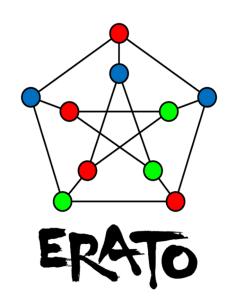


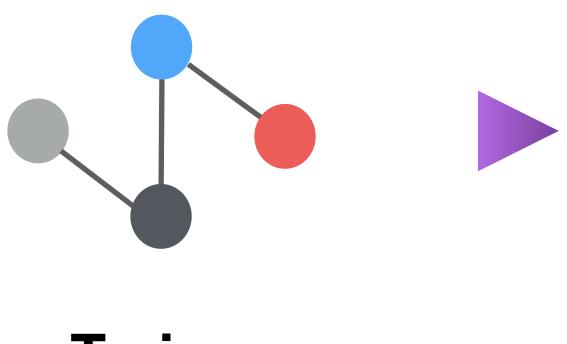
How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks

Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S. Du Ken-ichi Kawarabayashi, Stefanie Jegelka

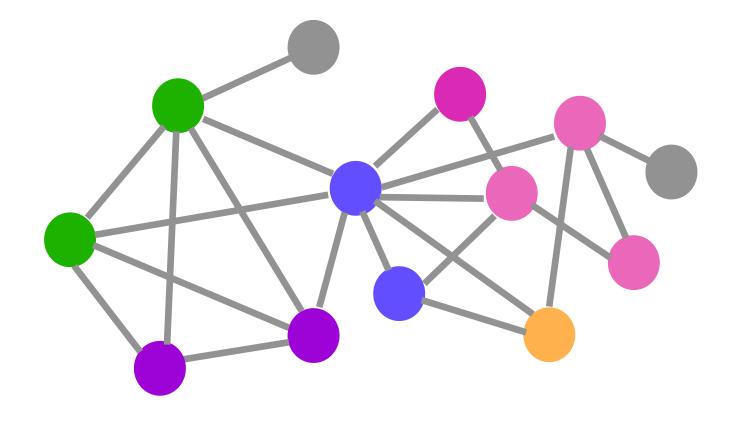


Extrapolation

 $\mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_{\text{test}}}[\ell(f(\boldsymbol{x}), g(\boldsymbol{x}))]$

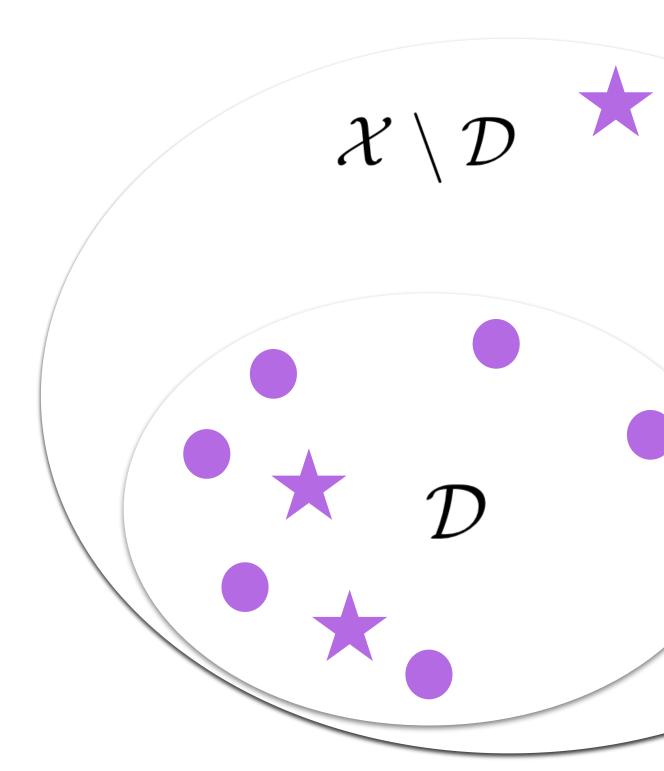


Train NN f to learn underlying function $g: \mathcal{X} \to \mathbb{R}$ with training set $\{(x_i, y_i)\}_{i=1}^n \subset \mathcal{D}$



Test

Extrapolation



Train NN f to learn underlying function $g: \mathcal{X} \to \mathbb{R}$ with training set $\{(x_i, y_i)\}_{i=1}^n \subset \mathcal{D}$

$\mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_{\text{test}}}[\ell(f(\boldsymbol{x}), g(\boldsymbol{x}))]$

