ln(2|S|+1|S||A|/δ)

m

)

≥ V ∗L,t,h(st)−
Rmax
1− γ Pr(Ak)− ε

3
− Rmax

1− γ

(
h

m
+

√
2 ln(2|S|+1|S||A|/δ)

m

)
.

The first inequality follows from the fact that V At(st) and V
At

(st) are only different when event AK occurs, and their difference is
bounded above by Rmax

1−γ (this is the upper bound on the value Ṽ (st)). Furthermore, the finite horizon approximation adds an error of 1/6ε.
A more detailed argument only involves algebraic manipulations that mirror the proofs given by Strehl and Littman (2008a, Lemma 3) and
Kearns and Singh (2002, Lemma 2).

The second inequality follows from the fact that V
A

is different from Ṽ A only for the state-action pairs (s, a) ∈ K, for which Ṽ At(st)

deviates from V
At

(st) by at most Rmax
1−γ ( h

m
+
√

2 ln(2|S|+1|S||A|/δ)/m) with probability at least 1−δ/2. This is because |Ṽ At(st)−
V At

L,t,0(st)|≤
Rmax

1−γ
h
m with certainty, and |V At

L,t,0(st) − V At(st)|≤ Rmax

1−γ

√
2 ln(2|S|+1|S||A|/δ)/m with probability at least

1− δ/2 (the later is due to the result of Weissman et al. (2003, Theorem 2.1) and the union bound for state-action pairs).
The third inequality follows from Lemma 1.
Therefore, if h ≤

√
2m ln(2|S|+1|S||A|/δ),

V At(st) ≥ V ∗L,t,h(st)−
Rmax
1− γ

Pr(Ak)−
ε

3
− 2Rmax

1− γ

√
2 ln(2|S|+1|S||A|/δ)

m
.

If h >
√
2m ln(2|S|+1|S||A|/δ),

V At(st) ≥ V ∗L,t,h(st)−
Rmax
1− γ

Pr(Ak)−
ε

3
− 2Rmax

1− γ
h

m
.



Let us consider the case where h ≤
√
2m ln(2|S|+1|S||A|/δ). We fix m =

72R2
max ln(2|S|+1|S||A|/δ)

ε2(1−γ)2 to give ε
3 in the last term

on the right-hand side. If Pr(AK) ≤ ε(1−γ)
3Rmax

for all t, V At(st) ≥ V ∗L,t,h(st)− ε with probability at least 1− δ/2. For the case

where Pr(AK) > ε(1−γ)
3Rmax

for some t, we define an independent random event A′K such that Pr(A′K) = ε(1−γ)
3Rmax

< Pr(AK).
According to the Chernoff bound, for all k ≥ 4, with probability at least 1− δ/2, the event AK will occur at least k times after

2k
Pr(A′K) ln

2
δ time steps. Thus, by applying the union bound on |S| and |A|, we have a probability of at least 1 − δ/2 of event

AK occurring at least m times for all state-action pairs after O
(
m|S||A|
Pr(A′k)

ln |S||A|δ

)
= O

(
mRmax|S||A|

ε(1−γ) ln |S||A|δ

)
time steps.

Let us carefully consider what this means. Whenever AK occurs, the sample is used to minimize the error between V A and
Ṽ A by the definition of AK . Since Ṽ (s) ≥ V ∗L,t,h(s) holds at any time, whenever AK occurs, the sample is used to reduce the
error in V At(st) ≥ Ṽ At(st) − (error) ≥ V ∗L,t,h(st) − (error) (note that if Ṽ (s) ≥ V ∗L,t,h(s) holds randomly, this event must
occur concurrently with AK to reduce the error on the right-hand side). Thus, after this number of time steps, Pr(AK) goes to
zero with probability at least 1− δ/2. Hence, from the union bound, the above inequality becomes V A(st) ≥ V ∗L,t,h(st)− 2

3ε
with probability at least 1− δ.

For the case where h >
√
2m ln(2|S|+1|S||A|/δ), we fix m = hRmax

6ε(1−γ) . The rest of the proof follows that for the case of
smaller values of h. Therefore, we have proved the first part of the statement.

