
How Neural Networks Extrapolate:
From Feedforward to Graph Neural Networks

Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S. Du
Ken-ichi Kawarabayashi, Stefanie Jegelka

Extrapolation

Train NN to learn underlying function with training set

Train Test

Extrapolation

Extrapolation

Train NN to learn underlying function with training set

In-distribution
generalization

Evaluation of NN extrapolation

(Santoro et al. 2018, Zhang et al 2019)

IQ tests
shape, color, number of objects

(Wu et al. 2017, Battagalia et al 2016, Janner et al 2019, Kramer et 2020)

Physical reasoning
position, mass, number of objects

Evaluation of NN extrapolation

(Saxton et al. 2019, Lample et al 2020)

Mathematical reasoning
length, number range, complexity

(Battagalia et al 2018, Dai et al 2018, Velickovic et al 2020)

Graph algorithms
graph size, graph structure, edge weights

Puzzle

Feedforward NN (multilayer perceptron)

(Barnard & Wessels 1992, Haley & Soloway 1992, Santoro et al 2018, Saxton et al 2019)

Similarly for CNN, RNN etc

variants of GNN architectures may be used

some success

Graph neural network (GNN)

MLP
modules

How neural networks extrapolate

Despite universal approximation

Parameter trajectory
θ(t)

What NN learns depends on training algorithm, architecture, data

(Cybenko 1989, Funahashi 1989, Hornik et al1989, Kurkova 1992, Zhang et al 2017)

(NTK theory: Jacot et al 2018, Li and Liang 2018, Allen-Zhu et al 2019, Arora et al 2019ab, Cao and Gu 2019, Du et al 2019ab…)

Experiments: same conclusion in regular regimes

Theory: Gradient descent training in NTK regime

Wide NN trained by GD = kernel GD with NTK
(Jacot et al 2018, Li and Liang 2018, Allen-Zhu et al 2019, Arora et al 2019ab, Du et al 2019ab)

GD GNN
MLP

feature geometry
graph structure

Linear extrapolation behavior of ReLU MLPs

Training data

NN

Theorem (XZLDKJ’21)
Let be a two-layer ReLU MLP trained by GD*. For any direction , let

. For any , as , with rate
f v ∈ ℝd

x = tv h > 0 t → ∞ f(x + hv) − f(x) → βvh O(1/t)

* Assumption: NTK regime

NN

tv

Implication of linear extrapolation

MAPE extrapolation error: lower the better

* Note: this does not follow from ReLU networks have finitely
many linear egions, which only implies asymptotic error

Provable learning of linear functions with diverse training data

Theorem (XZLDKJ’21)
Let be a two-layer ReLU MLP trained by GD*. Suppose target function is

 and support of training distribution covers all directions. As the number of
training examples , .

f
β⊺x

n → ∞ f(x) → β⊺x

* Assumption: NTK regime

Provable learning of linear functions II

Lemma (XZLDKJ’21)
Let be a two-layer ReLU MLP trained by GD*. Suppose target function is

 and training set contains an orthogonal basis and their opposite vectors,
then .

f
β⊺x

f(x) = β⊺x

* Assumption: NTK regime

Provable extrapolation with 2d diverse training data * mainly of theoretical interest

Feedforward networks with other activation

Extrapolates well if activation is “similar” to target function

Implications for GNNs

Under review as a conference paper at ICLR 2021

In summary, we analyze how MLPs extrapolate and provide two insights: (1) MLPs cannot extrapolate
most non-linear tasks, because they quickly converge to directionally linear functions (Theorem 3);
and (2) MLPs can extrapolate well when the target function is linear, provided the training distribution
is “diverse” (Theorem 5). In the next section, these results will help us understand how more complex
networks extrapolate, specifically, GNNs for non-linear algorithmic tasks.

4 HOW GRAPH NEURAL NETWORKS EXTRAPOLATE

Above, we saw that extrapolation in non-linear tasks is hard for MLPs (Theorem 3). Despite this
limitation, GNNs have been shown to extrapolate well in some non-linear algorithmic tasks, such as
intuitive physics (Battaglia et al., 2016; Sanchez-Gonzalez et al., 2018), graph algorithms (Battaglia
et al., 2018; Velickovic et al., 2020), and symbolic mathematics (Lample & Charton, 2020). To address
this discrepancy, we build on our MLP results and study how GNNs trained by GD extrapolate.

