
Graph Neural Networks:

Generalization and Extrapolation

Keyulu Xu

MIT

Graph Neural Networks (GNNs)

(Gori et al. 2005, Merkwirth & Lengauer 2005, Scarselli et al 2009, Duvenaud et al., 2015, Battaglia et al., 2016, Dai et al., 2016, Defferrard et al., 2016, Kearnes
et al., 2016, Li et al., 2016, Gilmer et al., 2017, Hamilton et al., 2017, Kipf & Welling, 2017, Velickovic et al., 2018, Xu et al., 2018)

hu

In each round:

Aggregate over neighbors

For concurrently:u ∈ V

h(k)
u = AGGREGATE(k)({(h(k−1)

v , h(k−1)
u)} v ∈ 𝒩(u))

Representation of neighbor
node in round v k − 1

…………
Graph-level readout

hG = READOUT({h(K)
u } u ∈ V)

Training

hu

1. Parameterize and AGGREGATE(k) READOUT

Can recover ConvNets, Transformer etc
with appropriate AGGREGATE

2. Specify a loss on node/graph/edge representations

3. Train on data points with SGD

Applications

Drug discovery

(Duvenaud et al. 2015)

Recommender system

(Ying et al. 2018)

Physical reasoning

(Wu et al. 2017)

Visual reasoning

(Santoro et al. 2017)

Google Map ETA

(Lange et al. 2020)

Reasoning tasks

Furthest pair of objects?

Next position of the blocks?

Best path for Pokemon Go?

A typical pipeline of object-centric reasoning

Reasoning model
(e.g., GNN)

?

answer

learns reasoning process

h_1

h_n

…

a collection of

object features

ConvNets

(Weston et al., 2015; Johnson et al., 2017a; Wu et al. 2017, Fleuret et al., 2011; Antol et al., 2015; Battaglia et al., 2016, 2018; Watters et
al., 2017; Fragkiadaki et al., 2016; Chang et al., 2017, 2019; Saxton et al., 2019; Santoro et al., 2018…)

question

Architectures: capability of learning to reason

concat

feedforward network Deep Set GNN

“Equal” expressive power (universal approximators), big difference in generalization

e.g., neural programs

…..

concatenate

Extrapolation: test data outside the training distribution

Generalization analysis: interpolation and extrapolation

Interpolation: training and test data from the same distribution

f: function learned by NN

P: test distribution

Approaches of generalization analysis

Parameter trajectory
θGNN(t)

non-convex landscape
more “practical”

more assumptions

Inductive bias of network &

trajectory analysis
(Xu et al. 2020, 2021…)

Trajectory analysis (NTK)
(Jacot et al 2018, Arora et al. 2019, Du et al 2019…)

Norm based (covering number)
(Bartlett et al 2017, Golowich et al 2018, Garg et al 2020…)

Formalizing inductive bias of architectures

for k = 1 … GNN iter:

hu(k) = Σv MLP(hv(k-1), hu(k-1))

Graph Neural Network

 for u in S:

for k = 1 … |S| - 1:

 d[k][u] = minv d[k-1][v] + cost (v, u)

Bellman-Ford algorithm

 for u in S:

Learns a simple reasoning step

No need to learn for-loops

Algorithmic alignment (XLZDKJ’20) 
Network can simulate algorithm via few, easy-to-learn “modules”.

Claim: Better algo alignment implies better generalization.

Without good alignment -> need to learn complicated functions e.g., for-loop

Alignment measure

Algorithmic alignment (XLZDKJ’20) 
A neural network -aligns with an algorithm if it can simulate the
algorithm via weight-shared modules, each of which is PAC-
learnable with samples.

(M, ϵ, δ)
n (ϵ, δ)
M/n

(Valiant 1984)

learned function true function (algorithm)

* Sample complexity of learning simple modules can
be estimated via e.g., NTK (Arora et al. 2019)

Better alignment implies better generalization

Theorem (XLZDKJ’20) 
If a neural network and a task algorithm -align, then, under
assumptions*, the task is PAC-learnable by the
network with examples.