Finally, we consider the second part of the statement. Let P̂t,h(·|s, a) be the future model obtained by updating the current
model P̂(·|s, a) with h random future samples (h samples drawn from P (S|s, a) for each (s, a) ∈ (S,A)). Using a result given
by Weissman et al. (2003, Theorem 2.1), we know that for all s ∈ S, with probability at least 1− δ,

max
s,a
‖P̂t,h(·|s, a)− P (·|s, a)‖1≤

√
2 ln(2|S|+1|S||A|/δ)

nt,min + h
,

where nt,min = mins,a nt(s, a). Now, if we use the distance function d(P̂ (·|s, a), P (·|s, a)) = ‖P̂ (·|s, a) − P (·|s, a)‖1 to
define the h-reachable optimal function,

|V ∗(st)− V d∗L,t,h∗(ε,δ)(st)| ≤
Rmax
1− γ

max
s,a
‖P d∗L,t,h(·|s, a)− P (·|s, a)‖1

=
Rmax
1− γ

max
s,a

min
P̂∈ML,t,h,(s,a)

‖P̂ (·|s, a)− P (·|s, a)‖1

≤ Rmax
1− γ

√
2 ln(2|S|+1|S||A|/δ)

nt,min + h
,

The last inequality follows that the models reachable with h random samples, P̂t,h(·|s, a) , are contained in a set of h-
reachable models and the best h-reachable model, P d∗L,t,h(·|s, a), explicitly minimize the norm, resulting in that P d∗L,t,h(·|s, a) is
at least as good as P̂t,h(·|s, a) in terms of the norm. The right-hand side of the above inequality becomes less than or equal to ε

when h← h∗(ε, δ) =
2R2

max ln(2|S|+1|S||A|/δ)
ε2(1−γ)2 . Thus, we have the second part of the statement.

Corollary 1. (Anytime error bound) With probability at least 1− δ, if h ≤ ln(2|S||S||A|/δ)
ε(1−γ)

,

εt,h = O

(
3

√
|S||A|

t(1− γ)3
ln
|S||A|
δ

ln
2|S||S||A|

δ

)
,

and otherwise,

εt,h = O

(√
h|S||A|
t(1− γ)2

ln
|S||A|
δ

)
.

Proof. From Theorem 1, if t = c z|S||A|
ε2(1−γ)2

ln |S||A|
δ

with c being some fixed constant, V A(st) ≥ V ∗L,t,h(st) − ε with probability at least

1 − δ. Since this holds for all t ≥ 0 with corresponding ε and δ, it implies that ε2 ≤ A z|S||A|
t(1−γ)2

ln |S||A|
δ

with probability at least 1 − δ.

Substituting z = max(h, ln(2|S||S||A|/δ)
ε(1−γ)

) yields the statement.

The anytime T -step average loss is equal to 1
T

∑T
t=1(1−γT+1−t)εt,h,δ. Since the errors considered in Theorem 1 and Corollary

3 are for an infinite horizon, the factor (1 − γT+1−t) translates the infinite horizon error to the T -step finite horizon error (this
can be seen when we modify the proof of Theorem 1 by replacing 1

1−γ with 1−γT+1−t

1−γ ).
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(a) Average of 1000 runs over all time steps

Algorithm Average 10% 90%
PAC-RMDP(1) 0.357 0.332 0.378
PAC-RMDP(8) 0.343 0.321 0.365
PAC-RMDP(16) 0.328 0.305 0.321
MBIE(0.01, 0.1) 0.160 0.158 0.162
MBIE(20, 0.9) 0.160 0.158 0.162
MBIE(104, 0.2) 0.267 0.250 0.285
VBE(0.1) 0.155 0.152 0.158
VBE(0.99) 0.156 0.153 0.158
VBE(103) 0.220 0.207 0.232
BEB(2×1482) 0.148 0.142 0.154
BOLT(148) 0.240 0.221 0.256

(b) Results for 1000 runs at time step 3000

Figure 1: Average total reward per time step for the Chain Problem. The algorithm parameters are shown as PAC-RMDP(h),
MBIE(ε, δ), VBE(δ), BEB(β), and BOLT(η).
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MBIE(0.01, 0.1) MBIE(10^4, 0.2) VBE(0.1)
VBE(10^3) BEB(2H2) BOLT(H)

