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Applications

Drug discovery 
(Duvenaud et al. 2015)

Recommender system 
(Ying et al. 2018)

Physical reasoning 
(Wu et al. 2017)

Visual reasoning 
(Santoro et al. 2017)

Google Map ETA 
(Lange et al. 2020)



Learning with graphs

G = (V, E)Input: graph Xu node features

wu,v edge features (optional)

Task: forecast on graphs, nodes, or edges

hu ∈ ℝd

Goal: learn node & graph representations

hG ∈ ℝl
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vs. general graphs

no ordering of neighbors

different node degrees



Graph Neural Networks (GNNs)

(Gori et al. 2005, Merkwirth & Lengauer 2005, Scarselli et al 2009, Duvenaud et al., 2015, Battaglia et al., 2016, Dai et al., 2016, Defferrard et al., 2016, Kearnes 
et al., 2016, Li et al., 2016, Gilmer et al., 2017, Hamilton et al., 2017, Kipf & Welling, 2017, Velickovic et al., 2018, Xu et al., 2018)

hu

In each round:

Aggregate over neighbors

For  concurrently:u ∈ V

h(k)
u = AGGREGATE(k)({(h(k−1)

v , h(k−1)
u )} v ∈ 𝒩(u))

Representation of neighbor 
node  in round v k − 1

…………
Graph-level readout

hG = READOUT({h(K)
u } u ∈ V)



Training

hu

1. Parameterize  and AGGREGATE(k) READOUT

Can also recover ConvNets, Transformer etc

2. Specify a loss on node/graph/edge representations

3. Train on data points with SGD



Roadmap

Expressive power

How Powerful are Graph Neural Networks?

Generalization
Graph Neural Tangent Kernel

What Can Neural Networks Reason About?

Extrapolation

How Neural Networks Extrapolate: From Feedforward to 
Graph Neural Networks



Expressive power

Which graphs can GNNs distinguish?

What does GNN discriminative power depend on?

Assume countable node input features



Intuition

Observation I: Expressive power of a GNN depends on that of AGGREGATE

v

GNN computation graph

v

Input graph

AGGREGATE(2)

AGGREGATE(1)

Observation II: Powerful GNNs have injective AGGREGATE
by a recursive argument



How powerful are GNNs?

Theorem (XHLJ’19) 
GNNs are at most as powerful as a Weisfeiler-Lehman graph 
isomorphism test*. 

This upper bound is achieved if AGGREGATE and READOUT 
are injective multiset functions.

*(Weisfeiler & Lehman 1968, Babai, Erdös, Selkow 1980, Babai & Kucera 1979,  
Cai, Furer, Immerman 1992, Evdokimov & Ponomarenko 1999, Douglas 2011)

neighborhood - multiset

failure cases: certain regular graphs



A maximally powerful GNN

Lemma (XHLJ’19) 
Any (injective) multi-set function g can be decomposed as

(generalizing Zaheer et al 2017, Ravanbakhsh et al 2016, Qi et al 2017,…)

‣Graph Isomorphism Network (GIN): sum & universal approximator MLP



Less powerful GNNs

Sum — MLP (injective)

Sum — linear+ReLu

Mean/Max —  
MLP/linear+ReLu

Training Accuracy

vs.
v v0

g(X) = � (MEAN{f(x) : x 2 X})
g(X) = � (MAX{f(x) : x 2 X})

MEAN:
MAX: not injective 

Linear+ReLU vs. MLP for ϕ
not universal 
approximator 



Selected related & follow-up work

Consider higher-order structure and tensors
(Kondor et al. 2018, Keriven et al. 2019, Maron et al. 2019, Morris et al. 2019, Murphy et al. 2019)

1

Add auxiliary node identifitation (Sato et al. 2019, 2020; Vignac et al. 2020)2

Incorporate domain-specific structure & features
(Barceló et al. 2020, Bouritsas et al. 2020, Corso et al. 2020, Klicpera et al. 2020, Zhang et al. 2020)

3

Pursuing more power

Equivalence of graph isomorphism test and function approximation, 
lower bound on width, counting substructures

(Scarselli et al. 2009, Chen et al. 2019, 2020; Garg et al. 2020, Loukas et al. 2020ab)

1

Approximation



Roadmap

Expressive power

How Powerful are Graph Neural Networks?

Generalization
Graph Neural Tangent Kernel

What Can Neural Networks Reason About?

Extrapolation

How Neural Networks Extrapolate: From Feedforward to 
Graph Neural Networks



Generalization

GNN with sufficient expressive power

There exists a GNN parameter that fits all data*

Q1 Can gradient descent find such a parameter, i.e., global minima? 

