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Abstract

This paper presents a Bayesian optimization method with exponential conver-
gence without the need of auxiliary optimization and without the δ-cover sam-
pling. Most Bayesian optimization methods require auxiliary optimization: an ad-
ditional non-convex global optimization problem, which can be time-consuming
and hard to implement in practice. Also, the existing Bayesian optimization
method with exponential convergence [1] requires access to the δ-cover sampling,
which was considered to be impractical [1, 2]. Our approach eliminates both re-
quirements and achieves an exponential convergence rate.

1 Introduction

We consider a general global optimization problem: maximize f(x) subject to x ∈ Ω ⊂ RD where
f : Ω → R is a non-convex black-box deterministic function. Such a problem arises in many real-
world applications, such as parameter tuning in machine learning [3], engineering design problems
[4], and model parameter fitting in biology [5]. For this problem, one performance measure of an
algorithm is the simple regret, rn, which is given by rn = supx∈Ω f(x) − f(x+) where x+ is the
best input vector found by the algorithm. For brevity, we use the term “regret” to mean simple regret.

The general global optimization problem is known to be intractable if we make no further assump-
tions [6]. The simplest additional assumption to restore tractability is to assume the existence of a
bound on the slope of f . A well-known variant of this assumption is Lipschitz continuity with a
known Lipschitz constant, and many algorithms have been proposed in this setting [7, 8, 9]. These
algorithms successfully guaranteed certain bounds on the regret. However appealing from a theoret-
ical point of view, a practical concern was soon raised regarding the assumption that a tight Lipschitz
constant is known. Some researchers relaxed this somewhat strong assumption by proposing proce-
dures to estimate a Lipschitz constant during the optimization process [10, 11, 12].

Bayesian optimization is an efficient way to relax this assumption of complete knowledge of the Lip-
schitz constant, and has become a well-recognized method for solving global optimization problems
with non-convex black-box functions. In the machine learning community, Bayesian optimization—
especially by means of a Gaussian process (GP)—is an active research area [13, 14, 15]. With the
requirement of the access to the δ-cover sampling procedure (it samples the function uniformly such
that the density of samples doubles in the feasible regions at each iteration), de Freitas et al. [1] re-
cently proposed a theoretical procedure that maintains an exponential convergence rate (exponential
regret). However, as pointed out by Wang et al. [2], one remaining problem is to derive a GP-based
optimization method with an exponential convergence rate without the δ-cover sampling procedure,
which is computationally too demanding in many cases.

In this paper, we propose a novel GP-based global optimization algorithm, which maintains an
exponential convergence rate and converges rapidly without the δ-cover sampling procedure.
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2 Gaussian Process Optimization

In Gaussian process optimization, we estimate the distribution over function f and use this informa-
tion to decide which point of f should be evaluated next. In a parametric approach, we consider a pa-
rameterized function f(x; θ), with θ being distributed according to some prior. In contrast, the non-
parametric GP approach directly puts the GP prior over f as f(·) ∼ GP (m(·), κ(·, ·)) wherem(·) is
the mean function and κ(·, ·) is the covariance function or the kernel. That is, m(x) = E[f(x)] and
κ(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))T ]. For a finite set of points, the GP model is simply a
joint Gaussian: f(x1:N ) ∼ N (m(x1:N ),K), where Ki,j = κ(xi, xj) and N is the number of data
points. To predict the value of f at a new data point, we first consider the joint distribution over f
of the old data points and the new data point:

(
f(x1:N )
f(xN+1)

)
∼ N

(
m(x1:N )
m(xN+1)

,

[
K k
kT κ(xN+1, xN+1)

])
where k = κ(x1:N ,xN+1) ∈ RN×1. Then, after factorizing the joint distribution using the Schur
complement for the joint Gaussian, we obtain the conditional distribution, conditioned on observed
entities DN := {x1:N , f(x1:N )} and xN+1, as:

f(xN+1)|DN , xN+1 ∼ N (µ(xN+1|DN ), σ2(xN+1|DN ))

where µ(xN+1|DN ) = m(xN+1) + kTK−1(f(x1:N ) − m(x1:N )) and σ2(xN+1|DN ) =
κ(xN+1,xN+1)− kTK−1k. One advantage of GP is that this closed-form solution simplifies both
its analysis and implementation.

To use a GP, we must specify the mean function and the covariance function. The mean function is
usually set to be zero. With this zero mean function, the conditional mean µ(xN+1|DN ) can still
be flexibly specified by the covariance function, as shown in the above equation for µ. For the co-
variance function, there are several common choices, including the Matern kernel and the Gaussian
kernel. For example, the Gaussian kernel is defined as κ(x, x′) = exp

(
− 1

2 (x− x′)TΣ−1(x− x′)
)

where Σ−1 is the kernel parameter matrix. The kernel parameters or hyperparameters can be esti-
mated by empirical Bayesian methods [16]; see [17] for more information about GP.

The flexibility and simplicity of the GP prior make it a common choice for continuous objective
functions in the Bayesian optimization literature. Bayesian optimization with GP selects the next
query point that optimizes the acquisition function generated by GP. Commonly used acquisition
functions include the upper confidence bound (UCB) and expected improvement (EI). For brevity,
we consider Bayesian optimization with UCB, which works as follows. At each iteration, the UCB
function U is maintained as U(x|DN ) = µ(x|DN ) + ςσ(x|DN ) where ς ∈ R is a parameter of the
algorithm. To find the next query xn+1 for the objective function f , GP-UCB solves an additional
non-convex optimization problem with U as xN+1 = arg maxx U(x|DN ). This is often carried out
by other global optimization methods such as DIRECT and CMA-ES. The justification for intro-
ducing a new optimization problem lies in the assumption that the cost of evaluating the objective
function f dominates that of solving additional optimization problem.