Extrapolation

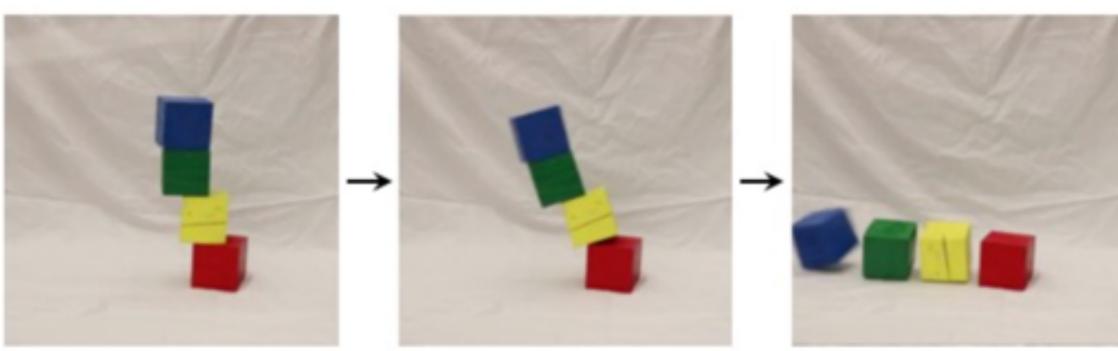
In-distribution $\mathcal{P}_{train} = \mathcal{P}_{test}$ generalization

Evaluation of NN extrapolation



IQ tests shape, color, number of objects

(Santoro et al. 2018, Zhang et al 2019)



Physical reasoning position, mass, number of objects

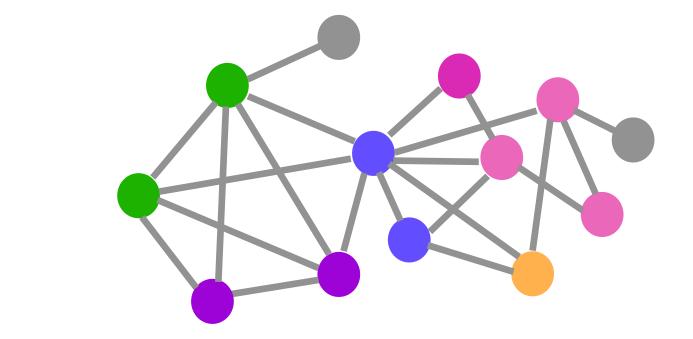
(Wu et al. 2017, Battagalia et al 2016, Janner et al 2019, Kramer et 2020)

Evaluation of NN extrapolation

Question: Calculate -841880142.544 + 411127. Answer: -841469015.544 Question: Let x(g) = 9*g + 1. Let q(c) = 2*c + 1. Let f(i) = 3*i - 139. Let w(j) = q(x(j)). Calculate f(w(a)). Answer: 54 * a - 30 Question: Let e(1) = 1 - 6. Is 2 a factor of both e(9) and 2? Answer: False

Mathematical reasoning length, number range, complexity

(Saxton et al. 2019, Lample et al 2020)



Graph algorithms graph size, graph structure, edge weights

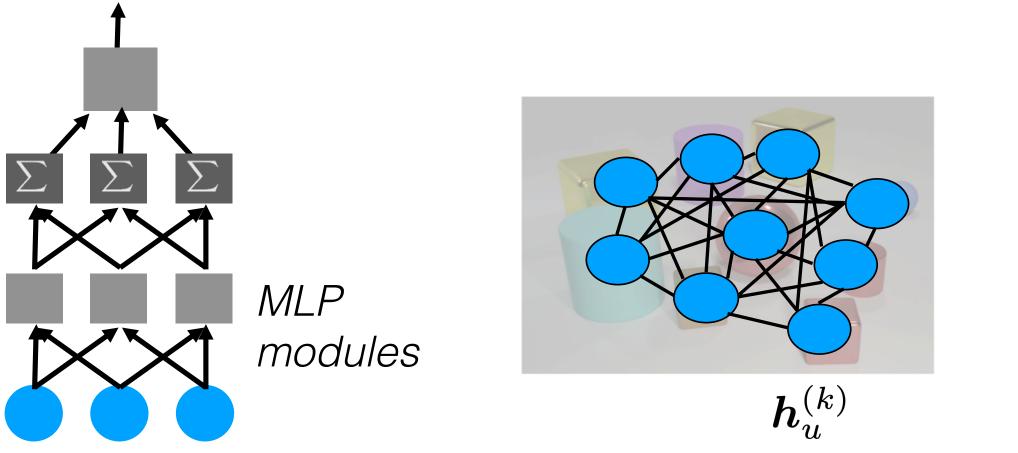
(Battagalia et al 2018, Dai et al 2018, Velickovic et al 2020)

