ReferencesThe following list gives some literature references related to Probabilistic-Logical Models. | |
[1] |
E. Altendorf and B. D'Ambrosio.
Feature Definition and Discovery in Probabilistic
Relational Models.
In T. Dietterich, L. Getoor, and K. Murphy, editors, Working
Notes of the ICML-2004 Workshop on Statistical Relational Learning and
Connections to Other Fields (SRL-2004), pages 11-16, Banff, Canada, July
2004. [ bib ] |
[2] |
C. R. Anderson, P. Domingos, and D. S. Weld.
Relational Markov Models and their Application to Adaptive
Web Navigation.
In D. Hand, D. Keim, O. R. Zaďne, and R. Goebel, editors,
Proceedings of the Eighth International Conference on Knowledge Discovery and
Data Mining (KDD-02), pages 143-152, Edmonton, Canada, July 2002. ACM
Press. [ bib ] |
[3] |
N. Angelopoulos and J. Cussens.
Markov chain Monte Carlo using tree-based priors on model
structure.
In J. Breese and D. Koller, editors, Proceedings of the
Seventeenth Annual Conference on Uncertainty in Artificial Intelligence
(UAI-01), pages 16-23, Seattle, Washington, USA, 2001. Morgan Kaufmann. [ bib ] |
[4] |
A. Atamentov and V. Honavar.
Speeding up multi-relational data mining.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 1-7, Acapulco, Mexico, August 11, 2003. [ bib ] |
[5] |
F. Bacchus.
Using first-order probability logic for the construction of
bayesian networks.
In D. Heckerman and A. Mamdani, editors, Proceedings of the
Ninth Annual Conference on Uncertainty in Artificial Intelligence (UAI-93),
pages 219-226, Providence, Washington, DC, USA, 1993. Morgan Kaufmann. [ bib ] |
[6] |
O. Bangsø, H. Langseth, and T. D. Nielsen.
Structural learning in object oriented domains.
In I. Russell and J. Kolen, editors, Proceedings of the
Fourteenth International Florida Artificial Intelligence Research Society
Conference (FLAIRS-01), pages 340-344, Key West, Florida, USA, 2001. AAAI
Press. [ bib ] |
[7] |
D. Barbara.
A Probabilistic Relational Data Model.
In F. Bancilhom, C. Thamos, and D. Tsichritzis, editors,
Advances in Database Technology, International conference on extending
database technology, LNCS, pages 60-74. Springer, March 1990. [ bib ] |
[8] |
F. Bergadano and D. Gunetti.
Inductive Logic Programming: From Machine Learning
to Software Engeneering.
MIT Press, 1996. [ bib ] |
[9] |
A. Bernstein, S. Clearwater, and F. Provost.
The relational vector-space model and industry classification.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 8-18, Acapulco, Mexico, August 11, 2003. [ bib ] |
[10] |
M. Bilenko and S. Basu.
A Comparison of Inference Techniques for Semi-supervised
Clustering with Hidden Marko Random Fields.
In T. Dietterich, L. Getoor, and K. Murphy, editors, Working
Notes of the ICML-2004 Workshop on Statistical Relational Learning and
Connections to Other Fields (SRL-2004), pages 17-22, Banff, Canada, July
2004. [ bib ] |
[11] |
A. Blau and A. McGovern.
Categorizing unsupervised relational learning algorithms.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 19-21, Acapulco, Mexico, August 11, 2003. [ bib ] |
[12] |
H. Blockeel and M. Bruynooghe.
Aggregation version selection bias, and relational neural networks.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 22-23, Acapulco, Mexico, August 11, 2003. [ bib ] |
[13] |
H. Blockeel and W. Uwents.
Using neural networks for relational learning.
In T. Dietterich, L. Getoor, and K. Murphy, editors, Working
Notes of the ICML-2004 Workshop on Statistical Relational Learning and
Connections to Other Fields (SRL-2004), pages 23-28, Banff, Canada, July
2004. [ bib ] |
[14] |
M. Boutell and C. Brown.
Learning Spatial Configuration Models Using Modified
Dirichlet Prior.
In T. Dietterich, L. Getoor, and K. Murphy, editors, Working
Notes of the ICML-2004 Workshop on Statistical Relational Learning and
Connections to Other Fields (SRL-2004), pages 29-34, Banff, Canada, July
2004. [ bib ] |
[15] |
I. Bratko.
PROLOG: Programming for Artificial Intelligence.
Addison-Wesley, 1986. [ bib ] |
[16] |
J. S. Breese.
Construction of Belief and decision networks.
Computational Intelligence, 8(4):624-647, 1992. [ bib ] |
[17] |
J. S. Breese, R. P. Goldman, and M. P. Wellman.
Introduction to the special section on knowledge-based construction
of probabilistic and decision models.
Cybernetics, 24(11):1577-1579, 1994. [ bib ] |
[18] |
R. C. Bunescu and R. J. Mooney.
Relational Markov Networks for Collective Information
Extraction.
In T. Dietterich, L. Getoor, and K. Murphy, editors, Working
Notes of the ICML-2004 Workshop on Statistical Relational Learning and
Connections to Other Fields (SRL-2004), pages 35-41, Banff, Canada, July
2004. [ bib ] |
[19] |
W. Buntine.
A guide to the literature on learning probabilistic networks from
data.
IEEE Transaction on Knowledge and Data Engineering, 8:195 -
210, 1996. [ bib ] |
[20] |
L. Burnell and E. Horvitz.
Structure and chance: Melding logic and probability for software
debugging.
Communications of the ACM, 38(3):31-41, March 1995. [ bib ] |
[21] |
P. P. S. Chen.
The Entity Relationship model: Toward a unified view of data.
ACM Transaction on Database Systems, 1(1):9-36, 1976. [ bib ] |
[22] |
D. M. Chickering, D. Geiger, and D. Heckerman.
Learning Bayesian networks is np-hard.
Technical report, Microsoft Research, One Microsoft Way, Redmond, WA
98052, November 1994. [ bib ] |
[23] |
G. F. Cooper.
The computational complexity of probabilistic inference using
Bayesian belief networks.
Artificial Intelligence, 42:393-405, 1990. [ bib ] |
[24] |
R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter.
Probabilistic networks and expert systems.