For deterministic function, de Freitas et al. [1] recently presented a theoretical procedure that main-
tains exponential convergence rate. However, their own paper and the follow-up research [1, 2] point
out that this result relies on an impractical sampling procedure, the δ-cover sampling. To overcome
this issue, Wang et al. [2] combined GP-UCB with a hierarchical partitioning optimization method,
the SOO algorithm [18], providing a regret bound with polynomial dependence on the number of
function evaluations. They concluded that creating a GP-based algorithm with an exponential con-
vergence rate without the impractical sampling procedure remained an open problem.

3 Infinite-Metric GP Optimization

3.1 Overview

The GP-UCB algorithm can be seen as a member of the class of bound-based search methods,
which includes Lipschitz optimization, A* search, and PAC-MDP algorithms with optimism in the
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face of uncertainty. Bound-based search methods have a common property: the tightness of the
bound determines its effectiveness. The tighter the bound is, the better the performance becomes.
However, it is often difficult to obtain a tight bound while maintaining correctness. For example,
in A* search, admissible heuristics maintain the correctness of the bound, but the estimated bound
with admissibility is often too loose in practice, resulting in a long period of global search.

The GP-UCB algorithm has the same problem. The bound in GP-UCB is represented by UCB,
which has the following property: f(x) ≤ U(x|D) with some probability. We formalize this prop-
erty in the analysis of our algorithm. The problem is essentially due to the difficulty of obtaining a
tight bound U(x|D) such that f(x) ≤ U(x|D) and f(x) ≈ U(x|D) (with some probability). Our
solution strategy is to first admit that the bound encoded in GP prior may not be tight enough to be
useful by itself. Instead of relying on a single bound given by the GP, we leverage the existence of
an unknown bound encoded in the continuity at a global optimizer.
Assumption 1. (Unknown Bound) There exists a global optimizer x∗ and an unknown semi-metric
` such that for all x ∈ Ω, f(x∗) ≤ f(x) + ` (x, x∗) and ` (x, x∗) <∞.

In other words, we do not expect the known upper bound due to GP to be tight, but instead expect that
there exists some unknown bound that might be tighter. Notice that in the case where the bound by
GP is as tight as the unknown bound by semi-metric ` in Assumption 1, our method still maintains an
exponential convergence rate and an advantage over GP-UCB (no need for auxiliary optimization).
Our method is expected to become relatively much better when the known bound due to GP is less
tight compared to the unknown bound by `.

As the semi-metric ` is unknown, there are infinitely many possible candidates that we can think of
for `. Accordingly, we simultaneously conduct global and local searches based on all the candidates
of the bounds. The bound estimated by GP is used to reduce the number of candidates. Since
the bound estimated by GP is known, we can ignore the candidates of the bounds that are looser
than the bound estimated by GP. The source code of the proposed algorithm is publicly available at
http://lis.csail.mit.edu/code/imgpo.html.

3.2 Description of Algorithm

Figure 1 illustrates how the algorithm works with a simple 1-dimensional objective function. We
employ hierarchical partitioning to maintain hyperintervals, as illustrated by the line segments in the
figure. We consider a hyperrectangle as our hyperinterval, with its center being the evaluation point
of f (blue points in each line segment in Figure 1). For each iteration t, the algorithm performs the
following procedure for each interval size:

(i) Select the interval with the maximum center value among the intervals of the same size.

(ii) Keep the interval selected by (i) if it has a center value greater than that of any larger
interval.

(iii) Keep the interval accepted by (ii) if it contains a UCB greater than the center value of any
smaller interval.

(iv) If an interval is accepted by (iii), divide it along with the longest coordinate into three new
intervals.

(v) For each new interval, if the UCB of the evaluation point is less than the best function value
found so far, skip the evaluation and use the UCB value as the center value until the interval
is accepted in step (ii) on some future iteration; otherwise, evaluate the center value.

(vi) Repeat steps (i)–(v) until every size of intervals are considered

Then, at the end of each iteration, the algorithm updates the GP hyperparameters. Here, the purpose
of steps (i)–(iii) is to select an interval that might contain the global optimizer. Steps (i) and (ii)
select the possible intervals based on the unknown bound by `, while Step (iii) does so based on the
bound by GP.

We now explain the procedure using the example in Figure 1. Let n be the number of divisions of
intervals and let N be the number of function evaluations. t is the number of iterations. Initially,
there is only one interval (the center of the input region Ω ⊂ R) and thus this interval is divided,
resulting in the first diagram of Figure 1. At the beginning of iteration t = 2 , step (i) selects the third
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t = 1, n = 2 (N = 3) t = 2, n = 3 (N = 5) t = 3, n = 4 (N = 7) t = 3, n = 5 (N = 9)

t = 4, n = 6 (N = 11) t = 9, n = 16 (N = 26) t = 9, n = 17 (N = 29) t = 10, n = 18 (N = 30)

…

Skipped due to GP:Skipped due to GP:

Objective function
UCB by GP

New query point

* Evaluated Points

* GP dummy * GP dummy resolved

Figure 1: An illustration of IMGPO: t is the number of iteration, n is the number of divisions (or
splits), N is the number of function evaluations.