Feedforward NN (multilayer perceptron) $MLP(\boldsymbol{x}) = \boldsymbol{W}^{(d)} \cdot \sigma \left(\boldsymbol{W}^{(d-1)} \sigma \left(... \sigma \left(\boldsymbol{W}^{(1)} \boldsymbol{x} \right) \right) \right)$

(Barnard & Wessels 1992, Haley & Soloway 1992, Santoro et al 2018, Saxton et al 2019)

Graph neural network (GNN)

$$oldsymbol{h}_{u}^{(k)} = \sum_{v \in \mathcal{N}(u)} ext{MLP}^{(k)} \Big(oldsymbol{h}_{u}^{(k-1)}, oldsymbol{h}_{v}^{(k-1)}, oldsymbol{w}_{(v,u)}\Big),$$



Similarly for CNN, RNN etc

$$\boldsymbol{h}_{G} = \mathrm{MLP}^{(K+1)} \left(\sum_{u \in G} \boldsymbol{h}_{u}^{(K)} \right)$$

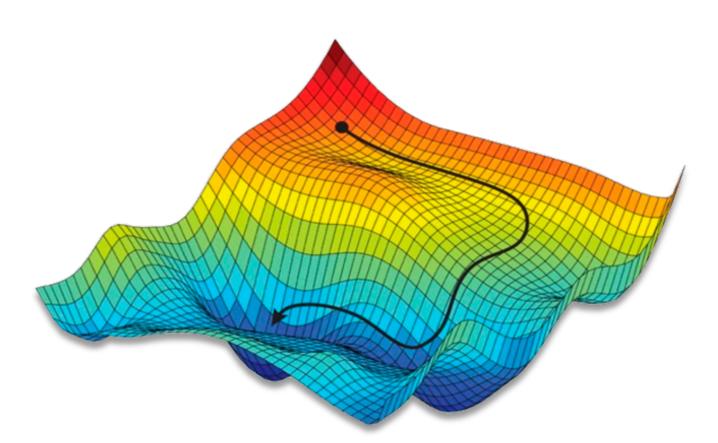
variants of GNN architectures may be used

some success

How neural networks extrapolate

Despite universal approximation (Cybenko 1989, Funahashi 1989, Hornik et al 1989, Kurkova 1992, Zhang et al 2017)

What NN learns depends on training algorithm, architecture, data GD



Parameter trajectory $\theta(t)$

Theory: Gradient descent training in NTK regime

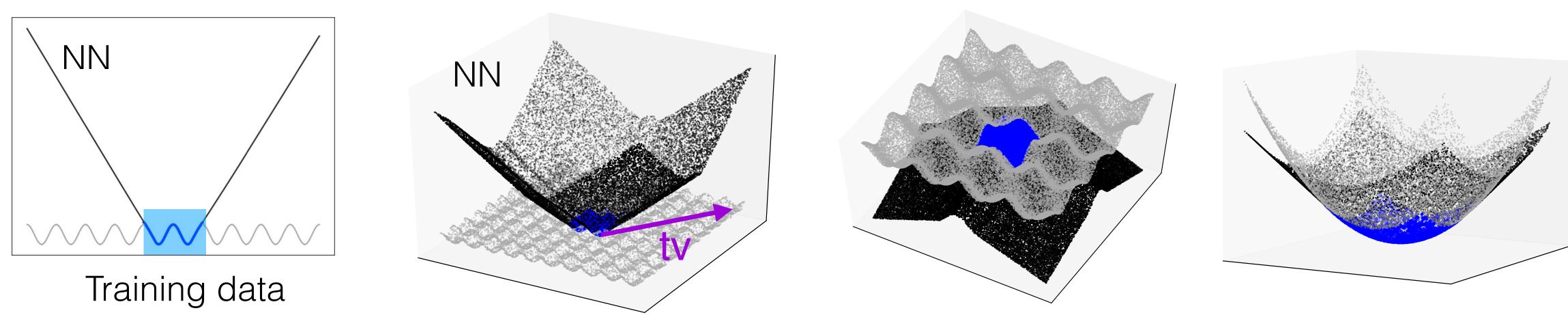
Experiments: same conclusion in regular regimes