Statistics for engineering and information. Springer-Verlag, 1999. [ bib ] |
[25] |
M. Craven and S. Slattery.
Relational Learning with Statistical Predicate Invention:
Better Models for Hypertext.
Machine Learning, 43(1-2):97-119, 2001. [ bib ] |
[26] |
C. Cumby and D. Roth.
Feature extraction languages for propositionalzed relational
learning.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 24-31, Acapulco, Mexico, August 11, 2003. [ bib ] |
[27] |
J. Cussens.
Integrating probabilistic and logical reasoning.
In Electronic Transaction on Artificial Intelligence, 1999.
Machine Intelligence Workshop (MI16), special issue, (submitted). [ bib ] |
[28] |
J. Cussens.
Loglinear models for first-order probabilistic reasoning.
In K. B. Laskey and H. Prade, editors, Proceedings of the
Fifteenth Annual Conference on Uncertainty in Artificial Intelligence
(UAI-99), pages 126-133, Stockholm, Sweden, 1999. Morgan Kaufmann. [ bib ] |
[29] |
J. Cussens.
Stochastic logic programs: Sampling, inference and applications.
In C. Boutilier and M. Goldszmidt, editors, Proceedings of the
Sixteenth Annual Conference on Uncertainty in Artificial Intelligence
(UAI-00), pages 115-122, Stanford, CA,, USA, 2000. Morgan Kaufmann. [ bib ] |
[30] |
J. Cussens.
Parameter estimation in stochastic logic programs.
Machine Learning, 44(3):245-271, 2001. [ bib ] |
[31] |
J. Cussens.
Statistical aspects of stochastic logic programs.
In T. Jaakkola and T. Richardson, editors, Proceedings of the
Eighth International Workshop on Artificial Intelligence and Statistics
2001, pages 181-186, Key West, Florida, USA, 2001. Morgan Kaufmann. [ bib ] |
[32] |
J. Cussens.
Individuals, relations and structures in probabilistic models.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 32-36, Acapulco, Mexico, August 11, 2003. [ bib ] |
[33] |
P. Dagum and M. Luby.
Approximating probabilistic inference in Bayesian belief networks
is NP-hard.
Artificial Intelligence, 60:141-153, 1993. [ bib ] |
[34] |
B. D'Ambrosio, E. Altendorf, and J. Jorgensen.
Ecosystem analysis using probabilistic relational modelling.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 37-42, Acapulco, Mexico, August 11, 2003. [ bib ] |
[35] |
A. Dayanik and C. G. Nevill-Manning.
Clustering in Relational Biological Data.
In T. Dietterich, L. Getoor, and K. Murphy, editors, Working
Notes of the ICML-2004 Workshop on Statistical Relational Learning and
Connections to Other Fields (SRL-2004), pages 42-47, Banff, Canada, July
2004. [ bib ] |
[36] |
L. De Raedt.
Logical settings for concept-learning.
Artificial Intelligence, 95(1):197-201, 1997. [ bib ] |
[37] |
L. De Raedt and M. Bruynooghe.
A theory of clausal discovery.
In Ruzena Bajcsy, editor, Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence (IJCAI-93), pages
1058-1063, Chambery, France, August 28 - September 3 1993. Morgan Kaufmann. [ bib ] |
[38] |
L. De Raedt and L. Dehaspe.
Clausal discovery.
Machine Learning, 26(2-3):99-146, 1997. [ bib ] |
[39] |
T. Dean and K. Kanazawa.
Probabilistic temporal reasoning.
In T. M. Mitchell and R. G. Smith, editors, Proceedings of
the Seventh National Conference on Artificial Intelligence (AAAI-88), pages
524-528, St. Paul, MN, USA, 1988. AAAI Press / The MIT Press. [ bib ] |
[40] |
A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the EM algorithm.
J. Royal Stat. Soc., B 39:1-39, 1977. [ bib ] |
[41] |
M. Diligenti, P. Frasconi, and M. Gori.
Hidden Tree Markov Models for Document Image
Classification.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 25(4):519-523, 2003. [ bib ] |
[42] |
A. Doan, P. Domingos, and A. Y. Levy.
Learning Mappings between Data Schemas.
In L. Getoor and D. Jensen, editors, Working Notes of the
AAAI-2000 Workshop on Learning Statistical Models from Relational Data
(SRL-2000), Technical Report WS-00-06, pages 1-6, Austin/Texas, USA, July
31, 2000. AAAI Press. [ bib ] |
[43] |
P. Domingos, Y. Abe, C. Anderson, A. Doan, D. Fox, A. Halevy, G. Hulten,
H. Kautz, T. Lau, L. Liao, J. Madhavan, Mausum, D. J. Patternson,
M. Richardson, S. Sanghai, D. Weld, and S. Wolfman.
Research on statistical relational learning at the University of
Washington.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 43-47, Acapulco, Mexico, August 11, 2003. [ bib ] |
[44] |
P. Domingos and M. Richardson.
Markov Logic: A Unifying Framework for Statistical
Relational Learning.
In T. Dietterich, L. Getoor, and K. Murphy, editors, Working
Notes of the ICML-2004 Workshop on Statistical Relational Learning and
Connections to Other Fields (SRL-2004), pages 48-55, Banff, Canada, July
2004. [ bib ] |
[45] |
R. Durbin, S. Eddy, A. Krogh, and G. Mitchison.
Biological Sequence Analysis: Probabilistic models of
proteins and nucleic acids.
Cambridge University Press, 1998. [ bib ] |
[46] |
S. Dzeroski, L. De Raedt, and K. Driessens.
Relational reinforcement learning.
Machine Learning, 43(1/2):7-52, 2001. [ bib ] |
[47] |
S. Dzeroski and N. Lavrac.
Relational Data Mining.
Springer-Verlag, 2001. [ bib ] |
[48] |
A. Eisele.
Towards probabilistic extensions of contraint-based grammars.
In J. Dörne, editor, Computational Aspects of
Constraint-Based Linguistics Decription-II. DYNA-2 deliverable R1.2.B, 1994. [ bib ] |
[49] |
I. Fabian and D. A. Lambert.
First-order Bayesian reasoning.
In G. Antoniou and S. Slaney, editors, Proceedings of 11th
Australian Joint Conference on Artificial Intelligence, volume 1502 of
LNAI. Springer, 1998. [ bib ] |
[50] |
W. Feller.
An Introduction to Probability Theory and its
Applications: Volume 1.