(a) Average for 1000 runs over all time steps

Algorithm Average 10% 90%
PAC-RMDP(1) 0.339 0.196 0.772
PAC-RMDP(8) 0.715 0.650 0.784
PAC-RMDP(16) 0.678 0.612 0.747
MBIE(0.01, 0.1) 0.270 0.260 0.279
MBIE(20, 0.9) 0.327 0.313 0.340
MBIE(104, 0.2) 0.697 0.634 0.752
VBE(0.1) 0.090 0.060 0.122
VBE(0.99) 0.094 0.061 0.126
VBE(103) 0.334 0.306 0.360
BEB(2×1482) 0.108 0.103 0.113
BOLT(148) 0.377 0.314 0.441

(b) Results for 1000 runs at time step 3000

Figure 2: Average total reward per time step for the modified Chain Problem. The algorithm parameters are shown as PAC-
RMDP(h), MBIE(ε, δ), VBE(δ), BEB(β), and BOLT(η).

Corollary 2. (Explicit exploration runtime) With probability at least 1 − δ, the explicit exploration runtime of Algorithm 1 is
O( h|S||A|

ε(1−γ) Pr[AK ]
ln |S||A|

δ
) = O( h|S||A|

ε2(1−γ)2
ln |S||A|

δ
), where AK is the escape event defined in the proof of Theorem 1.

Proof. The proof directly follows that of Theorem 1 with z. Compared to the sample complexity of Algorithm 1, z is replaced by h based on
the proof of Theorem 1.

A5. Additional Experimental Example for Discrete Domain
Figure 1 shows the results in the main paper along with 10% and 90% values.Aside from the proposed algorithm, only BOLT
gathered better rewards than a greedy algorithm while maintaining the claimed theoretical guarantee.

In this example, our proposed algorithm worked well and maintained its theoretical guarantee. One might consider the
theoretical guarantee of PAC-RMDP, especially PAC-RMDP(1), to be too weak. Two things should be noted. First, the 1-
reachable value function is not the value function that can be obtained with just one additional sample, but requires an additional
sample for all |S||A| state-action pairs. Second, in contrast to Bayesian optimality, the 1-reachable value function is not the value
function believed to be obtained with |S||A| additional samples, but is possibly reachable in terms of the unknown true world
dynamics with the new samples.

However, it is certainly possible to devise a problem such that PAC-RMDP(1) is not guaranteed to conduct sufficient explo-
ration. As an example, we consider a modified version of the five-state chain problem, where the probability of successfully
moving away from the initial state is very small (= 0.05), thus requiring more extensive exploration. We modified the tran-
sition model as follows: Let a1 be the optimal action that moves the agent away from the initial state. For i = {2, 3, 4, 5},
Pr(si, a1, smin(i+1,5)) = 0.99 and Pr(si, a1, s1) = 0.01. For i = 1, Pr(si, a1, si+1)) = 0.05 and Pr(si, a1, s1) = 0.95. For action a2

and any si, Pr(si, a2, s1) = 1. The numerical results for this example are shown in Figure 2. As expected, the PAC-RMDP(1)
algorithm often became stuck in the initial state.



A6. Proofs of Theoretical Results for Algorithm 2
We assume that Algorithm 2 is used with the least square estimation, which determines L. Because the true world dynamics
are assumed to have the parametric form P (s′|s, a) = N (θTΦ(s, a), σ2I) with a known σ, their unknown aspect is attributed to
the weight vector θ. Therefore, we discuss h-reachability in terms of θ̂ instead of P̂ . For each ith component, Let θ̂∗(i),h,(s,a) be
the best h-reachable model parameter corresponding to the best h-reachable models, P̂ ∗L,t,h (we drop the index L, t and d for
brevity); using the set θ̂∗(i),h,(s,a) for every (s, a) pair results in the h-reachable value function V d∗L,t,h. Note that θ̂(i) is the current
model parameter. In the following, we make a relatively strict assumption to simplify the analysis: when they are not provided as
inputs, the estimated values of L and ∆(i) are correct in that they satisfy Assumption 2 and ∆(i) ≥ sups,a|(θ(i)− θ̂(i))