* except graphs that GNNs cannot distinguish 

Q2 Why do GNNs trained by GD generalize despite high complexity?
Graph Neural Tangent Kernel. DHPSWX’19

Q3 What tasks can GNNs generalize well in? How to design 
architectures?

What Can Neural Networks Reason About? XLZDKJ’20

non-convex landscape



Graph Neural Tangent Kernel

Parameter trajectory
θGNN(t)

(NTK theory: Jacot et al 2018, Li and Liang 2018, Allen-Zhu et al 2019, Arora et al 2019ab, Cao and Gu 2019, Du et al 2019ab…)

Refer to paper for exact formula of Graph NTK 

DHPSWX’19  
Over-parameterized GNNs trained by GD is equivalent to 
that of kernel regression with Graph NTK:

k(G, G′ ) = 𝔼θGNN∼𝒲[ ⟨ ∂f(θGNN, G)
∂θGNN

,
∂f(θGNN, G′ )

∂θGNN ⟩]

Assumptions: very wide, infinitesimally small learning 
rate, initialization with certain scaling.

f(θGNN, G)GNN output



Intuition of NTK

Parameter trajectory
θ(t)

f(θ, x)NN output

Introduced in Jacot et al 2018; concurrently developed by Li and Liang 2018, Allen-Zhu et al 2019, Arora et al 2019, Du et al 2019…

Network output

Dynamic follows

When width ,→ ∞ a fixed kernel NTK



Optimization & generalization error

Over-parameterized GNNs trained by GD = Graph NTK

Q1 Can GD find a global minimum for GNN? 

Yes, Graph NTK is convex

Q2 Why do GNNs trained by GD generalize despite high complexity?

- training labels
- number of training data

- graph NTK matrix; we provide an analytical form

(Bartlett and Mendelson 2002)

Generalization bound



Approaches of generalization analysis

Predict 
Performance Explanation Assumptions Examples

Norm based Norm unknown
before training Less

Trajectory based
(GNTK*)

Fine-grained analysis 
of simple functions Medium DHPSWX’19

Inductive biases
(algo alignment)

Structured functions 
e.g., algorithms Medium+ XLZDKJ’20

Scarselli et al 2018,  
Garg et al 2020…

(Other trajectory based regimes for non-GNN: Chizat and Bach 2018, Mei et al 2018…)



Reasoning and perception

Color of her sweater?

Furthest pair of objects?

Next position of the block?

?

Perception

Reasoning



Specialized architectures for learning different algorithms

GNN 
(or other model) 

?

answer

learns
reasoning algorithm

learns 
perception algorithm

h_1

h_n

…

a collection of 
object features

ConvNets

(Weston et al., 2015; Johnson et al., 2017a; Wu et al. 2017, Fleuret et al., 2011; Antol et al., 2015; Battaglia et al., 2016, 2018; Watters et 
al., 2017; Fragkiadaki et al., 2016; Chang et al., 2017, 2019; Saxton et al., 2019; Santoro et al., 2018…)



Formalizing inductive bias of architectures

for  k  =  1 … GNN iter:

hu(k)  =  Σv  MLP(hv(k-1), hu(k-1))

Graph Neural Network

  for  u  in  S:

for  k  =  1 … |S| - 1:

   d[k][u]  =  minv d[k-1][v] + cost (v, u)

Bellman-Ford algorithm 

  for  u  in  S:

Learns a simple reasoning step

No need to learn for-loops

Algorithmic alignment (XLZDKJ’20) 
Network can simulate algorithm via few, easy-to-learn “modules”.

Claim: Better algo alignment implies better generalization.

Without good alignment -> need to learn complicated functions e.g., for-loop



Algo alignment measure

Algorithmic alignment (XLZDKJ’20) 
A neural network -aligns with an algorithm if it can simulate the 
algorithm via  weight-shared modules, each of which is  PAC-
learnable with  samples.

(M, ϵ, δ)
n (ϵ, δ)
M/n

(Valiant 1984)

learned function true function (algorithm)

* Sample complexity of learning simple modules can 
be estimated via e.g., NTK (Arora et al. 2019)



Better alignment implies better generalization

Theorem (XLZDKJ’20) 
If a neural network and a task algorithm -align, then, under 
assumptions*, the task is  PAC-learnable by the 
network with  examples.

