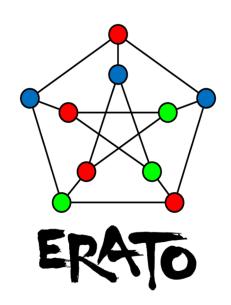


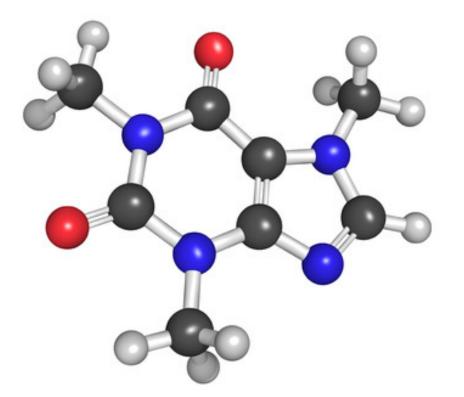
Graph Neural Networks: **Expressive Power, Generalization, Extrapolation**

joint work with S. Jegelka, K. Kawarabayashi, S. S. Du, J. Leskovec, R. Salakhutdinov, W. Hu, M. Zhang, J. Li, R. Wang, K. Hou, B. Poczos



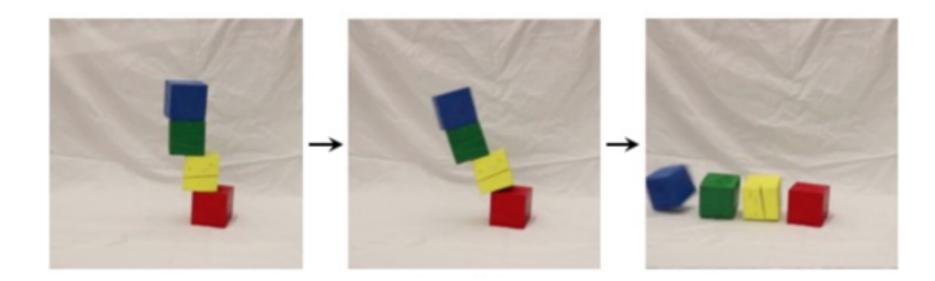
Keyulu Xu MIT

Applications



Drug discovery (Duvenaud et al. 2015)

Recommender system (Ying et al. 2018)

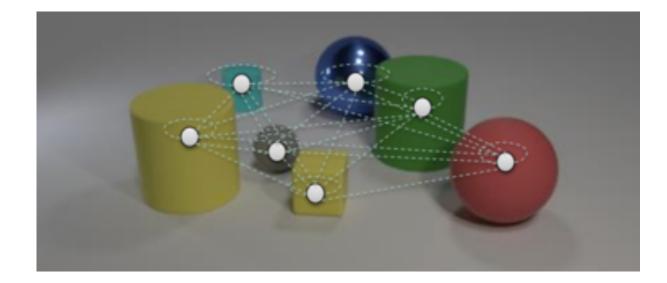


Physical reasoning (Wu et al. 2017)

Bangkok **21%** 27% 29% 26% - 37% 21% 22% Taichung City 34% 51% Las Vegas
22% 20% 31% 22% São Pau 23% Sydne 43%

Google Maps ETA Improvements Around the World

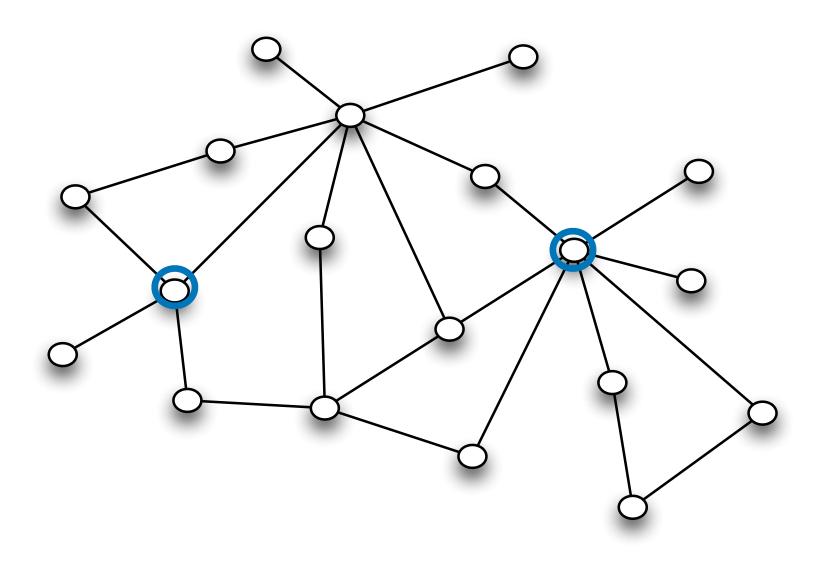
Google Map ETA (Lange et al. 2020)