4.1 HYPOTHESIS: LINEAR ALGORITHMIC ALIGNMENT HELPS EXTRAPOLATION

We begin with an example: training GNNs to solve the shortest path problem. For this task, prior
works observe that a modified GNN architecture with min-aggregation can generalize to graphs larger
than those in the training set (Battaglia et al., 2018; Velickovic et al., 2020):

h
(k)
u = min

v2N (u)
MLP(k)

�
h
(k�1)
u ,h

(k�1)
v ,w(v,u)

�
. (2)

We first provide an intuitive explanation (Fig 2a). Shortest path can be solved by the Bellman-Ford
(BF) algorithm (Bellman, 1958) with the following update:

d[k][u] = min
v2N (u)

d[k � 1][v] +w(v, u), (3)

where w(v, u) is the weight of edge (v, u), and d[k][u] is the shortest distance to node u within k

steps. The two equations are similar: GNNs can simulate the BF algorithm if the MLP modules learn
a linear function d[k� 1][v] +w(v, u). Since MLPs can extrapolate well in linear tasks (Theorem 5),
this “alignment” might explain why min-aggregation GNNs can extrapolate well in this task.

For comparison, we can reason why we would not expect GNNs with the more commonly used
sum-aggregation (Eqn. 1) to extrapolate well in this task. With sum-aggregation, the MLP modules
need to learn a non-linear function to simulate the BF algorithm, but Theorem 3 suggests that they
will not extrapolate for most nonlinearities outside the training support.

We can extend the above intuition to other algorithmic tasks. Many target tasks where GNNs
extrapolate well can be solved by dynamic programming (DP) (Bellman, 1966), an algorithmic
paradigm with a recursive structure similar to GNNs’ (Eqn. 1) (Xu et al., 2020).
Definition 6. Dynamic programming (DP) is a recursive procedure with updates

Answer[k][s] = DP-Update({Answer[k � 1][s0]} , s0 = 1...n), (4)

where Answer[k][s] is the solution to a sub-problem indexed by iteration k and state s, and DP-Update
is a task-specific update function that solves the sub-problem based on the previous iteration.

Building on the extrapolation behavior of MLPs, we hypothesize that: given a DP task, if we can
encode appropriate non-linearity in the model architecture and input representations so that the MLP
modules only need to learn a linear step, then GNNs can extrapolate well.
Hypothesis 7. (Linear algorithmic alignment). Let f : X ! R be an algorithm and N a neural
network with m MLP modules. Suppose there exist m linear functions {gi}mi=1 so that by replacing
N ’s MLP modules with gi’s, N simulates f . Given ✏ > 0, there exists {(xi, f(xi))}ni=1 ⇢ D (X
so that N trained on {(xi, f(xi))}ni=1 by GD with squared loss learns f̂ with kf̂ � fk < ✏.

Our hypothesis builds on the algorithmic alignment framework of (Xu et al., 2020), which suggests
that GNNs can interpolate well if MLP modules are “aligned” to easy-to-learn (possibly non-linear)
functions. Successful extrapolation is harder: MLP modules need to align with linear functions.

To satisfy the linear algorithmic alignment assumption, we can encode appropriate non-linear oper-
ations in either the architecture or input representation (Fig. 2). The shortest path example shows

6

Shortest Path:

GNN (sum):

GNN that encodes the nonlinearity min

Provable extrapolation: nonlinearity and data distribution

Max Degree Shortest Path

Theorem (XZLDKJ’21)
A GNN encoding max in aggregation trained by GD* learns max degree if
training data spans .