(M, ϵ, δ)
(O(ϵ), O(δ))

M

* Lipschitznes and SGD sequential training   

* Related work experimenting assumptions: 
Veličković et al 2020



GNNs sample-efficiently learn dynamic programming

Answer[k][i] = DP-Update({Answer[k � 1][j], j = 1 . . . n})
<latexit sha1_base64="iFT2cX5/NI5eGmpG/4hBn2I0V10="></latexit>

many graph algorithms visual question answering Intuitive physics

Reasoning tasks as DP:

DP-Update: simple module easily learned by GNN’s MLP modules



Limits of GNN: NP-hard problem

Subset sum: Can any subset of a set of numbers sum to zero?

NES (Neural Exhaustive Search) - based on algo alignment

y = maxS 1[ h(S) = 0 ],    h(S) =  Σx in S  X



A hierarchy of tasks

Summary statistics
What is the maximum value 
difference among treasures?

Relational argmax
What are the colors of the 
furthest pair of objects?

Dynamic programming
What is the cost to defeat monster X 

by following the optimal path?

NP-hard problem
Subset sum: Is there a 
subset that sums to 0?

MLP

DeepSets

Graph Neural Network
(GNN)

Neural Exhaustive Search 
(NES)

(Zaheer et al. 2017)
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Generalization
Graph Neural Tangent Kernel

What Can Neural Networks Reason About?
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How Neural Networks Extrapolate: From Feedforward to 
Graph Neural Networks



Extrapolation

What function does a neural network trained by GD implement 
outside the support of the training distribution? 

* In-distribution generalization: train = test distribution

Train Test

Generalize across graph structure, size, node & edge features?



Puzzle

Prior works report GNNs successfully extrapolate to larger graphs

(Battaglia et al. 2016, 2018; Lample and Charton 2020, Velickovic et al., 2020 …)

But GNNs have MLP modules…

Prior works also report MLPs and ConvNets fail out-of-distribution
(Barnard and Wessels,1992; Haley and Soloway, 1992; Santoro et al. 2018; Arjovsky et al. 2019…)



Linear extrapolation of ReLU MLPs

Training data

NN NN

tv

Theorem (XZLDKJ’20) 
Let  be a two-layer ReLU MLP trained by GD*. For any direction , let 

. For any , as ,  with rate 
f v ∈ ℝd

x = tv h > 0 t → ∞ f(x + hv) − f(x) → βvh O(1/t)

* Assumption: NTK regime



Implications for GNNs

Under review as a conference paper at ICLR 2021

In summary, we analyze how MLPs extrapolate and provide two insights: (1) MLPs cannot extrapolate
most non-linear tasks, because they quickly converge to directionally linear functions (Theorem 3);
and (2) MLPs can extrapolate well when the target function is linear, provided the training distribution
is “diverse” (Theorem 5). In the next section, these results will help us understand how more complex
networks extrapolate, specifically, GNNs for non-linear algorithmic tasks.

4 HOW GRAPH NEURAL NETWORKS EXTRAPOLATE

Above, we saw that extrapolation in non-linear tasks is hard for MLPs (Theorem 3). Despite this
limitation, GNNs have been shown to extrapolate well in some non-linear algorithmic tasks, such as
intuitive physics (Battaglia et al., 2016; Sanchez-Gonzalez et al., 2018), graph algorithms (Battaglia
et al., 2018; Velickovic et al., 2020), and symbolic mathematics (Lample & Charton, 2020). To address
this discrepancy, we build on our MLP results and study how GNNs trained by GD extrapolate.

4.1 HYPOTHESIS: LINEAR ALGORITHMIC ALIGNMENT HELPS EXTRAPOLATION

We begin with an example: training GNNs to solve the shortest path problem. For this task, prior
works observe that a modified GNN architecture with min-aggregation can generalize to graphs larger
than those in the training set (Battaglia et al., 2018; Velickovic et al., 2020):

h
(k)
u = min

v2N (u)
MLP(k)

�
h
(k�1)
u ,h

(k�1)
v ,w(v,u)

�
. (2)

We first provide an intuitive explanation (Fig 2a). Shortest path can be solved by the Bellman-Ford
(BF) algorithm (Bellman, 1958) with the following update:

d[k][u] = min
v2N (u)

d[k � 1][v] +w(v, u), (3)

where w(v, u) is the weight of edge (v, u), and d[k][u] is the shortest distance to node u within k

steps. The two equations are similar: GNNs can simulate the BF algorithm if the MLP modules learn
a linear function d[k� 1][v] +w(v, u). Since MLPs can extrapolate well in linear tasks (Theorem 5),
this “alignment” might explain why min-aggregation GNNs can extrapolate well in this task.