TΦ(i)(s, a)|.
This assumption can be relaxed by allowing the correctness to be violated with a constant probability. In such a case, we must
force the random event to occur concurrently with the escape event, as discussed in the proof of Theorem 1 (the easiest way
to do so is to take a union bound over the time steps until convergence). Furthermore, if we can specify the inputs L and ∆(i),
there is no need for this assumption.
Lemma 2. (Correctness of the h-reachable model interval) For the entire execution of Algorithm 2, for all state components 1 ≤ i ≤ ns, for
all t, h ≥ 0, and for all (s, a) ∈ (S,A), the following inequality holds with probability at least 1− δ/2:∣∣∣[θ̂(i) − θ̂∗(i),h,(s,a)]

TΦ(i)(s, a)
∣∣∣ ≤ Ih(Φ(i)(s, a), Xt).

Proof. Let s∗1 ∈ S′(s,a) be the future possible observation from which the current model parameter θ̂(i) is updated to θ̂∗(i),1,(s,a). Then,∣∣∣[θ̂∗(i),1,(s,a) − θ̂(i)]
TΦ(i)(s, a)

∣∣∣ =
∣∣∣ΦT(i)(s, a)(XT

t Xt)
−1Φ(i)(s, a)[s∗1 − θ̂∗T(i),1,(s,a)Φ(i)(s, a)]

∣∣∣
≤
∣∣∣∣ΦT(i)(s, a)Dt(

1

λ(1)

, . . . ,
1

λ(n)

)Ut
TΦ(i)(s, a)(∆(i) + ς(M)σ(i))

∣∣∣∣ .
The first line follows directly from a result given by Cook (1977, Equation (5)). The second line is due to the following: with probability

at least 1− 1
2
e−ς

2(M)/2,

s∗1 − θ̂∗T(i),1,(s,a)Φ(i)(s, a) ≤ θT(i)Φ(i)(s, a)− θ̂∗T(i),1,(s,a)Φ(i) + ς(M)σ(i) ≤ |θT(i)Φ(i)(s, a)− θ̂∗T(i),1,(s,a)Φ(i)(s, a)|+ς(M)σ(i)

≤ |θT(i)Φ(i)(s, a)− θ̂T(i)Φ(i)(s, a)|+ς(M)σ(i)

≤ ∆(i) + ς(M)σ(i)

where the first inequality follows that Pr(st+1 > θT(i)Φ(i)(s, a) + ς(M)σ(i)) <
1
2
e−ς

2(M)/2 and the third inequality follows the choice of
the distance function d (i.e., the mean prediction with the best h reachable model is at least as good as that of the best h− 1 model). We then
separate the above into two terms with large and small eigenvalues: with probability at least 1− 1

2
e−ς

2(M)/2,∣∣∣[θ̂∗(i),1(s,a) − θ̂(i)]
TΦ(i)(s, a)

∣∣∣ ≤ |ΦT(i)(s, a)UtDt(
1

λ(1)

, . . . ,
1

λ(j)

, 0, . . . , 0)Ut
TΦ(i)(s, a)

(
∆(i) + ς(M)σ(i)

)
+ ΦT(i)(s, a)UtDt(0, . . . , 0,

1

λ(j+1)

, . . . ,
1

λ(n)

)Ut
TΦ(i)(s, a)(∆(i) + ς(M)σ(i))|.

With wt, we can rewrite part of the second term as UD(0, . . . , 0, 1
λ(j+1)

, . . . , 1
λ(n)

)UT = UD( 1
λ(1)

, . . . , 1
λ(n)

)UTwt. Then, with gt and

zt, with probability at least 1− 1
2
e−ς

2(M)/2,∣∣∣[θ̂∗(i),1,(s,a) − θ̂(i)]
TΦ(i)(s, a)

∣∣∣ ≤ (∆(i) + ς(M)σ(i))
∣∣∣ΦT(i)(s, a)gtΦ(i)(s, a) + ΦT(i)(s, a)ztwtΦ(i)(s, a)

∣∣∣ .
Thus, by applying the union bound for h, with probability at least 1− h

2
e−ς

2(M)/2,∣∣∣[θ̂∗(i),h,(s,a) − θ̂(i)]
TΦ(i)(s, a)

∣∣∣ ≤ h ∣∣∣[θ̂∗(i),1,(s,a) − θ̂(i)]
TΦ(i)(s, a)

∣∣∣
≤ h(∆(i) + ς(M)σ(i))

∣∣∣ΦT(i)(s, a)gtΦ(i)(s, a) + ΦT(i)(s, a)ztwtΦ(i)(s, a)
∣∣∣

≤ Ih(Φ(i)(s, a), Xt).