interval from the left side in the first diagram (t = 1, n = 2), as its center value is the maximum.
Because there are no intervals of different size at this point, steps (ii) and (iii) are skipped. Step
(iv) divides the third interval, and then the GP hyperparameters are updated, resulting in the second
diagram (t = 2, n = 3). At the beginning of iteration t = 3, it starts conducting steps (i)–(v) for the
largest intervals. Step (i) selects the second interval from the left side and step (ii) is skipped. Step
(iii) accepts the second interval, because the UCB within this interval is no less than the center value
of the smaller intervals, resulting in the third diagram (t = 3, n = 4). Iteration t = 3 continues
by conducting steps (i)–(v) for the smaller intervals. Step (i) selects the second interval from the
left side, step (ii) accepts it, and step (iii) is skipped, resulting in the forth diagram (t = 3, n = 4).
The effect of the step (v) can be seen in the diagrams for iteration t = 9. At n = 16, the far right
interval is divided, but no function evaluation occurs. Instead, UCB values given by GP are placed
in the new intervals indicated by the red asterisks. One of the temporary dummy values is resolved
at n = 17 when the interval is queried for division, as shown by the green asterisk. The effect of
step (iii) for the rejection case is illustrated in the last diagram for iteration t = 10. At n = 18, t is
increased to 10 from 9, meaning that the largest intervals are first considered for division. However,
the three largest intervals are all rejected in step (iii), resulting in the division of a very small interval
near the global optimum at n = 18.

3.3 Technical Detail of Algorithm

We define h to be the depth of the hierarchical partitioning tree, and ch,i to be the center point
of the ith hyperrectangle at depth h. Ngp is the number of the GP evaluations. Define depth(T )
to be the largest integer h such that the set Th is not empty. To compute UCB U , we use ςM =√

2 log(π2M2/12η) whereM is the number of the calls made so far for U (i.e., each time we use U ,
we increment M by one). This particular form of ςM is to maintain the property of f(x) ≤ U(x|D)
during an execution of our algorithm with probability at least 1 − η. Here, η is the parameter of
IMGPO. Ξmax is another parameter, but it is only used to limit the possibly long computation of
step (iii) (in the worst case, step (iii) computes UCBs 3Ξmax times although it would rarely happen).

The pseudocode is shown in Algorithm 1. Lines 8 to 23 correspond to steps (i)-(iii). These lines
compute the index i∗h of the candidate of the rectangle that may contain a global optimizer for each
depth h. For each depth h, non-null index i∗h at Line 24 indicates the remaining candidate of a
rectangle that we want to divide. Lines 24 to 33 correspond to steps (iv)-(v) where the remaining
candidates of the rectangles for all h are divided. To provide a simple executable division scheme
(line 29), we assume Ω to be a hyperrectangle (see the last paragraph of section 4 for a general case).

Lines 8 to 17 correspond to steps (i)-(ii). Specifically, line 10 implements step (i) where a single
candidate is selected for each depth, and lines 11 to 12 conduct step (ii) where some candidates are
screened out. Lines 13 to 17 resolve the the temporary dummy values computed by GP. Lines 18
to 23 correspond to step (iii) where the candidates are further screened out. At line 21, T ′h+ξ(ch,i∗h)
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Algorithm 1 Infinite-Metric GP Optimization (IMGPO)

Input: an objective function f , the search domain Ω, the GP kernel κ, Ξmax ∈ N+ and η ∈ (0, 1)

1: Initialize the set Th = {∅} ∀h ≥ 0
2: Set c0,0 to be the center point of Ω and T0 ← {c0,0}
3: Evaluate f at c0,0: g(c0,0)← f(c0,0)

4: f+ ← g(c0,0),D ← {(c0,0, g(c0,0))}
5: n,N ← 1, Ngp ← 0,Ξ← 1
6: for t = 1, 2, 3, ... do
7: υmax ← −∞
8: for h = 0 to depth(T ) do # for-loop for steps (i)-(ii)
9: while true do

10: i∗h ← arg maxi:ch,i∈Th g(ch,i)

11: if g(ch,i∗h) < υmax then
12: i∗h ← ∅, break
13: else if g(ch,i∗h) is not labeled as GP-based then
14: υmax ← g(ch,i∗h), break
15: else
16: g(ch,i∗h)← f(ch,i∗h) and remove the GP-based label from g(ch,i∗h)

17: N ← N + 1, Ngp ← Ngp − 1
18: D ← {D, (ch,i∗h , g(ch,i∗h))}
19: for h = 0 to depth(T ) do # for-loop for step (iii)
20: if i∗h 6= ∅ then
21: ξ ← the smallest positive integer s.t. i∗h+ξ 6= ∅ and ξ ≤ min(Ξ,Ξmax) if exists, and 0 otherwise
22: z(h, i∗h) = maxk:ch+ξ,k∈T ′h+ξ

(ch,i∗
h
) U(ch+ξ,k|D)

23: if ξ 6= 0 and z(h, i∗h) < g(ch+ξ,i∗
h+ξ

) then
24: i∗h ← ∅, break
25: υmax ← −∞
26: for h = 0 to depth(T ) do # for-loop for steps (iv)-(v)
27: if i∗h 6= ∅ and g(ch,i∗h) ≥ υmax then
28: n← n+ 1.
29: Divide the hyperrectangle centered at ch,i∗

h
along with the longest coordinate into three new hy-

perrectangles with the following centers:
S = {ch+1,i(left), ch+1,i(center), ch+1,i(right)}

30: Th+1 ← {Th+1,S}
31: Th ← Th \ ch,i∗h , g(ch+1,i(center))← g(ch,i∗h)

32: for inew = {i(left), i(right)} do
33: if U(ch+1,inew |D) ≥ f+ then
34: g(ch+1,inew )← f(ch+1,inew )
35: D ← {D, (ch+1,inew , g(ch+1,inew ))}

N ← N + 1, f+ ← max(f+, g(ch+1,inew )), υmax = max(υmax, g(ch+1,inew ))
36: else
37: g(ch+1,inew )← U(ch+1,inew |D) and label g(ch+1,inew ) as GP-based.