For comparison, we can reason why we would not expect GNNs with the more commonly used
sum-aggregation (Eqn. 1) to extrapolate well in this task. With sum-aggregation, the MLP modules
need to learn a non-linear function to simulate the BF algorithm, but Theorem 3 suggests that they
will not extrapolate for most nonlinearities outside the training support.

We can extend the above intuition to other algorithmic tasks. Many target tasks where GNNs
extrapolate well can be solved by dynamic programming (DP) (Bellman, 1966), an algorithmic
paradigm with a recursive structure similar to GNNs’ (Eqn. 1) (Xu et al., 2020).
Definition 6. Dynamic programming (DP) is a recursive procedure with updates

Answer[k][s] = DP-Update({Answer[k � 1][s0]} , s0 = 1...n), (4)

where Answer[k][s] is the solution to a sub-problem indexed by iteration k and state s, and DP-Update
is a task-specific update function that solves the sub-problem based on the previous iteration.

Building on the extrapolation behavior of MLPs, we hypothesize that: given a DP task, if we can
encode appropriate non-linearity in the model architecture and input representations so that the MLP
modules only need to learn a linear step, then GNNs can extrapolate well.
Hypothesis 7. (Linear algorithmic alignment). Let f : X ! R be an algorithm and N a neural
network with m MLP modules. Suppose there exist m linear functions {gi}mi=1 so that by replacing
N ’s MLP modules with gi’s, N simulates f . Given ✏ > 0, there exists {(xi, f(xi))}ni=1 ⇢ D ( X
so that N trained on {(xi, f(xi))}ni=1 by GD with squared loss learns f̂ with kf̂ � fk < ✏.

Our hypothesis builds on the algorithmic alignment framework of (Xu et al., 2020), which suggests
that GNNs can interpolate well if MLP modules are “aligned” to easy-to-learn (possibly non-linear)
functions. Successful extrapolation is harder: MLP modules need to align with linear functions.

To satisfy the linear algorithmic alignment assumption, we can encode appropriate non-linear oper-
ations in either the architecture or input representation (Fig. 2). The shortest path example shows
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v2N (u)

Shortest Path:

GNN (sum):
Requires non-linear extrapolation

Need to extrapolate linear function

Under review as a conference paper at ICLR 2021
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Battaglia et al 2018; Velickovic et al 2020 extrapolate with:



Encoding non-linearity in architecture and features

Linear algorithmic alignment (XZLDKJ’20) 
Network can simulate algorithm via easy-to-learn linear “modules”.

Claim: Linear algo alignment helps extrapolation.

Architecture: symbolic modules, activation, architecture search
(Johnson et al 2017, Battaglia et al 2018, Yi et al 2018, Velickovic et al 2020)

Features: feature engineering, pre-training on out-of-distribution 
data (e.g., BERT)

(Devlin et al., 2019, Chen et al., 2020, Lample and Charton 2020, Hu et al 2020, Hendrycks et al 2020)



Requirement on geometry of training distribution

Theorem (XZLDKJ’20) 
Let  be a two-layer ReLU MLP trained by GD*. Suppose target function is 

 and support of training distribution covers all directions. As the number of 
training examples , .  

f
β⊺x

n → ∞ f(x) → β⊺x

* Assumption: NTK regime



Requirement on training graph structure

Max Degree Shortest Path

Proposition (XZLDKJ’20) 
A max-aggregation GNN trained by GD* learns max degree if training data 

  spans .
<latexit sha1_base64="gYbAC6dVKQtE/GtTimJ9aEfu1eU="></latexit>�
degmax(Gi), degmin(Gi), N

max
i degmax(Gi), N

min
i degmin(Gi)

 n

i=1 ℝ4

* Assumption: NTK regime



Summary

How Powerful are Graph Neural Networks? K. Xu, W. Hu, J. Leskovec and S. Jegelka. 
ICLR 2019.
Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels. S. S. 
Du, K. Hou, B. Poczos, R. Salakhutdinov, R. Wang, K. Xu. NeurIPS 2019.
What Can Neural Networks Reason About? K. Xu, J. Li, M. Zhang, S. S. Du, K. 
Kawarabayashi, S. Jegelka. ICLR 2020.
How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks. K. Xu, 
M. Zhang, J. Li, S. S. Du, K. Kawarabayashi, S. Jegelka. arXiv 2009.11848

Expressive power: How to build powerful GNNs

Generalization: Trajectory analysis, Inductive bias of architectures 

Extrapolation: Non-linearities matter

https://arxiv.org/abs/1810.00826