(M, ϵ, δ)
(O(ϵ), O(δ))

M

* Lipschitznes and SGD sequential training

* Related work experimenting assumptions:
Veličković et al 2020

GNNs sample-efficiently learn dynamic programming

Answer[k][i] = DP-Update({Answer[k � 1][j], j = 1 . . . n})
<latexit sha1_base64="iFT2cX5/NI5eGmpG/4hBn2I0V10=">AAACO3icbVBNT9tAFFwDLTT9SuHYy4qoUiqVyKZIIFVIQHvgGKoGItlWtF4/J0vWa2v3GYgs/y8u/AluXHrpoRXqtXc2iQ9t6EgrjWbm6e2bKJfCoOveOUvLK0+erq49azx/8fLV6+ab9VOTFZpDj2cy0/2IGZBCQQ8FSujnGlgaSTiLxp+n/tkFaCMy9Q0nOYQpGyqRCM7QSoPm1wDhCstDZS5BV/449EVI9+lc/dLd6uUxQ6jaQUkXklte6J+HH4JP9HzfC2ScoaGKBtX7QbPldtwZ6GPi1aRFanQHzdsgzniRgkIumTG+5+YYlkyj4BKqRlAYyBkfsyH4liqWggnL2e0VfWeVmCaZtk8hnal/T5QsNWaSRjaZMhyZRW8q/s/zC0z2wlKovEBQfL4oKSTFjE6LpLHQwFFOLGFcC/tXykdMM4627oYtwVs8+TE53e54HzvbJzutg6O6jjXylmySNvHILjkgx6RLeoSTa/Kd/CS/nBvnh3Pv/J5Hl5x6ZoP8A+fPA3QgraI=</latexit>

many graph algorithms visual question answering Intuitive physics

Reasoning tasks as DP:

DP-Update: simple module easily learned by GNN’s MLP modules

Limits of GNN: NP-hard problem

Subset sum: Can any subset of a set of numbers sum to zero?

NES (Neural Exhaustive Search) - based on algo alignment

y = maxS 1[h(S) = 0], h(S) = Σx in S X

A hierarchy of tasks

Summary statistics
What is the maximum value
difference among treasures?

Relational argmax
What are the colors of the
furthest pair of objects?

Dynamic programming
What is the cost to defeat monster X

by following the optimal path?

NP-hard problem
Subset sum: Is there a
subset that sums to 0?

MLP

DeepSets

Graph Neural Network

(GNN)

Neural Exhaustive Search

(NES)

(Zaheer et al. 2017)

Extrapolation

What function does a neural network trained by GD implement
outside the support of the training distribution?

Train Test

Generalize across graph structure, size, node & edge features?

Evaluation of extrapolation in literature

(Santoro et al. 2018)

IQ tests

CNN, MLP fail to extrapolate;

CNN+GNN better, still not ideal

(Battagalia et al. 2016)

n-body system

GNN “reasonable” accuracy

on larger systems

(Battagalia et al. 2018, Dai et al 2018, Velickovic et al 2020…)

Graph algorithms

Certain modified GNNs
perform well on larger graphs

Evaluation of extrapolation in literature

(Saxton et al. 2019)

Transformer better than LSTM, but performance still not ideal

(Lample et al. 2020)

Transformer extrapolates well with specialized symbolic inputs

Puzzle

MLP and CNN usually fail to extrapolate, but GNNs
extrapolate well in some cases.

How do neural networks extrapolate?

Depends on inductive bias of gradient descent
training and neural network.