For ns components, the above inequality holds with probability at least 1 − nsh
2
e−ς

2(M)/2 (union bound). For all M ≥ 1, the above

inequality holds with probability at least 1 − nsh
2

∑∞
M=1 e

−ς2(M)/2 (union bound). Substituting ς(M) =
√

2 ln(π2M2nsh/(6δ)), we
obtain the statement.

In Lemma 3 and Theorem 2, following previous work (Strehl and Littman 2008b; Li et al. 2011), we assume that an exact
planning algorithm is accessible. This assumption will be relaxed by using a planning method that provides an error bound. We
also assume that Rmax ≤ c1, ∆(i) ≤ c2, and ‖θ‖≤ c3 for some fixed constants c1, c2, and c3. Removing this assumption results
in these quantities appearing in the sample complexity, but produces no exponential dependence (thus, the sample complexity



remains polynomial). We assume that M = O(the number of samples), meaning that a planing algorithm calls Ih every iteration
at most for a constant number of times. In the following, we use n̄ to represent the average value of {n(1), ..., n(nS)}. Before
analyzing the proposed algorithm, we re-derive the sample complexity of an existing PAC-MDP algorithm (Strehl and Littman
2008b; Li et al. 2011) for our problem setting.
Lemma 3. (Sample complexity of PAC-MDP) With an appropriate parameter setting, the PAC-MDP algorithm proposed by Strehl and
Littman (2008b) and Li et al. (2011) has the following sample complexity:

Õ

(
n2
Sn̄

2

ε5(1− γ)10

)
.

Proof. The proof follows directly from Theorems 1 and 3 in the previous work of Li et al. (2011). The only difference is that we need to take
a union bound of different components Φ(i) with varying domains, codomains and dimensions n(s).

Theorem 2. (PAC-RMDP) Let At be a policy of Algorithm 2. Let z = max(h2 ln m2nsh
δ

, L
2nS n̄ ln2m

ε3
ln nS

δ
). Then, for all ε > 0, for all

δ = (0, 1), and for all h ≥ 0,

1) for all but at most m′ = O
(
zL2nS n̄ ln2m
ε3(1−γ)2

ln2 nS
δ

)
time steps (with m ≤ m′), V At(st) ≥ V ∗L,t,h(st)− ε with probability at least 1− δ,

and
2) there exists h∗(ε, δ) = O(P(1/ε, 1/δ, 1/(1− γ), |MDP|)) such that |V ∗(st)− V ∗L,t,h∗(ε,δ)(st)|≤ ε with probability at least 1− δ.

Proof. Let Ṽ A be the internal value function used in Algorithm 2. We prove the statement by following the structure of the proof of Theorem
1. DefineK,m,AK , V , andH in the same manner as in the proof of Theorem 1, and let the vector consisting of nS estimation error intervals
be ER(s, a) = (|(θ(1) − θ̂(1))

TΦ(1)(s, a)|, . . . , |(θ(ns) − θ̂(ns))
TΦ(ns)(s, a)|. By following the proof of Theorem 1, with probability at

least 1− δ/2 (due to Lemma 2),

V A(st) ≥ Ṽ A(st)−
Rmax
1− γ Pr(Ak)− ε

3
− L

(
max
s,a
‖Ih(s, a,Xm′)‖+ max

s,a
‖ER(s, a)‖

)
≥ V ∗L,t,h(st)−

c1
1− γ Pr(Ak)− ε

3
− L

(
max
s,a
‖Ih(s, a,Xm′)‖+ max

s,a
‖ER(s, a)‖

)
.