<latexit sha1_base64="gYbAC6dVKQtE/GtTimJ9aEfu1eU=">AAACX3icbVFbS8MwFE7rbc7b1CfxJTgEBRmtKPoiDHzQJ1FwKqyzpNnpFkzTkpyKo/RP+ib44j8xu4E6DwQ+vgsn+RJlUhj0vA/HnZtfWFyqLFdXVtfWN2qbWw8mzTWHFk9lqp8iZkAKBS0UKOEp08CSSMJj9HI51B9fQRuRqnscZNBJWE+JWHCGlgprr4GEGIMi6EIvLIKEvZUHV6E4PKJTRqgpc/M8NoSFKGf9I9Waf6rTLA206PUxGIoXfvlsF9e9hjcaOgv8CaiTydyGtfegm/I8AYVcMmPavpdhp2AaBZdQVoPcQMb4C+tB20LFEjCdYtRPSfct06Vxqu1RSEfsz0TBEmMGSWSdCcO++asNyf+0do7xeacQKssRFB8vinNJMaXDsmlXaOAoBxYwroW9K+V9phlH+yVVW4L/98mz4OG44Z82vLuTevN8UkeF7JI9ckB8ckaa5Jrckhbh5NNxnRVn1flyl9x1tza2us4ks01+jbvzDTUEthE=</latexit>�
degmax(Gi), degmin(Gi), N

max
i degmax(Gi), N

min
i degmin(Gi)

 n

i=1 ℝ4

* Assumption: NTK regime

Data diversity: feature direction (MLP), graph structure (GNN)

GNNs can extrapolate DP (under conditions)

Answer[k][i] = DP-Update({Answer[k � 1][j], j = 1 . . . n})
<latexit sha1_base64="iFT2cX5/NI5eGmpG/4hBn2I0V10=">AAACO3icbVBNT9tAFFwDLTT9SuHYy4qoUiqVyKZIIFVIQHvgGKoGItlWtF4/J0vWa2v3GYgs/y8u/AluXHrpoRXqtXc2iQ9t6EgrjWbm6e2bKJfCoOveOUvLK0+erq49azx/8fLV6+ab9VOTFZpDj2cy0/2IGZBCQQ8FSujnGlgaSTiLxp+n/tkFaCMy9Q0nOYQpGyqRCM7QSoPm1wDhCstDZS5BV/449EVI9+lc/dLd6uUxQ6jaQUkXklte6J+HH4JP9HzfC2ScoaGKBtX7QbPldtwZ6GPi1aRFanQHzdsgzniRgkIumTG+5+YYlkyj4BKqRlAYyBkfsyH4liqWggnL2e0VfWeVmCaZtk8hnal/T5QsNWaSRjaZMhyZRW8q/s/zC0z2wlKovEBQfL4oKSTFjE6LpLHQwFFOLGFcC/tXykdMM4627oYtwVs8+TE53e54HzvbJzutg6O6jjXylmySNvHILjkgx6RLeoSTa/Kd/CS/nBvnh3Pv/J5Hl5x6ZoP8A+fPA3QgraI=</latexit>

graph algorithms visual question answering Intuitive physics

Reasoning tasks as dynamic programming (DP):

Linear algorithmic alignment

Linear algorithmic alignment (XZLDKJ’21)
Network can simulate underlying function via linear “modules”.

Hypothesis: Linear algo alignment helps extrapolation.

Application: Encode nonlinearity in architecture or input representation.

* Interpolation version (Xu et al 2020): align with
easy-to-learn (possibly nonlinear) modules

Encoding nonlinearities in architecture

Encode exp log for learning multiplication
(Trask et al. 2018, Madsen & Johansen 2020)

Encode a library of programs (~2K)
(Johnson et al 2017, Yi et al. 2018, Mao et al 2019…)

Activation, pooling, symbolic operations etc…

Symbolic output (Cranmer et al 2020)

Encoding nonlinearities in input representation

Specialized features, feature transformation

Representation learning with out-of-distribution data (e.g., BERT)

Encoding nonlinearities in input representation

(Lample et al 2020)

(Mikolov et al 2013, Zhang et al. 2019, Devlin et al 2019, Wu et al 2019, Yuan et al 2020)Generalization across languages

Symbolic mathematics

Quantitative finance (Fama & French 1993, Banz 1981, Ross 1976)

Summary

Code & slides:
https://people.csail.mit.edu/keyulux/

1. Linear extrapolation of ReLU MLPs (non-asymptotic analysis)

2. Provable learning of linear functions with diverse training data

3. Linear algorithmic alignment for structured networks, e.g., GNNs

https://people.csail.mit.edu/keyulux/