Wiley Series in Probability and Mathematical Statistics. John Wiley
& Sons, 3rd edition, 1968. [ bib ] |
[51] |
L. Firoiu.
Rule Induction from Noisy Examples.
In L. Getoor and D. Jensen, editors, Working Notes of the
AAAI-2000 Workshop on Learning Statistical Models from Relational Data
(SRL-2000), Technical Report WS-00-06, pages 7-12, Austin/Texas, USA, July
31, 2000. AAAI Press. [ bib ] |
[52] |
P. Flach.
Simply logical: intelligent reasoning by example.
John Wiley and Sons Ltd., 1994. [ bib ] |
[53] |
P. Flach and N. Lachiche.
1BC: A first-order Bayesian classifier.
In S. Dzeroski and P. Flach, editors, Proceedings of the
Ninth International Workshop on Inductive Logic Programming (ILP-99), volume
1634 of LNAI, pages 92-103, Bled, Slovenia, 1999. Springer. [ bib ] |
[54] |
P. Frasconi, M. Gori, and A. Sperduti.
A general framework for adaptive processing of data structures.
IEEE Transactions on Neural Networks, 9(5):768-786, 1998. [ bib ] |
[55] |
N. Friedman.
The Bayesian Structural EM Algorithm.
In G. F. Cooper and S. Moral, editors, Proceedings of the
Fourteenth Annual Conference on Uncertainty in Artificial Intelligence
(UAI-98), pages 129-138, Madison, Wisconsin, USA, 1998. Morgan Kaufmann. [ bib ] |
[56] |
N. Friedman, D. Geiger, and M. Goldszmidt.
Bayesian network classifiers.
Machine Learning, 29:131-163, 1997. [ bib ] |
[57] |
N. Friedman, L. Getoor, D. Koller, and A. Pfeffer.
Learning probabilistic relational models.
In T. Dean, editor, Proceedings of the Sixteenth International
Joint Conferences on Artificial Intelligence (IJCAI-99), pages 1300-1309,
Stockholm, Sweden, 1999. Morgan Kaufmann. [ bib ] |
[58] |
L. Getoor.
Learning Statistical Models from Relational Data.
PhD thesis, Stanford University, 2001. [ bib ] |
[59] |
L. Getoor, N. Friedman, and D. Koller.
Learning Structured Statistical Models from Relational
Data.
Linköping Electronic Articles in Computer and Information
Science, 7(13), 2002. [ bib ] |
[60] |
L. Getoor, N. Friedman, D. Koller, and A. Pfeffer.
Learning Probabilistic Relational Models.
In S. Dzeroski and N. Lavrac, editors, Relational
Data Mining. Springer-Verlag, 2001. [ bib ] |
[61] |
L. Getoor, N. Friedman, D. Koller, and B. Taskar.
Learning Probabilistic Models of Relational Structure.
In C. E. Brodley and A. Pohoreckyj Danyluk, editors,
Proceedings of the Eighteenth International Conference on Machine Learning
(ICML-01), pages 170-177, Williamstown, MA, USA, 2001. Morgan Kaufmann. [ bib ] |
[62] |
L. Getoor, D. Koller, and N. Friedman.
From Instances to Classes in Probabilistic Relational
Models.
In L. De Raedt and S. Kramer, editors, Proceedings of the
ICML-2000 Workshop on Attribute-Value and Relational Learning: Crossing the
Boundarie, pages 25-34, Stanford, CA, USA, 2000. [ bib ] |
[63] |
L. Getoor, D. Koller, and B. Taskar.
Statistical Models for Relational Data.
In S. Dzeroski and L. De Raedt, editors, Workshop Notes of
the KDD-02 Workshop on Multi-Relational Data Mining (MRDM-02), pages 36-55,
2002. [ bib ] |
[64] |
L. Getoor, D. Koller, B. Taskar, and N. Friedman.
Learning Probabilistic Relational Models with Structural
Uncertainty.
In L. Getoor and D. Jensen, editors, Working Notes of the
AAAI-2000 Workshop on Learning Statistical Models from Relational Data
(SRL-2000), Technical Report WS-00-06, pages 13-20, Austin/Texas, USA, July
31, 2000. AAAI Press. [ bib ] |
[65] |
L. Getoor, E. Segal, B. Taskar, and D. Koller.
Probabilistic Models of Text and Link Structure for
Hypertext Classification.
In Workshop Notes of IJCAI-01 Workshop on `Text Learning: Beyond
Supervision', Washington, USA, 2001. [ bib ] |
[66] |
L. Getoor, B. Taskar, and D. Koller.
Selectivity Estimation using Probabilistic Relational
Models.
In W. G. Aref, editor, Proceedings of the ACM Special Interest
Group on Management of Data Conference (SIGMOD-01), Santa Barbara, CA, USA,
2001. [ bib ] |
[67] |
W. R. Gilks, A. Thomas, and D. J. Spiegelhalter.
A language and program for complex bayesian modelling.
The Statistician, 43, 1994. [ bib ] |
[68] |
S. Glesner and D. Koller.
Constructing Flexible Dynamic Belief Networks from
First-Order Probabilistic Knowledge Bases.
In Ch. Froidevaux and J. Kohlas, editors, Proceedings of the
European Conference on Symbolic and Quantitative Approaches to Reasoning and
Uncertainty (ECSQARU-95), volume 946 of LNCS, pages 217 - 226,
Fribourg, Switzerland, 1995. Springer-Verlag. [ bib ] |
[69] |
R. P. Goldman and E. Charniak.
Dynamic construction of belief networks.
In P. P. Bonissone, M. Henrion, L. N. Kanal, and J. F. Lemmer,
editors, Proceedings of the Sixth Annual Conference on Uncertainty in
Artificial Intelligence (UAI-90), pages 171-184, Cambridge, MA, USA, 1990.
Elsevier. [ bib ] |
[70] |
J. Gonzales, I. Jonyer, L. B. Holder, and D. J. Cook.
Efficient Mining of Graph-Based Data.
In L. Getoor and D. Jensen, editors, Working Notes of the
AAAI-2000 Workshop on Learning Statistical Models from Relational Data
(SRL-2000), Technical Report WS-00-06, pages 21-28, Austin/Texas, USA, July
31, 2000. AAAI Press. [ bib ] |
[71] |
P. Haddawy.
Generating Bayesian networks from probabilistic logic knowledge
bases.