Ngp ← Ngp + 1
38: Update Ξ: if f+ was updated, Ξ← Ξ + 22 , and otherwise, Ξ← max(Ξ− 2−1, 1)
39: Update GP hyperparameters by an empirical Bayesian method

indicates the set of all center points of a fully expanded tree until depth h + ξ within the region
covered by the hyperrectangle centered at ch,i∗h . In other words, T ′h+ξ(ch,i∗h) contains the nodes of
the fully expanded tree rooted at ch,i∗h with depth ξ and can be computed by dividing the current
rectangle at ch,i∗h and recursively divide all the resulting new rectangles until depth ξ (i.e., depth ξ
from ch,i∗h , which is depth h+ ξ in the whole tree).

3.4 Relationship to Previous Algorithms

The most closely related algorithm is the BaMSOO algorithm [2], which combines SOO with GP-
UCB. However, it only achieves a polynomial regret bound while IMGPO achieves a exponential
regret bound. IMGPO can achieve exponential regret because it utilizes the information encoded in
the GP prior/posterior to reduce the degree of the unknownness of the semi-metric `.
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The idea of considering a set of infinitely many bounds was first proposed by Jones et al. [19]. Their
DIRECT algorithm has been successfully applied to real-world problems [4, 5], but it only maintains
the consistency property (i.e., convergence in the limit) from a theoretical viewpoint. DIRECT takes
an input parameter ε to balance the global and local search efforts. This idea was generalized to the
case of an unknown semi-metric and strengthened with a theoretical support (finite regret bound) by
Munos [18] in the SOO algorithm. By limiting the depth of the search tree with a parameter hmax,
the SOO algorithm achieves a finite regret bound that depends on the near-optimality dimension.

4 Analysis

In this section, we prove an exponential convergence rate of IMGPO and theoretically discuss the
reason why the novel idea underling IMGPO is beneficial. The proofs are provided in the supple-
mentary material. To examine the effect of considering infinitely many possible candidates of the
bounds, we introduce the following term.

Definition 1. (Infinite-metric exploration loss). The infinite-metric exploration loss ρt is the number
of intervals to be divided during iteration t.

The infinite-metric exploration loss ρτ can be computed as ρt =
∑depth(T )
h=1 1(i∗h 6= ∅) at line

25. It is the cost (in terms of the number of function evaluations) incurred by not committing to
any particular upper bound. If we were to rely on a specific bound, ρτ would be minimized to 1.
For example, the DOO algorithm [18] has ρt = 1 ∀t ≥ 1. Even if we know a particular upper
bound, relying on this knowledge and thus minimizing ρτ is not a good option unless the known
bound is tight enough compared to the unknown bound leveraged in our algorithm. This will be
clarified in our analysis. Let ρ̄t be the maximum of the averages of ρ1:t′ for t′ = 1, 2, ..., t (i.e.,
ρ̄t ≡ max({ 1

t′

∑t′

τ=1 ρτ ; t′ = 1, 2, . . . , t}).

Assumption 2. For some pair of a global optimizer x∗ and an unknown semi-metric ` that satisfies
Assumption 1, both of the following, (i) shape on ` and (ii) lower bound constant, conditions hold:

(i) there exist L > 0, α > 0 and p ≥ 1 in R such that for all x, x′ ∈ Ω, `(x′, x) ≤ L||x′−x||αp .

(ii) there exists θ ∈ (0, 1) such that for all x ∈ Ω, f(x∗) ≥ f(x) + θ` (x, x∗).

In Theorem 1, we show that the exponential convergence rate O
(
λN+Ngp

)
with λ < 1 is achieved.

We define Ξn ≤ Ξmax to be the largest ξ used so far with n total node expansions. For simplicity,
we assume that Ω is a square, which we satisfied in our experiments by scaling original Ω.

Theorem 1. Assume Assumptions 1 and 2. Let β = supx,x′∈Ω
1
2‖x−x

′‖∞. Let λ = 3−
α

2CDρ̄t < 1.
Then, with probability at least 1− η, the regret of IMGPO is bounded as

rN ≤ L(3βD1/p)α exp

(
−α

[
N +Ngp
2CDρ̄t

− Ξn − 2

]
ln 3

)
= O

(
λN+Ngp

)
.

Importantly, our bound holds for the best values of the unknown L,α and p even though these
values are not given. The closest result in previous work is that of BaMSOO [2], which obtained
Õ(n−

2α
D(4−α) ) with probability 1 − η for α = {1, 2}. As can be seen, we have improved the regret

bound. Additionally, in our analysis, we can see how L, p, and α affect the bound, allowing us
to view the inherent difficulty of an objective function in a theoretical perspective. Here, C is a
constant in N and is used in previous work [18, 2]. For example, if we conduct 2D or 3D − 1
function evaluations per node-expansion and if p =∞, we have that C = 1.

We note that λ can get close to one as input dimension D increases, which suggests that there
is a remaining challenge in scalability for higher dimensionality. One strategy for addressing this
problem would be to leverage additional assumptions such as those in [14, 20].

Remark 1. (The effect of the tightness of UCB by GP) If UCB computed by GP is “useful” such
thatN/ρ̄t = Ω(N), then our regret bound becomesO

(
exp

(
−N+Ngp

2CD α ln 3
))

. If the bound due to

UCB by GP is too loose (and thus useless), ρ̄t can increase up to O(N/t) (due to ρ̄t ≤
∑t
i=1 i/t ≤
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O(N/t)), resulting in the regret bound of O
(

exp
(
− t(1+Ngp/N)

2CD α ln 3
))

, which can be bounded

by O
(

exp
(
−N+Ngp

2CD max( 1√
N
, tN )α ln 3

))
1. This is still better than the known results.