GNN	feature geometry
MLP	graph structure

Wide NN trained by GD = kernel GD with NTK

(Jacot et al 2018, Li and Liang 2018, Allen-Zhu et al 2019, Arora et al 2019ab, Du et al 2019ab)

Linear extrapolation behavior of ReLU MLPs

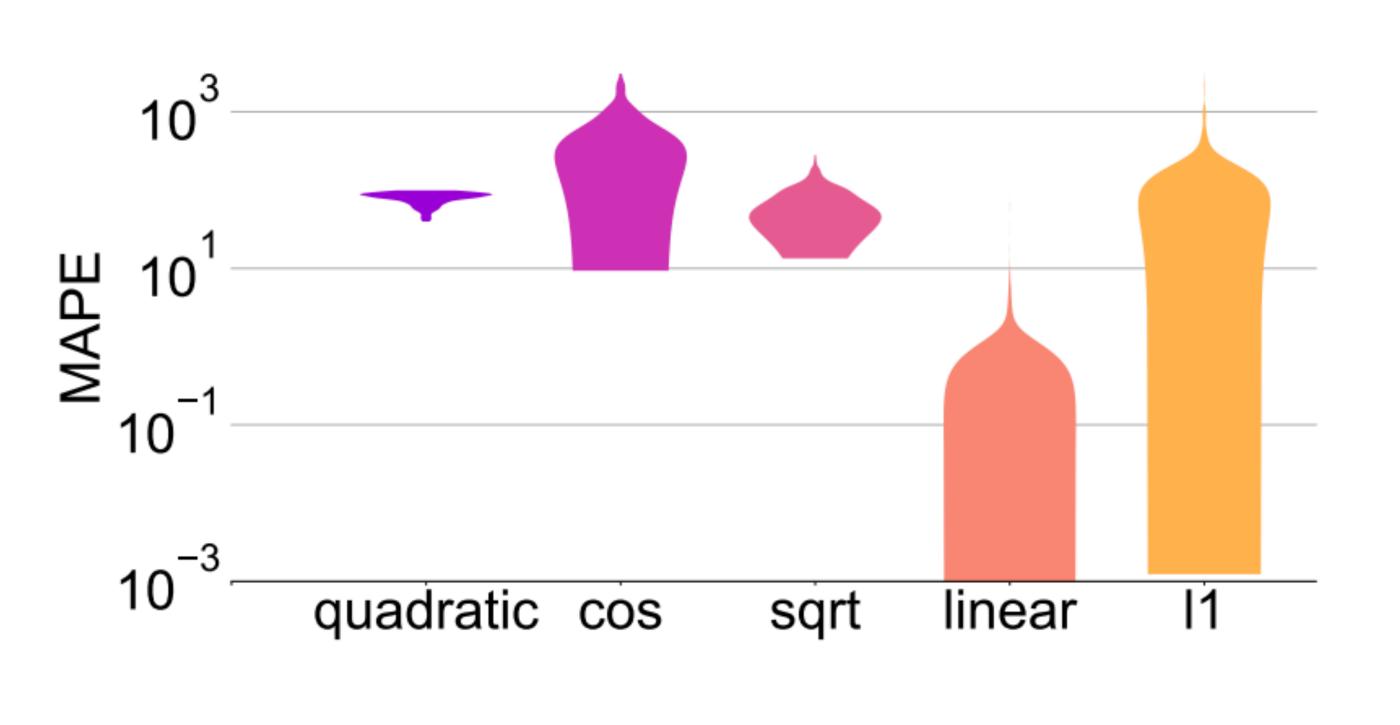


Theorem (XZLDKJ'21)

Let f be a two-layer ReLU MLP trained by GD^{*}. For any direction $v \in \mathbb{R}^d$, let x = tv. For any h > 0, as $t \to \infty$, $f(x + hv) - f(x) \to \beta_v h$ with rate O(1/t)