In R. López de Mántaras and D. Poole, editors,
Proceedings of the Tenth Annual Conference on Uncertainty in Artificial
Intelligence (UAI-1994), pages 262-269, Seattle, Washington, USA, 1994.
Morgan Kaufmann. [ bib ] |
[72] |
P. Haddawy.
An Overview of Some Recent Developments on Bayesian
Problem-Solving Techniques.
AI Magazine - Special Issue on Uncertainty in AI, 20(2):11-29,
1999. [ bib ] |
[73] |
P. Haddawy, J. W. Helwig, L. Ngo, and R. A. Krieger.
Clinical Simulation using Context-Sensitive Temporal
Probability Models.
In Proceedings of the Nineteenth Annual Symposium on Computer
Applications in Medical Care (SCAMC-95), 1995. [ bib ] |
[74] |
J. Y. Halpern.
An analysis of first-order logics of probability.
Artificial Intelligence, 46:311-350, 1989. [ bib ] |
[75] |
J. Y Halpern.
A Logical Approach to Reasoning about Uncertainty: A
Tutorial.
In X. Arrazola, K. Korta, and F. J. Pelletier, editors,
Discourse, Interaction, and Communication. Kluwer, 1997. [ bib ] |
[76] |
D. Heckerman.
A Tutorial on Learning with Bayesian Networks.
Technical Report MSR-TR-95-06, Microsoft Research,, One Microsoft
Way, Redmond, WA 98052, March 1995. [ bib ] |
[77] |
D. Heckerman, C. Meek, and D. Koller.
Probabilistic Entity-Relationship Models, PRMs, and Plate
Models.
In T. Dietterich, L. Getoor, and K. Murphy, editors, Working
Notes of the ICML-2004 Workshop on Statistical Relational Learning and
Connections to Other Fields (SRL-2004), pages 55-60, Banff, Canada, July
2004. [ bib ] |
[78] |
S. Hill.
Social network relational vectors for anonymous identity matching.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 48-52, Acapulco, Mexico, August 11, 2003. [ bib ] |
[79] |
W. H. Hsu and R. Joehanes.
Relational Decision Networks.
In T. Dietterich, L. Getoor, and K. Murphy, editors, Working
Notes of the ICML-2004 Workshop on Statistical Relational Learning and
Connections to Other Fields (SRL-2004), pages 61-67, Banff, Canada, July
2004. [ bib ] |
[80] |
G. Hulten, P. Domingos, and Y. Abe.
Mining massive relational databases.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 53-60, Acapulco, Mexico, August 11, 2003. [ bib ] |
[81] |
M. Jaeger.
Relational Bayesian networks.
In D. Geiger and P. P. Shenoy, editors, Proceedings of the
Thirteenth Annual Conference on Uncertainty in Artificial Intelligence
(UAI-97), pages 266-273, Providence, Rhode Island, USA, 1997. Morgan
Kaufmann. [ bib ] |
[82] |
M. Jaeger.
Convergence results for relational Bayesian networks.
In V. Pratt, editor, Proceedings of IEEE Symposium on Logic in
Computer Science (LICS-1998), Indianapolis, Indiana, USA, 1998. [ bib ] |
[83] |
M. Jaeger.
Reasoning about infinite random structures with relational Bayesian
networks.
In A. G. Cohn, L. Schubert, and S. C. Shapiro, editors,
Proceedings of International Conference on the Principles of Knowledge Representation (KR-1998), 1998. [ bib ] |
[84] |
D. Jensen and J. Neville.
Linkage and autocorrelation cause feature selection bias in
relational learning.
In C. Sammut and A. G. Hoffmann, editors, Proceedings of the
Nineteenth International Conference on Machine Learning (ICML-02), pages
259-266, Sydney, Australia, 2002. Morgan Kaufmann. [ bib ] |
[85] |
F. V. Jensen.
An introduction to Bayesian Networks.
UCL Press Limited, Gunpowder Square, London EC4A 3DE, 1996.
Reprinted 1998. [ bib ] |
[86] |
F. V. Jensen.
Bayesian networks and decision graphs.
Springer-Verlag New, 2001. [ bib ] |
[87] |
M. I. Jordan, editor.
Learning in Graphical Models.
Kluwer Academic Publishers. Reprinted by MIT Press, 1998. [ bib ] |
[88] |
Y. Kameya and T. Sato.
Efficient EM learning with tabulation for parameterized logic
programs.
In J. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-K. Lau,
C. Palamidessi, L. M. Pereira, Y. Sagiv, and P. J. Stuckey, editors,
Proceedings of the First International Conference on Computational Logic
(CL-00), volume 1861 of LNAI, pages 269-294. Springer-Verlag, 2000. [ bib ] |
[89] |
Y. Kameya, N. Ueda, and T. Sato.
A graphical method for parameter learning of symbolic-statistical
models.
In S. Arikawa and K. Furukawa, editors, Proceedings of the
Second International Conference on Discovery Science (DS-99), volume 1721 of
LNAI, pages 254-276, Kanagawa, Japan, 1999. Springer-Verlag. [ bib ] |
[90] |
K. Kersting.
Bayessche-logische Programme.
Master's thesis, Albert-Ludwigs-University, Freiburg, Germany, April
2000.
in German. [ bib ] |
[91] |
K. Kersting.
Representational power of probabilistic-logical models: From
upgrading to downgrading.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 61-62, Acapulco, Mexico, August 11, 2003. [ bib ] |
[92] |
K. Kersting and L. De Raedt.
Bayesian logic programs.
In J. Cussens and A. Frisch, editors, Work-in-Progress Reports
of the Tenth International Conference on Inductive Logic Programming (ILP
-2000), 2000.
http://SunSITE.Informatik.RWTH-Aachen.DE/
Publications/CEUR-WS/Vol-35/. [ bib ] |
[93] |
K. Kersting and L. De Raedt.
Bayesian Logic Programs.
In F. Furukawa, S. H. Muggleton, D. Michie, and L. De Raedt,
editors, Proceedings of the Seventeenth Machine Intelligence Workshop,
2000. [ bib ] |
[94] |
K. Kersting and L. De Raedt.
Adaptive Bayesian Logic Programs.