In the second line, we used the assumption Rmax ≤ c1. In the first line, maxs,a L‖Ih(s, a,Xt)‖ is the difference between Ṽ A(st)

and V ∗L,t,0(st), and maxs,a L‖ER(s, a)‖ is the difference between V ∗L,t,0(st) and V A. The second line follows from the fact that Ṽ A ≥
V ∗L,t,h(st) because of the correctness of Ih shown in Lemma 2 and the assignment of the most optimistic value within the interval Ih (based
on Assumptions 1 and 2). We now impose an upper bound on ‖Ih(s, a,Xt)‖ and ‖ER(s, a)‖. Following a proof given by Li et al. (2011,
Theorem 1) with the assumption ∆(i) ≤ c2 and ‖θ‖≤ c3, with probability at least 1− δ

4nS
,∣∣∣(θ(i) − θ̂(i))

TΦ(i)(s, a)
∣∣∣ ≤ ‖q̄‖∆E(θ̂) + ‖ū‖≤

2c3
√
n(i) lnm

m1/4

(
24c2 ln

8nS
δ

)1/4

+
(2c3
√

lnm+ 5)
√
n(i)√

m

≤ O

(
(n(i) lnm)1/2(ln(nS/δ))

1/4

m1/4

)
,

where ‖q̄‖, ‖ū‖ and ∆E(θ̂) are as defined by Li et al. (2011). Since ΦT(i)zt(st+1 − θ̂Tt+1Φ(i)) = θ̂t+1 − θ̂t, there exist θ̂ and θ̂′ such that∥∥∥ΦT(i)(s, a)zt(∆
(i) + ς(M)σ(i))

∥∥∥ ≤ ‖θ̂ − θ̂′‖≤ ‖θ̂‖+‖θ̂′‖≤ 2c3, where we use the assumption ‖θ‖≤ c3. Then, following the proofs of
Lemmas 11, 12, and 13 given by Auer (2002),

Ih(Φ(i)(s, a), Xt)

h
≤ (∆(i) + ς(M)σ(i))

∑
j:λj≥1

Φ2
j

λj
+ ‖θ̂ − θ̂′‖

√ ∑
j:λj<1

Φ2
j

≤
20(c2 +

√
2 ln(π2M2nsh/(6δ))σ(i))n ln(m)

m
+ 2c3

√
20n(i)

m

≤ O
(√

n(i)√
m

lnm
√

ln(m2nsh/(6δ))

)
.

If h ≤ O( m1/2(lnnS/δ)
1/4

(lnm)1/2(ln(m2nsh/(6δ)))1/2
), with probability at least 1− ns δ

4ns
− δ/2,

V A(st) ≥ V ∗L,t,h(st)−
c1 Pr(Ak)

1− γ − ε

3
−O

(
Ln

1/2
S n̄1/2(lnm)1/2(ln(nS/δ))

1/4

m1/4

)
.

If h > O( m1/2(lnnS/δ)
1/4

(lnm)1/2(ln(m2nsh/(6δ)))1/2
), with probability at least 1− ns δ

4ns
− δ/2,

V A(st) ≥ V ∗L,t,h(st)−
c1 Pr(Ak)

1− γ − ε

3
−O

(
Lhn

1/2
S n̄1/2

√
m

lnm
√

ln(m2nsh/(6δ))

)
.



To have ε/3 in the last term, we fix m = O(
L4n2

S n̄
2 ln4m

ε4
ln nS

δ
) for the former case, and m = O(

L2h2nS n̄ ln2m ln(m2nsh/(6δ))

ε2
) for the

latter case. Then, the rest of the first part of the statement follows from the proof of Theorem 1. That is, we can show that by applying the
Chernoff bound, the escape event happens no more than the sample complexity in the statement with probability 1 − δ/2 unless the term
c1 Pr(Ak)

1−γ is negligible. Taking union bound on the failure probability, we obtain the sample complexity in the statement with probability at
leat 1− δ.

Finally, we consider the second part of the statement, following the proof in Theorem 1. Let θ̂(i),h,(s,a) be the future model parameter
obtained by updating the current model θ̂(i) with h random future samples (h samples drawn from P (S|s, a) for each (s, a) ∈ (S,A)).

Based on the first part of the proof, |(θ(i)− θ̂(i),h,(s,a))
TΦ(i)(s, a)|≤ O

(
(n(i) ln(nmin+h))1/2(ln(nS/δ))

1/4

(nmin+h)1/4

)
with probability at least 1− δ.