Learning with graphs

X_{μ} **Input:** graph G = (V, E)node features

 $W_{u,v}$ edge features (optional)



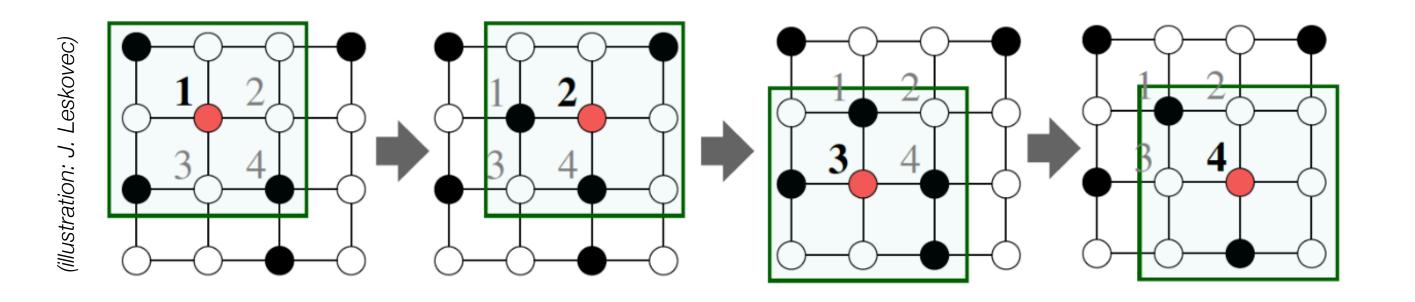
Goal: learn node & graph representations

$$h_u \in \mathbb{R}^d \qquad h_G \in \mathbb{R}^l$$

Task: forecast on graphs, nodes, or edges

How to represent graphs?

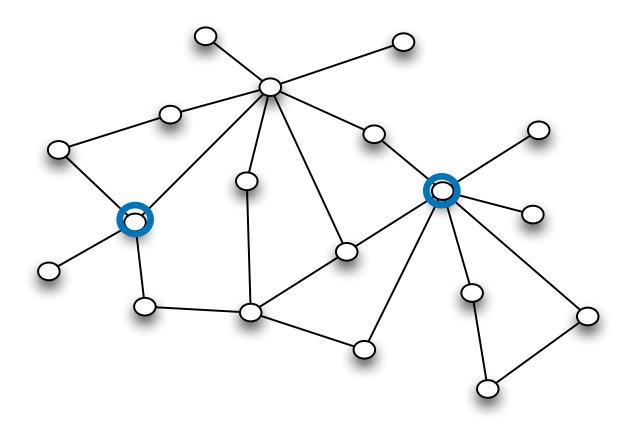
CNNs for images



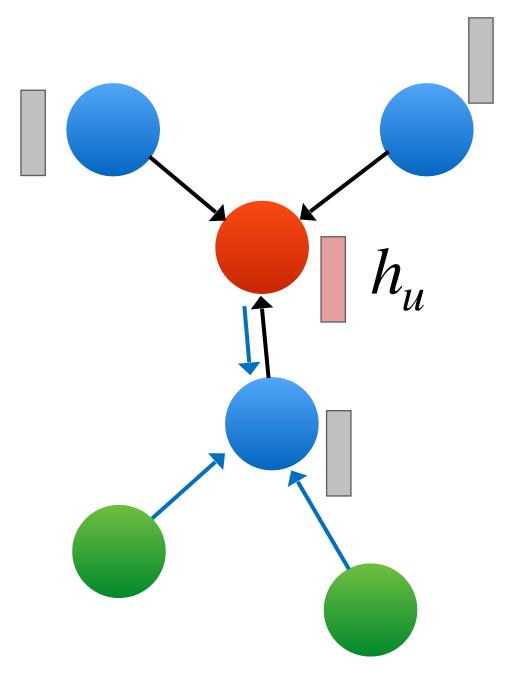
vs. general graphs

no ordering of neighbors different node degrees

(@kyokofukada_official)