* Assumption: NTK regime

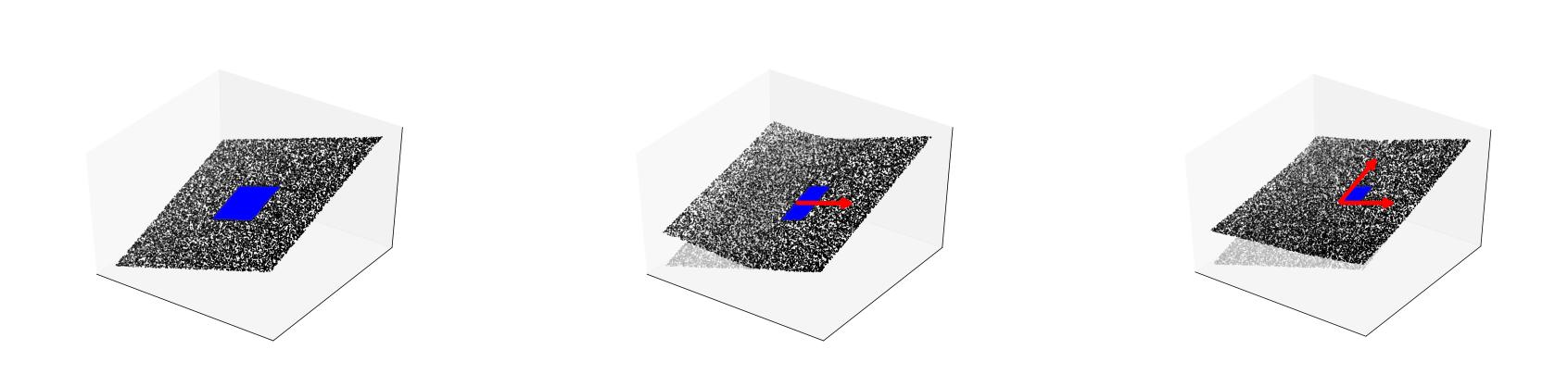
Implication of linear extrapolation



MAPE extrapolation error: lower the better

* Note: this does not follow from ReLU networks have finitely many linear egions, which only implies asymptotic error

Provable learning of linear functions with diverse training data



Theorem (XZLDKJ'21) training examples $n \to \infty$, $f(x) \to \beta^{T} x$.

Let f be a two-layer ReLU MLP trained by GD*. Suppose target function is $\beta^{T}x$ and support of training distribution covers all directions. As the number of

* Assumption: NTK regime

Provable learning of linear functions II

Provable extrapolation with **2d diverse training data**

Lemma (XZLDKJ'21)

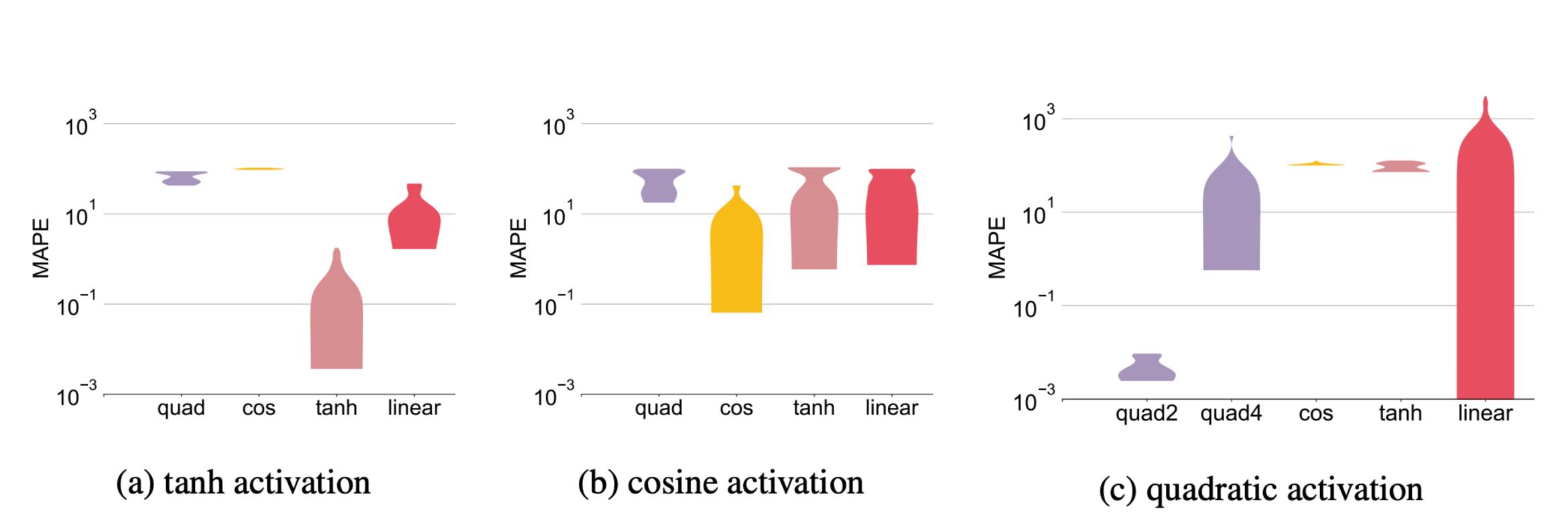
Let f be a two-layer ReLU MLP trained by GD*. Suppose target function is then $f(x) = \beta^{\mathsf{T}} x$.