In C. Rouveirol and M. Sebag, editors, Proceedings of the
Eleventh Conference on Inductive Logic Programming (ILP-01), volume 2157 of
LNCS, Strasbourg, France, 2001. Springer. [ bib ] |
[95] |
K. Kersting and L. De Raedt.
Bayesian Logic Programs.
Technical Report 151, University of Freiburg, Institute for Computer
Science, April 2001. [ bib ] |
[96] |
K. Kersting and L. De Raedt.
Towards Combining Inductive Logic Programming and
Bayesian Networks.
In C. Rouveirol and M. Sebag, editors, Proceedings of the
Eleventh Conference on Inductive Logic Programming (ILP-01), volume 2157 of
LNCS, Strasbourg, France, 2001. Springer. [ bib ] |
[97] |
K. Kersting and L. De Raedt.
Principles of Learning Bayesian Logic Programs.
Technical Report 174, University of Freiburg, Institute for Computer
Science, June 2002. [ bib ] |
[98] |
K. Kersting, L. De Raedt, and S. Kramer.
Interpreting Bayesian Logic Programs.
In L. Getoor and D. Jensen, editors, Working Notes of the
AAAI-2000 Workshop on Learning Statistical Models from Relational Data
(SRL-2000), Technical Report WS-00-06, Austin, Texas, 2000. AAAI Press. [ bib ] |
[99] |
K. Kersting and L. De Readt.
Logical markov decision programs.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 63-70, Acapulco, Mexico, August 11, 2003. [ bib ] |
[100] |
K. Kersting, T. Raiko, and L. De Raedt.
A Structural GEM for Learning Logical Hidden Markov
Models.
In S. Dzeroski, L. De Raedt, and S. Wrobel, editors,
Workshop Notes of the KDD-03 Workshop on Multi-Relational Data Mining
(MRDM-03), 2003. [ bib ] |
[101] |
K. Kersting, T. Raiko, S. Kramer, and L. De Raedt.
Towards discovering structural signatures of protein folds based on
logical hidden markov models.
In R. B. Altman, A. K. Dunker, L. Hunter, T. A. Jung, and
T. E. Klein, editors, Proceedings of the Pacific Symposium on
Biocomputing, pages 192 - 203, Kauai, Hawaii, USA, 2003. World Scientific. [ bib ] |
[102] |
D. Koller.
Probabilistic relational models.
In S. Dzeroski and P. Flach, editors, Proceedings of Ninth
International Workshop on Inductive Logic Programming (ILP-99), volume 1634
of LNAI, pages 3-13, Bled, Slovenia, June 1999. Springer. [ bib ] |
[103] |
D. Koller, A. Levy, and A. Pfeffer.
P-classic: A tractable probabilistic description logic.
In B. J. Kuipers and B. Webber, editors, Proceedings of the
Fourteenth National Conference on AI (AAAI-97), pages 390-397, Providence,
Rhode Island, August 1997. [ bib ] |
[104] |
D. Koller, D. McAllester, and A. Pfeffer.
Effective Bayesian Inference for Stochastic Programs.
In B. J. Kuipers and B. Webber, editors, Proceedings of the
Fourteenth National Conference on Artificial Intelligence (AAAI-1997), pages
740-747, 1997. [ bib ] |
[105] |
D. Koller and A. Pfeffer.
Learning probabilities for noisy first-order rules.
In M. P. Georgeff and M. E. Pollack, editors, Proceedings of
the Fifteenth Joint Conference on Artificial Intelligence (IJCAI-97), pages
1316-1321, Nagoya, Japan, August 1997. [ bib ] |
[106] |
D. Koller and A. Pfeffer.
Object-oriented Bayesian networks.
In D. Geiger and P. P. Shenoy, editors, Proceedings of the
Thirteenth Annual Conference on Uncertainty in Artificial Intelligence
(UAI-97), pages 302-313, Providence, Rhode Island, USA, 1997. Morgan
Kaufmann. [ bib ] |
[107] |
D. Koller and A. Pfeffer.
Probabilistic frame-based systems.
In C. Rich and J. Mostow, editors, Proceedings of the Fifteenth
National Conference on Artificial Intelligence, pages 580-587, Madison,
Wisconsin, USA, July 1998. AAAI Press. [ bib ] |
[108] |
N. Lachiche and P. Flach.
1BC2: A True First-Order Bayesian Classifier.
In S. Matwin and C. Sammut, editors, Proceedings of the Twelfth
International Conference on Inductive Logic Prgramming (ILP-02), volume 2583
of LNCS, pages 133-148, Sydney, Australia, 2002. Springer. [ bib ] |
[109] |
H. Langseth and O. Bangsø.
Parameter learning in object oriented Bayesian networks.
Annals of Mathematics and Artificial Intelligence,
32(1/2):221-243, 2001. [ bib ] |
[110] |
S. L. Lauritzen.
The EM algorithm for graphical association models with missing
data.
Computational Statistics and Data Analysis, 19:191-201, 1995. [ bib ] |
[111] |
J. W. Lloyd.
Foundations of Logic Programming.
Springer, Berlin, 2. edition, 1989. [ bib ] |
[112] |
C. H. Manning and H. Schütze.
Foundations of Statistical Natural Language Processing.
The MIT Press, 1999. [ bib ] |
[113] |
B. Marthi, B. Milch, and S. Russell.
First-order probabilistic models for information extraction.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 71-78, Acapulco, Mexico, August 11, 2003. [ bib ] |
[114] |
A. McCallum and D. Jensen.
A Note on the Uinification of Information Extraction and
Data Mining using Conditional-Probability, Relational Models.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 79-86, Acapulco, Mexico, August 11, 2003. [ bib ] |
[115] |
G. J. McKachlan and T. Krishnan.
The EM Algorithm and Extensions.
John Eiley & Sons, Inc., 1997. [ bib ] |
[116] |
B. Milch, B. marthi, and S. Russell.
BLOG: Relational Modeling with Unkown Objects.
In T. Dietterich, L. Getoor, and K. Murphy, editors, Working
Notes of the ICML-2004 Workshop on Statistical Relational Learning and
Connections to Other Fields (SRL-2004), pages 67-73, Banff, Canada, July
2004. [ bib ] |
[117] |
R. Milton, V. Maheswari, and A. Siromoney.
T he Variable Precision Rough Set Inductive Logic
Programming modell - a statistical relational prespective.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 87-92, Acapulco, Mexico, August 11, 2003. [ bib ] |
[118] |
T. M. Mitchell.
Machine Learning.