Graph Neural Networks (GNNs)



In each round:

For $u \in V$ concurrently:

Aggregate over neighbors

 $h_{\mu}^{(k)} = AG$

Graph-level readout

 $h_C = RE I$ U

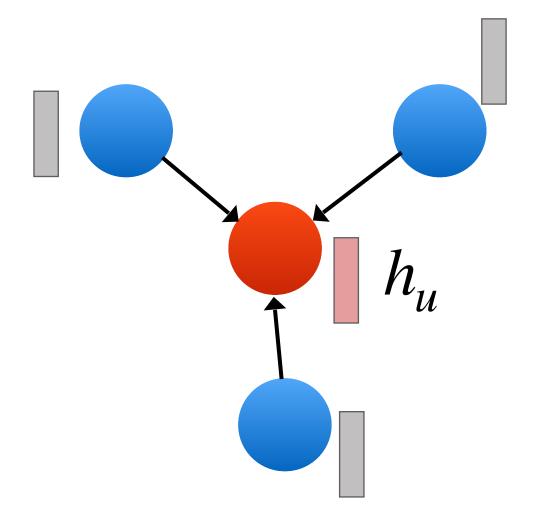
(Gori et al. 2005, Merkwirth & Lengauer 2005, Scarselli et al 2009, Duvenaud et al., 2015, Battaglia et al., 2016, Dai et al., 2016, Defferrard et al., 2016, Kearnes et al., 2016, Li et al., 2016, Gilmer et al., 2017, Hamilton et al., 2017, Kipf & Welling, 2017, Velickovic et al., 2018, Xu et al., 2018)

Representation of neighbor node v in round k-1

$$\mathsf{GREGATE}^{(k)}\left(\left\{\left(h_v^{(k-1)}, h_u^{(k-1)}\right)\right\} \middle| v \in \mathcal{N}(u)\right)$$

$$\mathsf{ADOUT}\left(\left\{h_u^{(K)}\right\} \middle| u \in V\right)$$

Training



1. Parameterize AGGREGATE^(k) and READOUT

3. Train on data points with SGD

Can also recover ConvNets, Transformer etc

2. Specify a loss on node/graph/edge representations

Roadmap

Expressive power

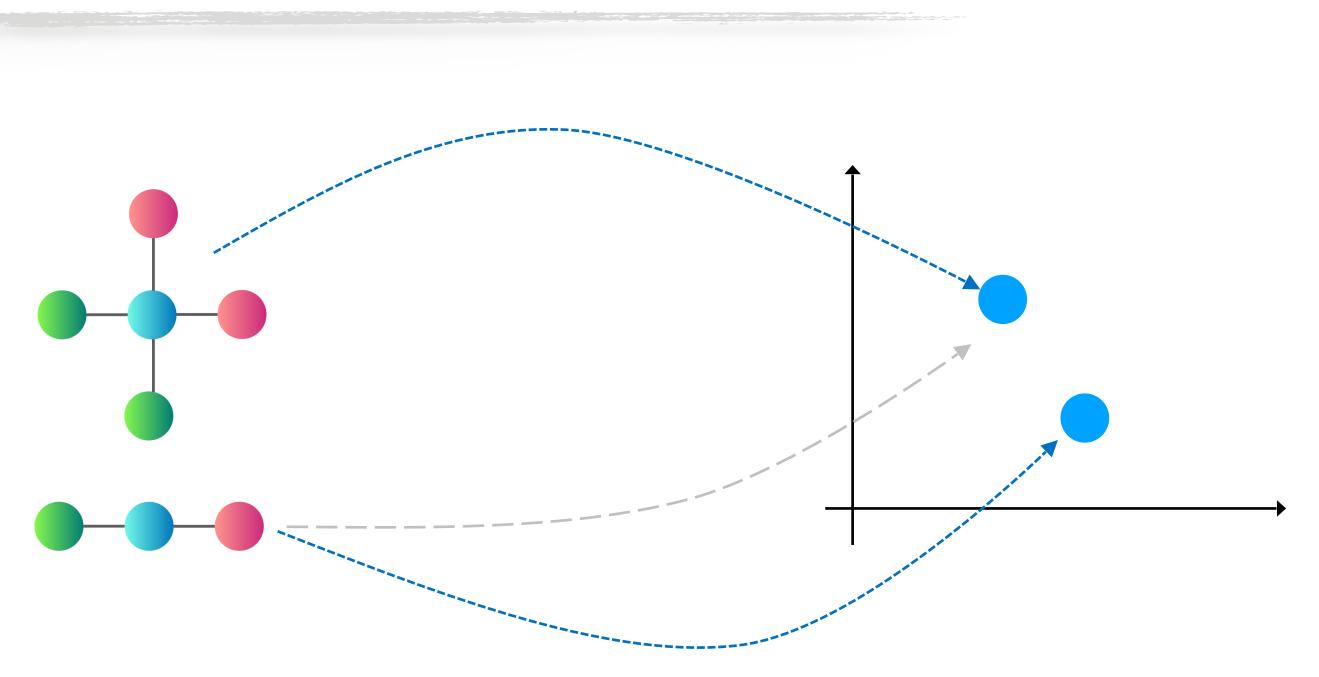
How Powerful are Graph Neural Networks?