* mainly of theoretical interest

$\beta^{\mathsf{T}}x$ and training set contains an orthogonal basis and their opposite vectors,

Assumption: NTK regime

Feedforward networks with other activation

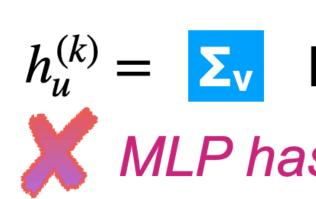


Extrapolates well if activation is "similar" to target function

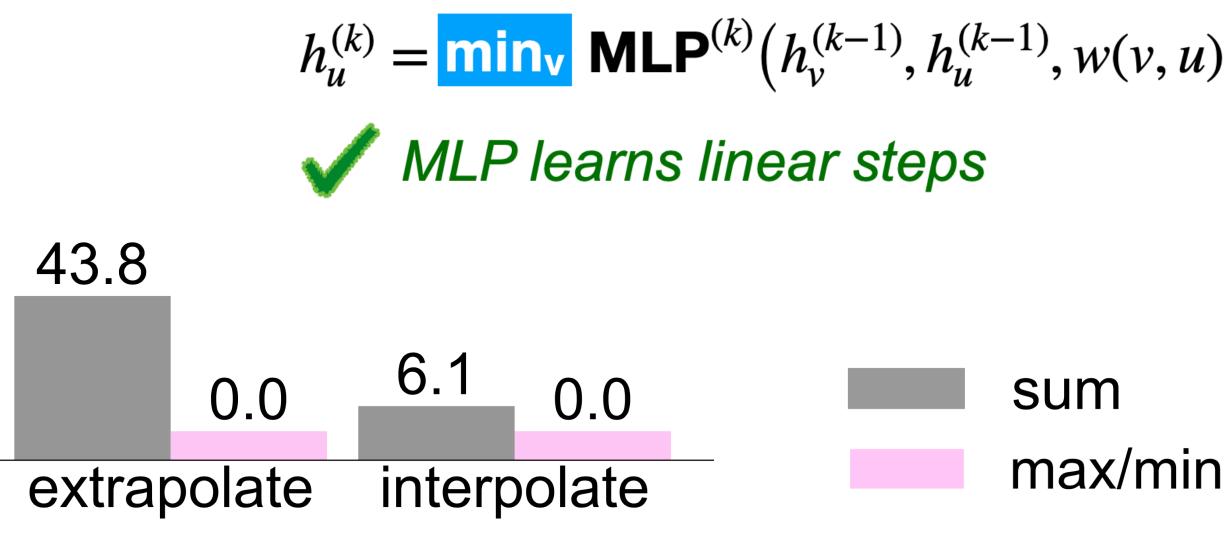
Implications for GNNs

 $d[k][u] = \underset{v \in \mathcal{I}}{\mathrm{m}}$ Shortest Path:

GNN (sum):



GNN that encodes the nonlinearity min



$$\min_{\mathcal{N}(u)} d[k-1][v] + \boldsymbol{w}(v,u)$$

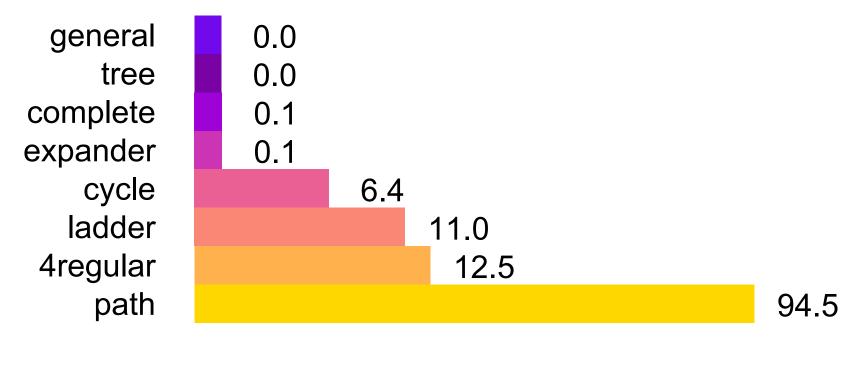
MLP^(k)
$$(h_v^{(k-1)}, h_u^{(k-1)}, w(v, u))$$