The McGraw-Hill Companies, Inc., 1997. [ bib ] |
[119] |
S. H. Muggleton.
Stochastic logic programs.
In L. De Raedt, editor, Advances in Inductive Logic
Programming. IOS Press, 1996. [ bib ] |
[120] |
S. H. Muggleton.
Learning stochastic logic programs.
Electronic Transactions in Artificial Intelligence, 4(041),
2000. [ bib ] |
[121] |
S. H. Muggleton.
Learning stochastic logic programs.
In L. Getoor and D. Jensen, editors, Working Notes of the
AAAI-2000 Workshop on Learning Statistical Models from Relational Data
(SRL-2000), Technical Report WS-00-06, pages 36 -41, Austin, Texas, 2000.
AAAI Press. [ bib ] |
[122] |
S. H. Muggleton.
Semantics and derivation for stochastic logic programs.
In R. Dybowski, J. Myers, and S. Parsons, editors, Workshop
Notes of UAI-00 Workshop on Fusion of Domain Knowledge with Data for Decision
Support, Stanford, CA, USA, 2000. [ bib ] |
[123] |
S. H. Muggleton.
Learning structure and parameters of stochastic logic programs.
In S. Matwin and C. Sammut, editors, Proceedings of the Twelfth
International Conference on Inductive Logic Prgramming (ILP-02), volume 2583
of LNCS, pages 198-206, Sydney, Australia, 2002. Springer. [ bib ] |
[124] |
S. H. Muggleton and L. De Raedt.
Inductive logic programming: Theory and methods.
Journal of Logic Programming, 19(20):629-679, 1994. [ bib ] |
[125] |
K. P. Murphy.
Bayes Net Toolbox for Matlab.
U. C. Berkeley.
http://www.ai.mit.edu/\
murphyk/Software/BNT/bnt.html. [ bib ] |
[126] |
C. Nédellec, C. Rouveirol, H. Adé, F. Bergadano, and B. Tausend.
Declarative Bias in ILP.
In L. De Raedt, editor, Advances in Inductive Logic
Programming. IOS Press, 1996. [ bib ] |
[127] |
J. Neville and D. Jensen.
Iterative Classification in Relational Data.
In L. Getoor and D. Jensen, editors, Working Notes of the
AAAI-2000 Workshop on Learning Statistical Models from Relational Data
(SRL-2000), Technical Report WS-00-06, pages 42-49, Austin/Texas, USA, July
31, 2000. AAAI Press. [ bib ] |
[128] |
J. Neville, M. Rattigan, and D. Jensen.
Statistical relational learning: Four claims and a survey.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 93-97, Acapulco, Mexico, August 11, 2003. [ bib ] |
[129] |
J. Neville, O. Simsek, and D. Jensen.
Autocorreltion and Relational Learning: Challenges and
Opportunities.
In T. Dietterich, L. Getoor, and K. Murphy, editors, Working
Notes of the ICML-2004 Workshop on Statistical Relational Learning and
Connections to Other Fields (SRL-2004), pages 74-81, Banff, Canada, July
2004. [ bib ] |
[130] |
J. Newton and R. Greiner.
Hierarchical Probabilistic Relationals Models for
Collaborative Filtering.
In T. Dietterich, L. Getoor, and K. Murphy, editors, Working
Notes of the ICML-2004 Workshop on Statistical Relational Learning and
Connections to Other Fields (SRL-2004), pages 82-88, Banff, Canada, July
2004. [ bib ] |
[131] |
R. Ng and V. S. Subrahmanian.
Probabilistic Logic Programming.
Information and Computation, 101(2):150-201, 1992. [ bib ] |
[132] |
L. Ngo and P. Haddawy.
Probabilistic logic programming and Bayesian networks.
In S. Goto, J. Jaffar, and K. Kanchanasut, editors, Algorithms,
Concurrency and Knowledge: Proceedings of the Asian Computing Science
Conference 1995, Pathumthai, Thailand, December 1995. [ bib ] |
[133] |
L. Ngo and P. Haddawy.
A Knowledge-Based Model Construction Approach to Medical
Decision Making.
In Proceedings of the Twentieth American Medical Informatics
Association Annual Fall Symposium (AMIA-96), Washington DC, USA, 1996. [ bib ] |
[134] |
L. Ngo and P. Haddawy.
Answering Queries from Context-Sensitive Probabilistic
Knowledge Bases.
Theoretical Computer Science, 171:147-177, 1997. [ bib ] |
[135] |
L. Ngo, P. Haddawy, and J. Helwig.
A Theoretical Framework for Context-Sensitive Temporal
Probability Model Construction with Application to Plan
Projection.
In P. Besnard and S. Hanks, editors, Proceedings of the Eleventh
Annual Conference on Uncertainty in Artificial Intelligence (UAI-1995),
Montreal, Quebec, August 18-20, 1995. [ bib ] |
[136] |
S.-H. Nienhuys-Cheng and R. de Wolf.
Foundations of Inductive Logic Programming.
Springer-Verlag, 1997. [ bib ] |
[137] |
T. Oates, F. Huang, and S. Doshi.
Parameter estimation for stochastic context-free graph grammars.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 98-106, Acapulco, Mexico, August 11, 2003. [ bib ] |
[138] |
R. Páircéir, S. McClean, and B. Scotney.
Uing Hierachies, Aggregates and Statistical Model to
Discover Knowledge from Distributed Databases.
In L. Getoor and D. Jensen, editors, Working Notes of the
AAAI-2000 Workshop on Learning Statistical Models from Relational Data
(SRL-2000), Technical Report WS-00-06, pages 50-56, Austin/Texas, USA, July
31, 2000. AAAI Press. [ bib ] |
[139] |
S. Parsons.
Current approaches to handling imperfect information in data and
knowledge bases.
IEEE Transactions on Knowledge and Data Engineering,
8(3):353-372, June 1996. [ bib ] |
[140] |
H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser.
Identity Uncertainty and Citation Matching.
In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in
Neural Information Processing Systems 15. MIT Press, 2003. [ bib ] |
[141] |
H. Pasula and S. Russell.
Approximate inference for first-order probabilistic languages.