Parameter trajectory
θ(t)

Linear extrapolation behavior of ReLU MLPs

Training data

NN NN

tv

Theorem (XZLDKJ’20) 
Let be a two-layer ReLU MLP trained by GD*. For any direction , let

. For any , as , with rate
f v ∈ ℝd

x = tv h > 0 t → ∞ f(x + hv) − f(x) → βvh O(1/t)

* Assumption: NTK regime

Implication of linear extrapolation

MAPE extrapolation error: lower the better

Provable learning of linear functions with diverse training data

Theorem (XZLDKJ’20) 
Let be a two-layer ReLU MLP trained by GD*. Suppose target function is

 and support of training distribution covers all directions. As the number of
training examples , .

f
β⊺x

n → ∞ f(x) → β⊺x

* Assumption: NTK regime

Feedforward networks with other activation

Extrapolates well if activation is “similar” to target function

Implications for GNNs

Under review as a conference paper at ICLR 2021

In summary, we analyze how MLPs extrapolate and provide two insights: (1) MLPs cannot extrapolate
most non-linear tasks, because they quickly converge to directionally linear functions (Theorem 3);
and (2) MLPs can extrapolate well when the target function is linear, provided the training distribution
is “diverse” (Theorem 5). In the next section, these results will help us understand how more complex
networks extrapolate, specifically, GNNs for non-linear algorithmic tasks.

4 HOW GRAPH NEURAL NETWORKS EXTRAPOLATE

Above, we saw that extrapolation in non-linear tasks is hard for MLPs (Theorem 3). Despite this
limitation, GNNs have been shown to extrapolate well in some non-linear algorithmic tasks, such as
intuitive physics (Battaglia et al., 2016; Sanchez-Gonzalez et al., 2018), graph algorithms (Battaglia
et al., 2018; Velickovic et al., 2020), and symbolic mathematics (Lample & Charton, 2020). To address
this discrepancy, we build on our MLP results and study how GNNs trained by GD extrapolate.

4.1 HYPOTHESIS: LINEAR ALGORITHMIC ALIGNMENT HELPS EXTRAPOLATION

We begin with an example: training GNNs to solve the shortest path problem. For this task, prior
works observe that a modified GNN architecture with min-aggregation can generalize to graphs larger
than those in the training set (Battaglia et al., 2018; Velickovic et al., 2020):

h
(k)
u = min

v2N (u)
MLP(k)

�
h
(k�1)
u ,h

(k�1)
v ,w(v,u)

�
. (2)

We first provide an intuitive explanation (Fig 2a). Shortest path can be solved by the Bellman-Ford
(BF) algorithm (Bellman, 1958) with the following update:

d[k][u] = min
v2N (u)

d[k � 1][v] +w(v, u), (3)

where w(v, u) is the weight of edge (v, u), and d[k][u] is the shortest distance to node u within k

steps. The two equations are similar: GNNs can simulate the BF algorithm if the MLP modules learn
a linear function d[k� 1][v] +w(v, u). Since MLPs can extrapolate well in linear tasks (Theorem 5),
this “alignment” might explain why min-aggregation GNNs can extrapolate well in this task.

For comparison, we can reason why we would not expect GNNs with the more commonly used
sum-aggregation (Eqn. 1) to extrapolate well in this task. With sum-aggregation, the MLP modules
need to learn a non-linear function to simulate the BF algorithm, but Theorem 3 suggests that they
will not extrapolate for most nonlinearities outside the training support.

We can extend the above intuition to other algorithmic tasks. Many target tasks where GNNs
extrapolate well can be solved by dynamic programming (DP) (Bellman, 1966), an algorithmic
paradigm with a recursive structure similar to GNNs’ (Eqn. 1) (Xu et al., 2020).
Definition 6. Dynamic programming (DP) is a recursive procedure with updates

Answer[k][s] = DP-Update({Answer[k � 1][s0]} , s0 = 1...n), (4)

where Answer[k][s] is the solution to a sub-problem indexed by iteration k and state s, and DP-Update
is a task-specific update function that solves the sub-problem based on the previous iteration.