Remark 2. (The effect of GP) Without the use of GP, our regret bound would be as follows: rN ≤
L(3βD1/p)α exp(−α[ N

2CD
1
ρ̃t
−2] ln 3), where ρ̄t ≤ ρ̃t is the infinite-metric exploration loss without

GP. Therefore, the use of GP reduces the regret bound by increasingNgp and decreasing ρ̄t, but may
potentially increase the bound by increasing Ξn ≤ Ξ.

Remark 3. (The effect of infinite-metric optimization) To understand the effect of considering all
the possible upper bounds, we consider the case without GP. If we consider all the possible bounds,
we have the regret bound L(3βD1/p)α exp(−α[ N

2CD
1
ρ̃t
− 2] ln 3) for the best unknown L, α and p.

For standard optimization with a estimated bound, we have L′(3βD1/p′)α
′
exp(−α′[ N

2C′D − 2] ln 3)
for an estimated L′, α′, and p′. By algebraic manipulation, considering all the possible bounds has

a better regret when ρ̃−1
t ≥ 2CD

N ln 3α (( N
2C′D − 2) ln 3α

′
+ 2 ln 3α− ln L′(3βD1/p′ )α

′

L(3βD1/p)α
). For an intuitive

insight, we can simplify the above by assuming α′ = α and C ′ = C as ρ̃−1
t ≥ 1− Cc2D

N ln L′Dα/p
′

LDα/p
.

Because L and p are the ones that achieve the lowest bound, the logarithm on the right-hand side is
always non-negative. Hence, ρ̃t = 1 always satisfies the condition. When L′ and p′ are not tight
enough, the logarithmic term increases in magnitude, allowing ρ̃t to increase. For example, if the
second term on the right-hand side has a magnitude of greater than 0.5, then ρ̃t = 2 satisfies the
inequality. Therefore, even if we know the upper bound of the function, we can see that it may be
better not to rely on this, but rather take the infinite many possibilities into account.

One may improve the algorithm with different division procedures than one presented in Algorithm
1 as discussed in the supplementary material.

1This can be done by limiting the depth of search tree as depth(T ) = O(
√
N). Our proof works with this

additional mechanism, but results in the regret bound with N being replaced by
√
N . Thus, if we assume to

have at least “not useless” UCBs such that N/ρ̄t = Ω(
√
N), this additional mechanism can be disadvanta-

geous. Accordingly, we do not adopt it in our experiments.
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(g) Hartmann6: [6, 4.39, 4]
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(h) Shekel5: [4, 3.95, 4]
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(i) Sin1000: [1000, 3.95, 4]

Figure 2: Performance Comparison: in the order, the digits inside of the parentheses [ ] indicate the
dimensionality of each function, and the variables ρ̄t and Ξn at the end of computation for IMGPO.
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Table 1: Average CPU time (in seconds) for the experiment with each test function
Algorithm Sin1 Sin2 Peaks Rosenbrock2 Branin Hartmann3 Hartmann6 Shekel5
GP-PI 29.66 115.90 47.90 921.82 1124.21 573.67 657.36 611.01
GP-EI 12.74 115.79 44.94 893.04 1153.49 562.08 604.93 558.58
SOO 0.19 0.19 0.24 0.744 0.33 0.30 0.25 0.29
BaMSOO 43.80 4.61 7.83 12.09 14.86 14.14 26.68 371.36
IMGPO 1.61 3.15 4.70 11.11 5.73 6.80 13.47 15.92

5 Experiments

In this section, we compare the IMGPO algorithm with the SOO, BaMSOO, GP-PI and GP-EI algo-
rithms [18, 2, 3]. In previous work, BaMSOO and GP-UCB were tested with a pair of a handpicked
good kernel and hyperparameters for each function [2]. In our experiments, we assume that the
knowledge of good kernel and hyperparameters is unavailable, which is usually the case in practice.
Thus, for IMGPO, BaMSOO, GP-PI and GP-EI, we simply used one of the most popular kernels,
the isotropic Matern kernel with ν = 5/2. This is given by κ(x, x′) = g(

√
5||x− x′||2/l), where

g(z) = σ2(1 + z + z2/3) exp(−z). Then, we blindly initialized the hyperparameters to σ = 1
and l = 0.25 for all the experiments; these values were updated with an empirical Bayesian method
after each iteration. To compute the UCB by GP, we used η = 0.05 for IMGPO and BaMSOO.
For IMGPO, Ξmax was fixed to be 22 (the effect of selecting different values is discussed later).
For BaMSOO and SOO, the parameter hmax was set to

√
n, according to Corollary 4.3 in [18].

For GP-PI and GP-EI, we used the SOO algorithm and a local optimization method using gradients
to solve the auxiliary optimization. For SOO, BaMSOO and IMGPO, we used the corresponding
deterministic division procedure (given Ω, the initial point is fixed and no randomness exists). For
GP-PI and GP-EI, we randomly initialized the first evaluation point and report the mean and one
standard deviation for 50 runs.

The experimental results for eight different objective functions are shown in Figure 2. The vertical
axis is log10(f(x∗) − f(x+)), where f(x∗) is the global optima and f(x+) is the best value found
by the algorithm. Hence, the lower the plotted value on the vertical axis, the better the algorithm’s
performance. The last five functions are standard benchmarks for global optimization [21]. The first
two were used in [18] to test SOO, and can be written as fsin1(x) = (sin(13x) sin +1)/2 for Sin1
and fsin2(x) = fsin1(x1)fsin1(x2) for Sin2. The form of the third function is given in Equation
(16) and Figure 2 in [22]. The last function is Sin2 embedded in 1000 dimension in the same manner
described in Section 4.1 in [14], which is used here to illustrate a possibility of using IMGPO as a
main subroutine to scale up to higher dimensions with additional assumptions. For this function,
we used REMBO [14] with IMGPO and BaMSOO as its Bayesian optimization subroutine. All of
these functions are multimodal, except for Rosenbrock2, with dimensionality from 1 to 1000.