In B. Nebel, editor, Seventeenth International Joint Conference
on Artificial Intelligence (IJCAI-01), pages 741-748, Seattle, Washington,
USA, 2001. Morgan Kaufmann. [ bib ] |
[142] |
J. Pearl.
Reasoning in Intelligent Systems: Networks of Plausible
Inference.
Morgan Kaufmann, 2. edition, 1991. [ bib ] |
[143] |
C. Perlich and F. Provost.
Aggregation and concept complexity in relational learning.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 107-108, Acapulco, Mexico, August 11, 2003. [ bib ] |
[144] |
A. Pfeffer.
A Bayesian Language for Cumulative Learning.
In L. Getoor and D. Jensen, editors, Working Notes of the
AAAI-2000 Workshop on Learning Statistical Models from Relational Data
(SRL-2000), Technical Report WS-00-06, pages 57-62, Austin/Texas, USA, July
31, 2000. AAAI Press. [ bib ] |
[145] |
A. Pfeffer and D. Koller.
Semantics and Inference for Recursive Probability Models.
In H. Kautz and B. Porter, editors, Proceedings of the
Seventeenth National Conference on Artificial Intelligence (AAAI-00), pages
538-544., Austin, Texas, USA, 2000. AAAI Press. [ bib ] |
[146] |
A. Pfeffer, D. Koller, B. Milch, and K. T. Takusagawa.
Spook: A system for probabilistic object-oriented knowledge
representation.
In K. B. Laskey and H. Prade, editors, Proceedings of the
Fifteenth Annual Conference on Uncertainty in Artificial Intelligence
(UAI-1999). Morgan Kaufmann, July 30-August 1, 1999. [ bib ] |
[147] |
A. J. Pfeffer.
Probabilistic Reasoning for Complex Systems.
PhD thesis, Stanford University, 1999. [ bib ] |
[148] |
A. J. Pfeffer.
Probabilistic Reasoning for Complex Systems.
PhD thesis, Stanford University, 2000. [ bib ] |
[149] |
D. Poole.
Probabilistic Horn abduction and Bayesian networks.
Artificial Intelligence, 64:81-129, 1993. [ bib ] |
[150] |
A. Popescul and L. H. Ungar.
Statistical relational learning for link prediction.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 109-115, Acapulco, Mexico, August 11, 2003. [ bib ] |
[151] |
A. Popescul and L. H. Ungar.
Cluster-based Concept Invention for Statistical Relational
Learning.
In T. Dietterich, L. Getoor, and K. Murphy, editors, Working
Notes of the ICML-2004 Workshop on Statistical Relational Learning and
Connections to Other Fields (SRL-2004), pages 102-109, Banff, Canada, July
2004. [ bib ] |
[152] |
F. Provost, C. Perlich, and S .Macskassy.
Relational learning problems and simple models.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 116-120, Acapulco, Mexico, August 11, 2003. [ bib ] |
[153] |
A. Puech and S. Muggleton.
A comparison of Stochastic Logic Programs and Baysian Logic
Programs.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 121-129, Acapulco, Mexico, August 11, 2003. [ bib ] |
[154] |
M. L. Puterman.
Markov Decision Processes: Discrete Stochastic
Dynamic Programming.
John Wiley & Sons, Inc., 1994. [ bib ] |
[155] |
L. R. Rabiner.
A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition.
Proceedings of the IEEE, 77(2):257-286, February 1989. [ bib ] |
[156] |
L. R. Rabiner and B. H. Juang.
An introduction to hidden Markov models.
IEEE ASSP Magazine, pages 4-15, January 1986. [ bib ] |
[157] |
L. De Raedt.
Attribute-value learning versus inductive logic programming: the
missing links.
In Inductive Logic Programming, 1999. [ bib ] |
[158] |
F. T. Ramos and H. F. Durrant-Whyte.
Learning Complex Motion Structures.
In T. Dietterich, L. Getoor, and K. Murphy, editors, Working
Notes of the ICML-2004 Workshop on Statistical Relational Learning and
Connections to Other Fields (SRL-2004), pages 88-83, Banff, Canada, July
2004. [ bib ] |
[159] |
V. Santos Costa, D. Page, M. Qazi, and J. Cussens.
CLP(BN): Constraint Logic Programming for Probabilistic
Knowledge.
In Proceedings of the Nineteenth Annual Conference on
Uncertainty in Artificial Intelligence (UAI-03), Mexico, August 8-10 2003.
Morgan Kaufman. [ bib ] |
[160] |
T. Sato.
A Statistical Learning Method for Logic Programs with
Distribution Semantics.
In L. Sterling, editor, Proceedings of the Twelfth International
Conference on Logic Programming (ICLP-1995), pages 715 - 729, Tokyo, Japan,
1995. MIT Press. [ bib ] |
[161] |
T. Sato.
Parameterized logic programs where computing meets learning.
In H. Kuchen and K. Ueda, editors, Proceedings of Fifth
International Symposium on Functional and Logic Programming (FLOPS-01),
volume 2024 of LNCS, pages 40-60, Tokyo, Japan, 2001. Springer-Verlag. [ bib ] |
[162] |
T. Sato and Y. Kameya.
PRISM: A Symbolic-Statistical Modeling Language.
In M. P. Georgeff and M. E. Pollack, editors, Proceedings of
the Fifteenth International Joint Conference on Artificial Intelligence
(IJCAI-97), pages 1330-1339, Nagoya, Japan, 1997. Morgan Kaufmann. [ bib ] |
[163] |
T. Sato and Y. Kameya.
A Viterbi-like algorithm and EM learning for statistical
abduction.
In R. Dybowski, J. Myers, and S. Parsons, editors, Workshop
Notes of UAI-00 Workshop on Fusion of Domain Knowledge with Data for Decision
Support, Stanford, CA, USA, 2000. [ bib ] |
[164] |
T. Sato and Y. Kameya.
Parameter learning of logic programs for symbolic-statistical
modeling.
Journal of Artificial Intelligence Research, 15:391-454, 2001. [ bib ] |
[165] |
T. Sato and Y. Kameya.
A Dynamic Programming Approach to Parameter Learning of
Generative Models with Failure.