Since |(θ(i) − θ̂∗(i),h,(s,a))
TΦ(i)(s, a)|≤ |(θ(i) − θ̂(i),h,(s,a))

TΦ(i)(s, a)| (this directly follows the definition of θ̂∗(i),h,(s,a) and the choice of

the distance function d), this implies that h∗(ε, δ) = O(
L4n2

S n̄
2 ln2m

ε4
ln nS

δ
) is sufficient.

Corollary 3. (Anytime error bound) With probability at least 1− δ, if h2 ln m2nsh
δ
≤ L2nS n̄ ln2m

ε3
ln nS

δ
,

εt,h = O

 5

√
L4n2

Sn̄
2 ln2 m

t(1− γ)
ln3 nS

δ

 ,

and otherwise,

εt,h = O

(
h2L2nSn̄ ln2 m

t(1− γ)
ln2 nS

δ

)
.

Proof. The proof follows directly from Theorem 2 and the proof of Corollary 1.

As in the discrete case, the anytime T -step average loss can be computed by summing the anytime errors as 1
T

∑T
t=1(1 −

γT+1−t)εt,h,δ. In addition, we can derive the explicit exploration runtime.
Corollary 6. (Explicit exploration runtime) With probability at least 1− δ, the explicit exploration runtime of Algorithm 2 is

O

(
h2L2nSn̄ lnm

ε2 Pr[Ak]
ln2 nS

δ
ln
m2nsh

δ

)
= O

(
h2L2nSn̄ lnm

ε3(1− γ)
ln2 nS

δ
ln
m2nsh

δ

)
,

where AK is the escape event defined in the proof of Theorem 2.

Proof. The proof follows that of Theorem 2. Compared to the sample complexity of Algorithm 2, z is replaced by h based on the proof of
Theorem 2.

A7. Experimental Settings for Continuous Domain
For each problem used in the main paper, we present more detailed descriptions of the experimental settings.

Mountain Car In the mountain car problem, the reward is negative everywhere except at the goal. To reach the goal, the
agent must first travel far away, and must explore the world to learn this mechanism. To require a greater degree of exploration,
we modify the original problem as follows: The agent obtains a reward equal to -0.9 around the initial position (position =
[-0.6, 0.4]), and -1.0 everywhere else but at the goal. At the start of each episode, the agent is always at the bottom of the valley
(position = -0.5) with zero velocity. Moreover, a small amount of Gaussian noise with standard deviation 0.001 is added to the
velocity. Our model uses 10 grids of residual basis functions over the control signal and velocity as features. For the planning
phase, we use a fitted value iteration with a 30×30 grid of residual basis functions. We set ∆(i) and the corresponding parameter
in the PAC-MDP algorithm to be 0.14, because the velocity is bounded in [−0.07, 0.07]. Each episode consists of 2000 steps,
and we conduct simulations for 100 episodes.

Simulated HIV treatment This problem is described by a set of six ordinary differential equations (Ernst et al. 2006). An
action corresponds to whether the agent administers two treatments (RTIs and PIs) to patients (thus, there are four actions).
Two types of exploration are required: one to learn the effect of using treatments on viruses, and another to learn the effect of
not using treatments on immune systems. Learning the former is necessary to reduce the population of viruses, but the latter is
required to prevent the overuse of treatments, which weakens the immune system. We select the initial state to be unhealthy,
following Ernst et al. (2006) and Pazis and Parr (2013). As in previous work, we assume that noise-free data can be obtained
every five days. Unlike past studies, we assume that noisy data can be obtained a day after each instance of noise-free data is
collected, with the noise term being ζ′ ∼ N (0, 0.1). We add another noise term to represent the model error with ζ ∼ N (0, 0.01)
for each dynamic state. For the model, we use the six states and the multiple of any two of these six states as features (i.e., the
number of features is 6 +

(
6
2

)
). For planning, we use a greedy roll-out method, as described by Adams et al. (2004, Section 5).

We set ∆(i) and the corresponding parameter in the PAC-MDP algorithm to be the average error among all the predictions and
observations. Each episode consists of 1000 days, and we conduct simulations for 30 episodes.