As we can see from Figure 2, IMGPO outperformed the other algorithms in general. SOO produced
the competitive results for Rosenbrock2 because our GP prior was misleading (i.e., it did not model
the objective function well and thus the property f(x) ≤ U(x|D) did not hold many times). As can
be seen in Table 1, IMGPO is much faster than traditional GP optimization methods although it is
slower than SOO. For Sin 1, Sin2, Branin and Hartmann3, increasing Ξmax does not affect IMGPO
because Ξn did not reach Ξmax = 22 (Figure 2). For the rest of the test functions, we would be able
to improve the performance of IMGPO by increasing Ξmax at the cost of extra CPU time.

6 Conclusion

We have presented the first GP-based optimization method with an exponential convergence rate
O
(
λN+Ngp

)
(λ < 1) without the need of auxiliary optimization and the δ-cover sampling. Perhaps

more importantly in the viewpoint of a broader global optimization community, we have provided
a practically oriented analysis framework, enabling us to see why not relying on a particular bound
is advantageous, and how a non-tight bound can still be useful (in Remarks 1, 2 and 3). Following
the advent of the DIRECT algorithm, the literature diverged along two paths, one with a particular
bound and one without. GP-UCB can be categorized into the former. Our approach illustrates the
benefits of combining these two paths.
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As stated in Section 3.1, our solution idea was to use a bound-based method but rely less on the
estimated bound by considering all the possible bounds. It would be interesting to see if a similar
principle can be applicable to other types of bound-based methods such as planning algorithms (e.g.,
A* search and the UCT or FSSS algorithm [23]) and learning algorithms (e.g., PAC-MDP algorithms
[24]).
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Supplementary Material

In this supplementary material, we provide the proofs of the theoretical results. Along the way, we
also prove regret bounds for a general class of algorithms, the result of which may be used to design
a new algorithm.

We first provide a known property of the upper confidence bound of GP.

Lemma 1. (Bound Estimated by GP) According to the belief encoded in the GP prior/posterior2,
for any x, f(x) ≤ U(x|D) holds during the execution of Algorithm 1 with probability at least 1− η.

Proof. It follows the proof of lemma 5.1 of [15]. From the property of the standard gaussian distri-
bution, Pr(f(x) > U(x|D)) < 1

2e
−ς2M/2. Taking union bound on the entire execution of Algorithm

1, Pr(f(x) > U(x|D) ∀M ≥ 1) < 1
2

∑∞
M=1 e

−ς2M/2. Substituting ςM =
√

2 log(π2M2/12η), we
obtain the statement.

Our algorithm has a concrete division procedure in line 27 of Algorithm 1. However, one may im-
prove the algorithm with different division procedures. Accordingly, we first derive abstract version
of regret bound for the IMGPO (Algorithm 1) under a family of division procedures that satisfy
Assumptions 3 and 4. After that, we provide a proof for the main results in the paper.

A With Family of Division Procedure

In this section, we modify the result obtained by [18]. Let xh,i to be any point in the region covered
by the ith hyperinterval at depth h, and x∗h,i be the global optimizer that may exist in the ith hyperin-
terval at depth h. The previous work provided the regret bound of the SOO algorithm with a family
of division procedure that satisfies the following two assumptions.

Assumption 3. (Decreasing diameter) There exists a diameter function δ(h) > 0 such that, for
any hyperinterval ωh,i ⊂ Ω and its center ch,i ∈ ωh,i and any xh,i ∈ ωh,i, we have δ(h) ≥
supxh,i`(xh,i, ch,i) and δ(h− 1) ≥ δ(h) for all h ≥1.

Assumption 4. (Well-shaped cell) There exists ν > 0 such that any hyperinterval ωh,i contains at
least an `-ball of radius νδ(h) centered in ωh,i.

Thus, in this section, hyperinterval is not restricted to hyperrectangle. We now revisit the definitions
of several terms and variables used in [18]. Let the ε-optimal space Xε be defined as Xε := {x ∈
Ω : f(x) + ε ≥ f(x∗)}. That is, the ε-optimal space is the set of input vectors whose function
value is at least ε-close to the global optima. To bound the number of hyperintervals relevant to this
ε-optimal space, we define a near-optimality dimension as follows.

Definition 3. (Near-optimality dimension) The near-optimality dimension is the smallest d > 0
such that, there exists C > 0, for all ε > 0, the maximum number of disjoint `-balls of radius νε
with center in the ε-optimal space Xε is less than Cε−d.

Finally, we define the set of δ-optimal hyperintervals Iδ(h) as Iδ(h) := {c ∈ Ω : f(c) + δ(h) ≥
f(x∗), c is the center point of the interval, ωh,i, for some (h, i)}. The δ-optimal hyperinterval Iδ(h)

is used to relate the hyperintervals to the ε-optimal space. Indeed, the δ-optimal hyperinterval Iδ(h)

is almost identical to the δ(h)-optimal space Xδ(h), except that Iδ(h) is focused on the center points
whereas Xδ(h) considers the whole input vector space. In the following, we use |Iδ(h)| to denote the
number of Iδ(h) and derive its upper bound.

Lemma 2. (Lemma 3.1 in [18]) Let d be the near-optimality dimension and C denote the corre-
sponding constant in Definition 1. Then, the number of δ-optimal hyperintervals is bounded by
|Iδ(h)|≤ Cδ(h)−d.