In T. Dietterich, L. Getoor, and K. Murphy, editors, Working
Notes of the ICML-2004 Workshop on Statistical Relational Learning and
Connections to Other Fields (SRL-2004), pages 94-101, Banff, Canada, July
2004. [ bib ] |
[166] |
T. Sato and N.-F. Zhou.
A new perspective of statistical modeling with PRISM.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 133-140, Acapulco, Mexico, August 11, 2003. [ bib ] |
[167] |
E. Segal, Y. Barash, I. Simon, N. Friedman, and D. Koller.
From Promoter Sequence to Expression: A Probabilistic
Framework.
In G. Myers, S. Hannenhalli, S. Istrail, P. Pevzner, and M. Waterman,
editors, Proceedings of the Sixth International Conference on Research
in Computational Molecular Biology (RECOMB-02), pages 263-272, Washington,
DC, USA, 2002. ACM Press. [ bib ] |
[168] |
E. Segal, A. Battle, and D. Koller.
Decomposing Gene Expression into Cellular Processes.
In R. B. Altman, A. K. Dunker, L. Hunter, T. A. Jung, and T.
E. Klein, editors, Proceedings of the Pacific Symposium on
Biocomputing, pages 89 - 100, Kauai, Hawaii, USA, 2003. World Scientific. [ bib ] |
[169] |
E. Segal, B. Taskar, A. Gasch, N. Friedman, and D. Koller.
Rich Probabilistic Models for Gene Expression.
Bioinformatics, 17:S243-S252, 2001. [ bib ] |
[170] |
R. D. Shachter.
Bayes-Ball: The Rational Pastime (for Determining
Irrelevance and Requisite Information in Belief Networks and
Influence Diagrams.
In G. F. Cooper and S. Moral, editors, Proceedings of the
Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI-1998),
pages 480-487, Madison, Wisconsin, USA, 1998. [ bib ] |
[171] |
S. Shanghai, P. Domingos, and D. Weld.
Learning statistical models of time-varying relational data.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 131-133, Acapulco, Mexico, August 11, 2003. [ bib ] |
[172] |
E. Y. Shapiro.
Algorithmic Program Debugging.
MIT Press, 1983. [ bib ] |
[173] |
E. Y. Shapiro.
Logic Programs with Uncertainties: A Tool for
Implementing Expert Systems.
In A. Bundy, editor, Proceedings of the Eighth International
Joint Conference on Artificial Intelligence (IJCAI-1983), pages 529-532,
Karlsruhe, Germany, 1983. Kaufmann. [ bib ] |
[174] |
S. Slattery.
Relational learning: A web-page classification viewpoint.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 141-142, Acapulco, Mexico, August 11, 2003. [ bib ] |
[175] |
P. Smyth.
Statistical modeling of graph and network data.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 143-144, Acapulco, Mexico, August 11, 2003. [ bib ] |
[176] |
B. Taskar, P. Abbeel, M.-F. Wong, and D. Koller.
Label and link prediction in relational data.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 145-152, Acapulco, Mexico, August 11, 2003. [ bib ] |
[177] |
B. Taskar, E. Segal, and D. Koller.
Probabilistic clustering in relational data.
In B.`Nebel, editor, Seventeenth International Joint Conference
on Artificial Intelligence (IJCAI-01), pages 870-87, Seattle, Washington,
USA, 2001. Morgan Kaufmann. [ bib ] |
[178] |
A. Van Assche, C. Vens, H. Blockeel, and S. Dzeroski.
A Random Forest Approach to Relational Learning.
In T. Dietterich, L. Getoor, and K. Murphy, editors, Working
Notes of the ICML-2004 Workshop on Statistical Relational Learning and
Connections to Other Fields (SRL-2004), pages 110-116, Banff, Canada, July
2004. [ bib ] |
[179] |
A. Van Gelder, K. A. Ross, and J. S. Schlipf.
The Well-Founded Semantics for general Logic Programs.
Journal of the ACM, 38(3):620-650, 1991. [ bib ] |
[180] |
W. Van Laer and L. De Raedt.
How to Upgrade Propositional Learners to First Order
Logic: A Case Study.
In N. Lavrac and S. Dzeroski, editors, Relational
Data Mining. Springer Verlag, 2001. [ bib ] |
[181] |
A. P. Wolfe and D. Jensen.
Playing multiple roles: Discovering Overlapping Roles in
Social Networks.
In T. Dietterich, L. Getoor, and K. Murphy, editors, Working
Notes of the ICML-2004 Workshop on Statistical Relational Learning and
Connections to Other Fields (SRL-2004), pages 117-125, Banff, Canada, July
2004. [ bib ] |
[182] |
Y. Xiang, S. K. Wong, and N. Cercone.
Critical remarks on single link search in learning belief networks.
In E. Horvitz and F. V. Jensen, editors, Proceedings of the
Twelfth Annual Conference on Uncertainty in Artificial Intelligence
(UAI-96), pages 564-571, Portland, Oregon, USA, 1996. Morgan Kaufmann. [ bib ] |
[183] |
N. L. Zhang and D. Poole.
Exploiting causal independence in Bayesian network inference.
Journal of Artificial Intelligence Research, 5:301-328, 1996. [ bib ] |
[184] |
X.-F. Zhang, C. M. Lam, and W. K. Cheung.
Web Page Organization and Visualization Using Generative
Topographic Mapping: A Pilot Study.
In T. Dietterich, L. Getoor, and K. Murphy, editors, Working
Notes of the ICML-2004 Workshop on Statistical Relational Learning and
Connections to Other Fields (SRL-2004), pages 126-131, Banff, Canada, July
2004. [ bib ] |
[185] |
D. Zhou and B. Schoelkopf.
A Regularization Framework for Learning from Graph Data.
In T. Dietterich, L. Getoor, and K. Murphy, editors, Working
Notes of the ICML-2004 Workshop on Statistical Relational Learning and
Connections to Other Fields (SRL-2004), pages 132-137, Banff, Canada, July
2004. [ bib ] |
[186] |
N.-F. Zhou, T. Sato, and K. Hasidad.
Toward a high-performance system for symbolic and statistical
modeling.
In L. Getoor and D. Jensen, editors, Working Notes of the
IJCAI-2003 Workshop on Learning Statistical Models from Relational Data
(SRL-2003), pages 153-159, Acapulco, Mexico, August 11, 2003. [ bib ] |