is to learn non-linear steps

$$\mathsf{MLP}^{(k)}(h_v^{(k-1)}, h_u^{(k-1)}, w(v, u))$$

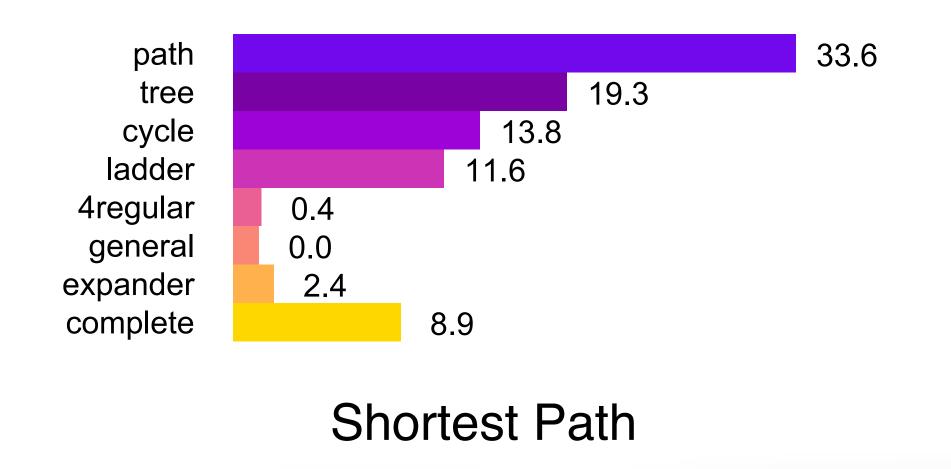
Provable extrapolation: nonlinearity and data distribution

Data diversity: feature direction (MLP), graph structure (GNN)



Max Degree

Theorem (XZLDKJ'21) A GNN encoding max in aggregation trained by GD* learns max degree if training data $\{\deg_{\max}(G_i), \deg_{\min}(G_i), N_i^{\max} \deg_{\max}(G_i), N_i^{\min} \deg_{\min}(G_i)\}_{i=1}^n$ spans \mathbb{R}^4 .

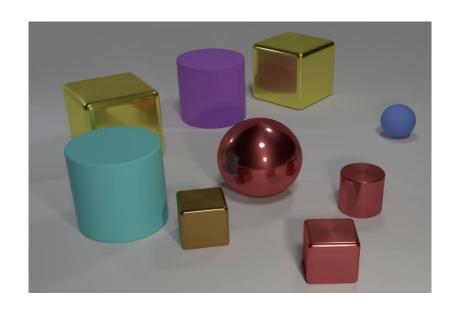


* Assumption: NTK regime

GNNs can extrapolate DP (under conditions)

$h_{s}^{(k)} = \sum_{t \in S} \mathrm{MLP}_{1}^{(k)} \left(h_{s}^{(k-1)}, h_{t}^{(k-1)} \right)$

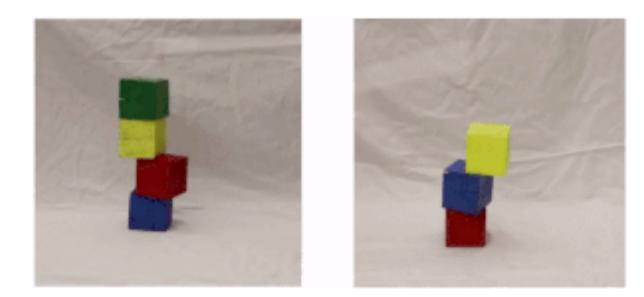
Reasoning tasks as dynamic programming (DP):



graph algorithms

visual question answering

 $Answer[k][i] = DP-Update(\{Answer[k-1][j], j = 1...n\})$



Intuitive physics

Linear algorithmic alignment

Linear algorithmic alignment (XZLDKJ'21) Network can simulate underlying function via *linear* "modules".

Hypothesis: Linear algo alignment helps *extrapolation*.

- **Application:** Encode nonlinearity in **architecture** or **input representation**.

Interpolation version (Xu et al 2020): align with easy-to-learn (possibly nonlinear) modules

Encoding nonlinearities in architecture

Activation, pooling, symbolic operations etc...

NALU:
$$\mathbf{y} = \mathbf{g} \odot \mathbf{a} + (1 - \mathbf{g}) \odot \mathbf{m}$$

 $\mathbf{m} = \exp \mathbf{W}(\log(|\mathbf{x}| + \epsilon)), \ \mathbf{g} = \sigma(\mathbf{G}\mathbf{x})$

Encode **exp log** for learning multiplication

(Trask et al. 2018, Madsen & Johansen 2020)

$$\vec{a}_i = \frac{C}{M_i} \sum_{j \neq i} (1 - r_{ij}) \hat{r}_{ij}$$

Symbolic output

(Cranmer et al 2020)

Q: What direction is the closest creature facing?