2Thus, the probability in this analysis should be seen as that of the subjective view. If we assume that f is
indeed a sample from the GP, we have the same result with the objective view of probability.
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We are now ready to present the main result in this section. In the following, we use the term optimal
hyperinterval to indicate a hyperinterval that contains a global optimizer x∗. We say a hyperinterval
is dominated by other intervals when it is rejected or not selected in step (i)-(iii). In Lemma 3, we
bound the maximum size of the optimal hyperinterval. From Assumption 1, this can be translated to
the regret bound, as we shall see in Theorem 2.
Lemma 3. Let Ξn ≤ min(Ξ,Ξmax) be the largest ξ used so far with n total node expansions. Let
h∗n be the depth of the deepest expanded node that contains a global optimizer x∗ after n total node
expansions (i.e., h∗n ≤ n determines the size of the optimal hyperinterval). Then, with probability
at least 1− η, h∗n is bounded below by some h′ that satisfies

n ≥

∑h′+Ξ
l=0 |Il|∑
τ =1

ρτ .

Proof. Let Th denote the time at which the optimal hyperinterval is further divided. We prove the
statement by showing that the time difference Th+1 − Th is bounded by the number of δ-optimal
hyperintervals. To do so, we first note that there are three types of hyperinterval that can dominate
an optimal hyperinterval ch+1,∗ during the time [Th, Th+1 − 1], all of which belong to δ-optimal
hyperintervals Iδ . The first type has the same size (i.e., same depth h), ch+1,i. In this case,

f(ch+1,i) ≥ f(ch+1,∗) ≥ f(x∗h+1,∗)− δ(h+ 1),

where the first inequality is due to line 10 (step (i)) and the second follows Assumptions 1 and
2. Thus, it must be ch+1,i ∈ Ih+1. The second case is where the optimal hyperinterval may be
dominated by a hyperinterval of larger size (depth l < h+ 1), cl,i. In this case, similarly,

f(cl,i) ≥ f(ch+1,∗) ≥ f(x∗h+1,∗)− δ(l),
where the first inequality is due to lines 11 to 12 (step (ii)) and thus cl,i ∈ Il. In the final scenario,
the optimal hyperinterval is dominated by a hyperinterval of smaller size (depth h+1+ξ), ch+1+ξ,i.
In this case,

f(ch+1+ξ,i) ≥ z(h+ 1, ∗) ≥ f(x∗h+1,∗)− δ(h+ 1 + ξ)

with probability at least 1− η where z(·, ·) is defined in line 21 of Algorithm 1. The first inequality
is due to lines 19 to 23 (step (iii)) and the second inequality follows Lemma 1 and Assumptions 1
and 3. Hence, we can see that ch+1+ξ,i ∈ Ih+1+ξ.

For all of the above arguments, the temporarily assigned U under GP has no effect. This is because
the algorithm still covers the above three types of δ-optimal hyperintervals Iδ , as U ≥ f with
probability at least 1− η (Lemma 1). However, these are only expanded based on f because of the
temporary nature of U . Putting these results together,

Th+1 − Th ≤

∑h+1+Ξn
l=1 |Iδ(l)|∑

τ=1

ρτ .

Since if one of the Iδ is divided during [Th, Th+1 − 1], it cannot be divided again during another
time period,

h∗n∑
h=0

Th+1 − Th ≤

∑h∗n+1+Ξn
l=1 |Il|∑
τ=1

ρτ ,

where on the right-hand side, we could combine the summation
∑h∗n
h=0 and

∑∑h+1+Ξn
l=1 |Iδ(l)|

τ=1 into the
one, because each h in the summation refers to the same δ-optimal interval Iδ(l) with l ≤ h∗n+1+Ξn,

and should not be double-counted. As
∑h∗n
h=0 Th+1 − Th = Th∗n+1 − T0, T0 = 1 and |Iδ(0)|= 1,

Th∗n+1 ≤ 1 +

∑h∗n+1+Ξn
l=1 |Il|∑
τ=1

ρτ ≤

∑h∗n+1+Ξn
l=0 |Il|∑
τ=1

ρτ .

As Th∗n+1 > n by definition, for any h′ such that
∑∑h′+Ξn

l=0 |Il|
τ=1 ρτ ≤ n <

∑∑h∗n+1+Ξn
l=0 |Il|

τ=1 ρτ , we
have h∗n > h′.
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With Lemmas 2 and 3, we are ready to present a finite regret bound with the family of division
procedures.

Theorem 2. Assume Assumptions 1, 3, and 4. Let h(n) be the smallest integer h such that

n ≤
C

∑h+Ξn
l=0 δ(l)−d∑
τ=1

ρτ .

Then, with probability at least 1 − η, the regret of the IMGPO with any general division procedure
is bounded as

rn ≤ δ(h(n)− 1).

Proof. Let c(n) and ch∗n,∗ be the center point expanded at the nth expansion and the optimal hy-
perinterval containing a global optimizer x∗, respectively. Then, from Assumptions 1, 3, and 4,
f(c(n)) ≥ f(ch∗n,∗) ≥ f∗ − δ(h∗n), where f∗ is the global optima. Hence, the regret bound is
rh ≤ δ(h∗n). To find a lower bound for the quantity h∗n, we first relate h(n) to Lemma 3 by

n >

C
∑h(n)+Ξn−1
l=0 δ(l)−d∑

τ=1

ρτ ≥

∑h(n)+Ξn−1
l=0 |Il|∑

τ=1

ρτ ,

where the first inequality comes from the definition of h(n), and the second follows from Lemma 2.
Then, from Lemma 3, we have h∗n ≥ h(n)− 1. Therefore, rn ≤ δ(h∗n) ≤ δ(h(n)− 1).