Building on the extrapolation behavior of MLPs, we hypothesize that: given a DP task, if we can
encode appropriate non-linearity in the model architecture and input representations so that the MLP
modules only need to learn a linear step, then GNNs can extrapolate well.
Hypothesis 7. (Linear algorithmic alignment). Let f : X ! R be an algorithm and N a neural
network with m MLP modules. Suppose there exist m linear functions {gi}mi=1 so that by replacing
N ’s MLP modules with gi’s, N simulates f . Given ✏ > 0, there exists {(xi, f(xi))}ni=1 ⇢ D (X
so that N trained on {(xi, f(xi))}ni=1 by GD with squared loss learns f̂ with kf̂ � fk < ✏.

Our hypothesis builds on the algorithmic alignment framework of (Xu et al., 2020), which suggests
that GNNs can interpolate well if MLP modules are “aligned” to easy-to-learn (possibly non-linear)
functions. Successful extrapolation is harder: MLP modules need to align with linear functions.

To satisfy the linear algorithmic alignment assumption, we can encode appropriate non-linear oper-
ations in either the architecture or input representation (Fig. 2). The shortest path example shows

6

Shortest Path:

GNN (sum):

Some works extrapolate with:

Provable extrapolation: architecture and graph structure

Max Degree Shortest Path

Proposition (XZLDKJ’20) 
A max-aggregation GNN trained by GD* learns max degree if training data

 spans .
<latexit sha1_base64="gYbAC6dVKQtE/GtTimJ9aEfu1eU=">AAACX3icbVFbS8MwFE7rbc7b1CfxJTgEBRmtKPoiDHzQJ1FwKqyzpNnpFkzTkpyKo/RP+ib44j8xu4E6DwQ+vgsn+RJlUhj0vA/HnZtfWFyqLFdXVtfWN2qbWw8mzTWHFk9lqp8iZkAKBS0UKOEp08CSSMJj9HI51B9fQRuRqnscZNBJWE+JWHCGlgprr4GEGIMi6EIvLIKEvZUHV6E4PKJTRqgpc/M8NoSFKGf9I9Waf6rTLA206PUxGIoXfvlsF9e9hjcaOgv8CaiTydyGtfegm/I8AYVcMmPavpdhp2AaBZdQVoPcQMb4C+tB20LFEjCdYtRPSfct06Vxqu1RSEfsz0TBEmMGSWSdCcO++asNyf+0do7xeacQKssRFB8vinNJMaXDsmlXaOAoBxYwroW9K+V9phlH+yVVW4L/98mz4OG44Z82vLuTevN8UkeF7JI9ckB8ckaa5Jrckhbh5NNxnRVn1flyl9x1tza2us4ks01+jbvzDTUEthE=</latexit>�
degmax(Gi), degmin(Gi), N

max
i degmax(Gi), N

min
i degmin(Gi)

 n

i=1 ℝ4

* Assumption: NTK regime

Linear algorithmic alignment

Linear algorithmic alignment (XZLDKJ’20) 
Network can simulate algorithm via easy-to-learn linear “modules”.

Hypothesis: Linear algo alignment helps extrapolation.

Encoding nonlinearity in architecture or input representation

Encoding nonlinearities in architecture

Symbolic operation, activation, pooling etc…

Encode exp log for learning multiplication
(Trask et al. 2018)

Encode a library of programs (~2K)
(Johnson et al 2017, Yi et al. 2018, Mao et al 2019…)

Encoding nonlinearities in input representation

Feature engineering, representation learning with large-scale

out-of-distribution data (e.g., BERT)…

Summary

Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels.
S. S. Du, K. Hou, B. Poczos, R. Salakhutdinov, R. Wang, K. Xu. NeurIPS 2019.

What Can Neural Networks Reason About? K. Xu, J. Li, M. Zhang, S. S. Du, K.
Kawarabayashi, S. Jegelka. ICLR 2020.

How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks.
K. Xu, M. Zhang, J. Li, S. S. Du, K. Kawarabayashi, S. Jegelka. ICLR 2021.

Generalization: Inductive bias via alignment of architecture and task

Extrapolation: Nonlinearities (network and representation) matter