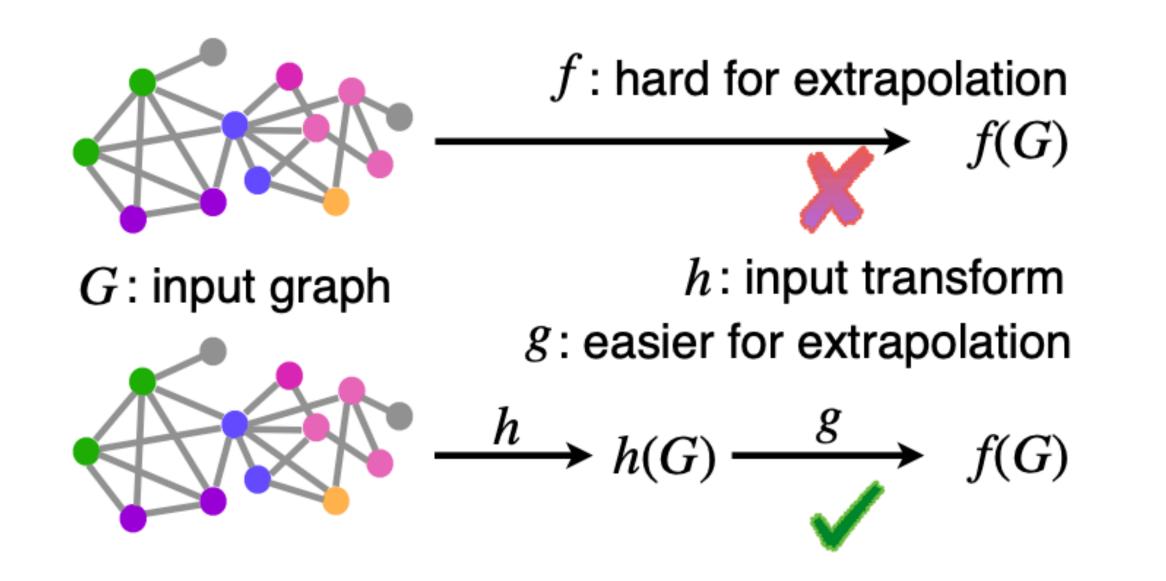
P: scene, filter creature, filter closest, unique, query_direction

A: left

Encode a library of programs (~2K)

(Johnson et al 2017, Yi et al. 2018, Mao et al 2019...)

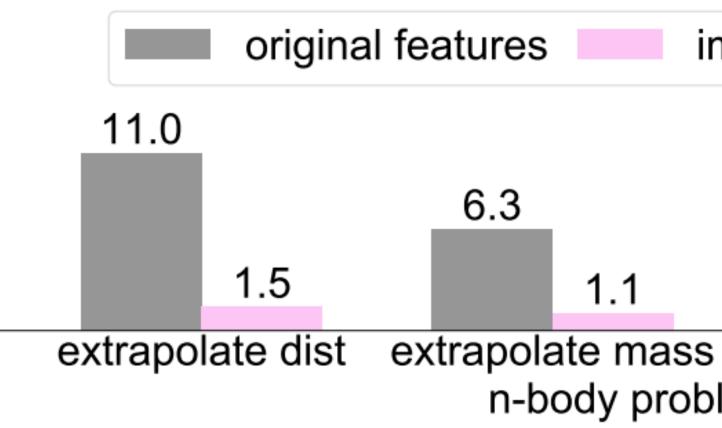
Encoding nonlinearities in input representation



Specialized features, feature transformation

Representation learning with out-of-distribution data (e.g., BERT)

Encoding nonlinearities in input representation



Generalization across languages

Symbolic **mathematics** (Lample et al 2020)

Quantitative **finance**

(Fama & French 1993, Banz 1981, Ross 1976)

improved features

1.2 1.1 0.7 interpolate n-body problem

(Mikolov et al 2013, Zhang et al. 2019, Devlin et al 2019, Wu et al 2019, Yuan et al 2020)

1. Linear extrapolation of ReLU MLPs (non-asymptotic analysis)

2. Provable learning of linear functions with **diverse training data**

3. Linear algorithmic alignment for structured networks, e.g., GNNs

Code & slides: https://people.csail.mit.edu/keyulux/