Assumption 5. (Decreasing diameter revisit) The decreasing diameter defined in Assumption 3 can
be written as δ(h) = c1γ

h/D for some c1 > 0 and γ < 1 with a division procedure that requires c2
function evaluations per node expansion.

Corollary 1. Assume Assumptions 1, 3, 4, and 5. Then, if d = 0, with probability at least 1− η,

rN ≤ O
(

exp

(
−N +Ngp
c2CDρ̄t

))
.

If d > 0, with probability at least 1− η,

rN ≤ O

((
1

N +Ngp

)1/d(
− c2Cρ̄t

1− γd/D

)1/d

γ−
1
D

)
.

Proof. For the case d = 0, we have n ≤
∑C

∑h(n)+Ξn
l=0 δ(l)−d

τ=1 ρτ ≤
∑C(h(n)+Ξn+1)
τ=1 ρ̄t, where the

first inequality follows from the definition of h(n), and the second comes from the definition of ρ̄t
and the assumption d = 0. The second inequality holds for ρ̄t that only considers ρτ with τ ≤ t.
This is computable, because τ ≤ t by construction. Indeed, the condition of Lemma 3 implies
t ≥

∑h′+Ξn
l=0 |Il|. Therefore, the two inequalities hold, and we can deduce that h(n) ≥ n

Cρ̄t
−Ξn−1

by algebraic manipulation. By Assumption 5, n = (N +Ngp)/c2. With this, substituting the lower
bound of h(n) into the statement of Theorem 2 with Assumption 5,

rN ≤ c1 exp

(
−
[
N +Ngp
c2D

1

Cρ̄t
− Ξn − 2

]
ln

1

γ

)
.

Similarly, for the case d > 0,

n ≤
C

∑h(n)+Ξn
l=0 δ(l)−d∑

τ=1

ρτ ≤
c−dC γ−(h(n)+Ξn+1)d/D−1

γ−d/D−1∑
τ=1

ρ̄t,

and hence cγ
h(n)+Ξn

D ≤
(
n(1−γd/D)

Cρ̄t

)−1/d

by algebraic manipulation. Substituting this into the
result of Theorem 2, we arrive at the desired result.
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B With a Concrete Division Procedure

In this section, we prove the main result in the paper. In Theorem 1, we show that the exponential
convergence rate bound O

(
λN+Ngp

)
with λ < 1 is achieved without Assumptions 3, 4 and 5 and

without the assumption that d = 0.

Theorem 1. Assume Assumptions 1 and 2. Let β = supx,x′∈Ω
1
2‖x−x

′‖∞. Let λ = 3−
α

2Cρ̄tD < 1.
Then, without Assumptions 3, 4 and 5 and without the assumption on d, with probability at least
1− η, the regret of IMGPO with the division procedure in Algorithm 1 is bounded as

rN ≤ L(3βD1/p)α exp

(
−α

[
N +Ngp
2Cρ̄tD

− Ξn − 2

]
ln 3

)
= O

(
λN+Ngp

)
.

Proof. To prove the statement, we show that Assumptions 3, 4, and 5 can all be satisfied while
maintaining d = 0.
From Assumption 2 (i), and based on the division procedure that the algorithm uses,

sup
x∈ωh,i

`(x, ch,i) ≤ sup
x∈ωh,i

L||x− ch,i||αp≤ L
(

3−bh/DcβD1/p
)α

.

This upper bound corresponds to the diagonal length of each hyperrectangle with respect to p-
norm, where 3−bh/Dcβ corresponds to the length of the longest side. We fix the form of δ as
δ(h) = L3αDα/p3−hα/Dβα ≥ L(3−bh/DcβD1/p)α, which satisfies Assumption 3.

This form of δ(h) also satisfies Assumption 5 with γ = 3−α and c1 = L3αDα/pβα.

Every hyperrectangle contains at least one `-ball with a radius corresponding to the length of
the shortest side of the hyperrectangle. Thus, we have at least one `-ball of radius νδ(h) =
L3−αdh/De ≥ L3−α3−αh/D for every hyperrectangle with ν ≥ 3−2αD−α/p. This satisfies As-
sumption 4.

Finally, we show that d = 0. The set of δ-optimal hyperintervals Iδ(h) is contained by the δ(h)-
optimal space Xδ(h) as

Iδ(h) = {c ∈ Ω : f(x∗)− f(c) ≤ δ(h), c is the center point of the interval, ωh,i, for some (h, i)}
⊆ {x ∈ Ω : f(x∗)− f(x) ≤ δ(h)} = Xδ(h)

Let θ be a value that satisfies Assumption 2 (ii) (which is nonzero). Consider an `-ball of radius
δ(h)
θ at x∗, which is a set {x ∈ Ω | θ`(x, x∗) ≤ δ(h)}. Since θ`(x, x∗) ≤ f(x∗) − f(x) by

Assumption 2 (ii), the δ(h)-optimal space Xδ(h) is covered by an `-ball of radius δ(h)
θ . Therefore,

Iδ(h) ⊆ Xδ(h) ⊆ (an `-ball of radius
δ(h)

θ
at x∗). By Assumption 2 (i), the volume V of an `-ball of

radius νδ(h) is proportional to (νδ(h))D as V pD(νδ(h)) = (2νδ(h)Γ(1+1/p))D/Γ(1+D/p). Thus,
the number of disjoint `-balls of radius νδ(h) that fit in Xδ(h) is at most d( δ(h)

θνδ(h) )De = d(θν)−De.
Therefore, the number of `-balls does not depend on δ(h) in this case, which means d = 0.

Now that we have satisfied Assumptions 3, 4, and 5 with d = 0, γ = 3−α, and c1 = L3αDα/pβα,
we follow the proof of Corollary 1 and deduce the desired statement.
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