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Extrapolation

Train NN f to learn underlying function g : X — IR with training set {(xi,v:)}1—1 C D




Extrapolation

Train NN f to learn underlying function g : X — IR with training set {(x;,y;)}i-y C D

amNPtest [g(f(m)a g(x))]
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Evaluation of NN extrapolation
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|Q tests Physical reasoning
shape, color, number of objects position, mass, number of objects

(Santoro et al. 2018, Zhang et al 2019) (Wu et al. 2017, Battagalia et al 2016, Janner et al 2019, Kramer et 2020)



Evaluation of NN extrapolation

Question: Calculate —-841880142.544 + 411127.

Answer: —841469015.544
Question: Let x(g) = 9xg + 1. Let g(c) = 2+c + 1. Let f£(i) = 3xi -

39. Let w(3j) = g(x(3j)). Calculate f(w(a)).
Answer: 54xa - 30
Question: Let e(l1l) =1 - 6. Is 2 a factor of both e(9) and 27

Answer: False

Mathematical reasoning Graph algorithms
length, number range, complexity graph size, graph structure, edge weights

(Saxton et al. 2019, Lample et al 2020) (Battagalia et al 2018, Dai et al 2018, Velickovic et al 2020)



Puzzle

Feedforward NN (multilayer perceptron) Similarly for CNN, RNN etc

MLP(z) = W@ . 5 (W(d_l)a (...0 (W(l)m)))

(Barnard & Wessels 1992, Haley & Soloway 1992, Santoro et al 2018, Saxton et al 2019)

Graph neural network (GNN)

A = 37 MLPO (A, AED,w ), he = ML (37 )
vEN (u) ueG

variants of GNN architectures may be used
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modadules

¥ some success




How neural networks extrapolate

DeSle[e Un |Ve|’8a‘ apprOX| matIOﬂ (Cybenko 1989, Funahashi 1989, Hornik et al1989, Kurkova 1992, Zhang et al 2017)

What NN learns depends on training algorithm, architecture, data

GD GNN feature geometry
MLP graph structure

Theory: Gradient descent training in NTK regime
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(Jacot et al 2018, Li and Liang 2018, Allen-Zhu et al 2019, Arora et al 2019ab, Du et al 2019ab)

Parameter trajectory Experiments: same conclusion in regular regimes
0(1)



Linear extrapolation behavior of ReLU MLPs

Training data

Theorem (XZLDKJ’21)
Let f be a two-layer ReLU MLP trained by GD*. For any direction v € | d, let
x=1tv.Forany h > 0, ast — oo, f(x + hv) — f(x) = p h with rate O(1/)

* Assumption: NTK regime




Implication of linear extrapolation
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MAPE extrapolation error: lower the better

* Note: this does not follow from Rel.U networks have finitely
many linear egions, which only implies asymptotic error



Provable learning of linear functions with diverse training data

Theorem (XZLDKJ’21)

Let f be a two-layer ReLU MLP trained by GD*. Suppose target function is
[1x and support of training distribution covers all directions. As the number of
training examples n — oo, f(x) = flx.

* Assumption: NTK regime



Provable learning of linear functions Il

Provable extrapolation with 2d diverse training data " mainly of theoretical interest

Lemma (XZLDKJ’21)
Let f be a two-layer ReLU MLP trained by GD*. Suppose target function is
£ 1x and training set contains an orthogonal basis and their opposite vectors,

then f(x) = flx.

* Assumption: NTK regime



Feedforward networks with other activation
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(a) tanh activation (b) cosine activation (c) quadratic activation

Extrapolates well if activation is “similar” to target function



Implications for GNNs

Shortest Path:  d[k][u] =/ i ;d[k —1][0] + w(v, u)
GNN (sum): h® = B3 MLP® (n*=D p&=D yo(v, u))

x MLP has to learn non-linear steps

GNN that encodes the nonlinearity min

AP =[] MLP® (&0, B0, w(v, u))
/ MLP learns linear steps
43.8
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Provable extrapolation: nonlinearity and data distribution

Data diversity: feature direction (MLP), graph structure (GNN)

general 0.0 path 33.6
tree 0.0 tree
complete 0.1 cycle
expander 0.1 ladder
cycle 6.4 4regular 0.4
ladder 11.0 general 0.0
4regular 12.5 expander 2.4
path 94.5 complete 8.9
Max Degree Shortest Path

Theorem (XZLDKJ’21)

A GNN encoding max in aggregation trained by GD* learns max degree if
tra|n|ng data {degmaX(G ) degmln(G ) Nmax degmaX(G ) len degmln(G )}z 1 SpanS \. 4

* Assumption: NTK regime



GNNs can extrapolate DP (under conditions)

Answer k||i]| = DP—Uate({Answer[k —1ll4], y=1...n})

ok _ k—1
h(k) = MLP{*) (h{t=1, h*)

tesS

Reasoning tasks as dynamic programming (DP):

graph algorithms visual question answering Intuitive physics



Linear algorithmic alignment

Linear algorithmic alignment (XZLDKJ'21)
Network can simulate underlying function via linear “modules”.

Hypothesis: Linear algo alignment helps extrapolation.

Application: Encode nonlinearity in architecture or input representation.

* Interpolation version (Xu et al 2020): align with
easy-to-learn (possibly nonlinear) modules



Encoding nonlinearities in architecture

Activation, pooling, symbolic operations etc...

NALU: y=gGa+(l—-g)Om

m = exp W (log(|x| +¢)), g = o(Gx)

Encode exp log for learning multiplication Q: What direction is the closest

(Trask et al. 2018, Madsen & Johansen 2020) creature facmg?

P: scene, filter creature,
filter closest, unique,
query direction

Qo

- O ) .
 Se—o ‘} a; = ﬁ (1 o Tij)Tz'j A: left
" _
Encode a library of programs (~2K)
SymbO“C OUtpUt (Granmer et al 2020) (Johnson et al 2017, Yi et al. 2018, Mao et al 2019...)



Encoding nonlinearities in input representation

&

G : input graph h: input transform
g . easier for extrapolation

@@ L5 e —2— fG)

v

f : hard for extrapolatlon

Specialized features, feature transformation

Representation learning with out-of-distribution data (e.g., BERT)



Encoding nonlinearities in input representation

0 original features iImproved features
11.0
6.3
1.5 - 1.1 1.2 07
I
extrapolate dist extrapolate mass Interpolate

n-body problem

Genera‘ |Zat|0n aClross Ianguages (Mikolov et al 2013, Zhang et al. 2019, Devlin et al 2019, Wu et al 2019, Yuan et al 2020)
Symbolic mathematics (ampieeta 2020

Q dantitative fi nance (Fama & French 1993, Banz 1981, Ross 1976)



Summary

1. Linear extrapolation of ReLU MLPs (non-asymptotic analysis)
2. Provable learning of linear functions with diverse training data

3. Linear algorithmic alignment for structured networks, e.g., GNNs

Code & slides:
Nitps://people.csall.mit.edu/kevulux


https://people.csail.mit.edu/keyulux/