Graph Neural Tangent Kernel

What Can Neural Networks Reason About?

How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks

Expressive power



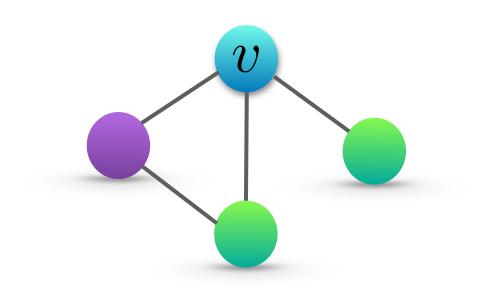
Which graphs can GNNs distinguish?

What does GNN discriminative power depend on?

Assume countable node input features



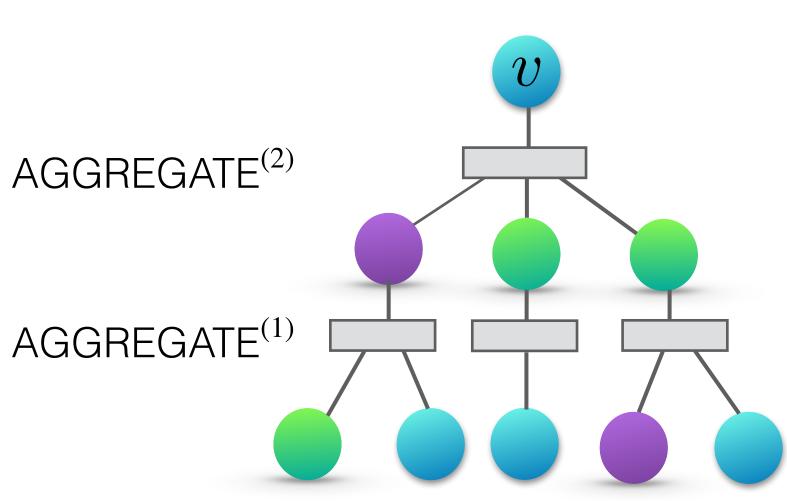
Intuition



Input graph

Observation I: Expressive power of a GNN depends on that of AGGREGATE

Observation II: Powerful GNNs have **injective** AGGREGATE



GNN computation graph

by a recursive argument

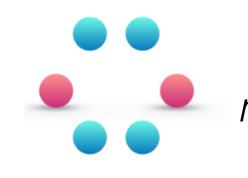
How powerful are GNNs?

Theorem (XHLJ'19) GNNs are at most as powerful as a Weisfeiler-Lehman graph isomorphism test*.

This upper bound is achieved if AGGREGATE and READOUT are injective multiset functions.

> *(Weisfeiler & Lehman 1968, Babai, Erdös, Selkow 1980, Babai & Kucera 1979, Cai, Furer, Immerman 1992, Evdokimov & Ponomarenko 1999, Douglas 2011)

failure cases: certain regular graphs



neighborhood - multiset

A maximally powerful GNN

Lemma (XHLJ'19) $g(X) = \phi\left(\sum_{x \in X} f(x)\right)$

Graph Isomorphism Network (GIN): sum & universal approximator MLP

$$h_v^{(k)} = \mathrm{MLP}^{(k)} \left(\left(1 + \epsilon^{(k)} \right) \cdot h_v^{(k-1)} + \sum_{u \in \mathcal{N}(v)} h_u^{(k-1)} \right)$$

Any (injective) multi-set function g can be decomposed as

(generalizing Zaheer et al 2017, Ravanbakhsh et al 2016, Qi et al 2017,...)

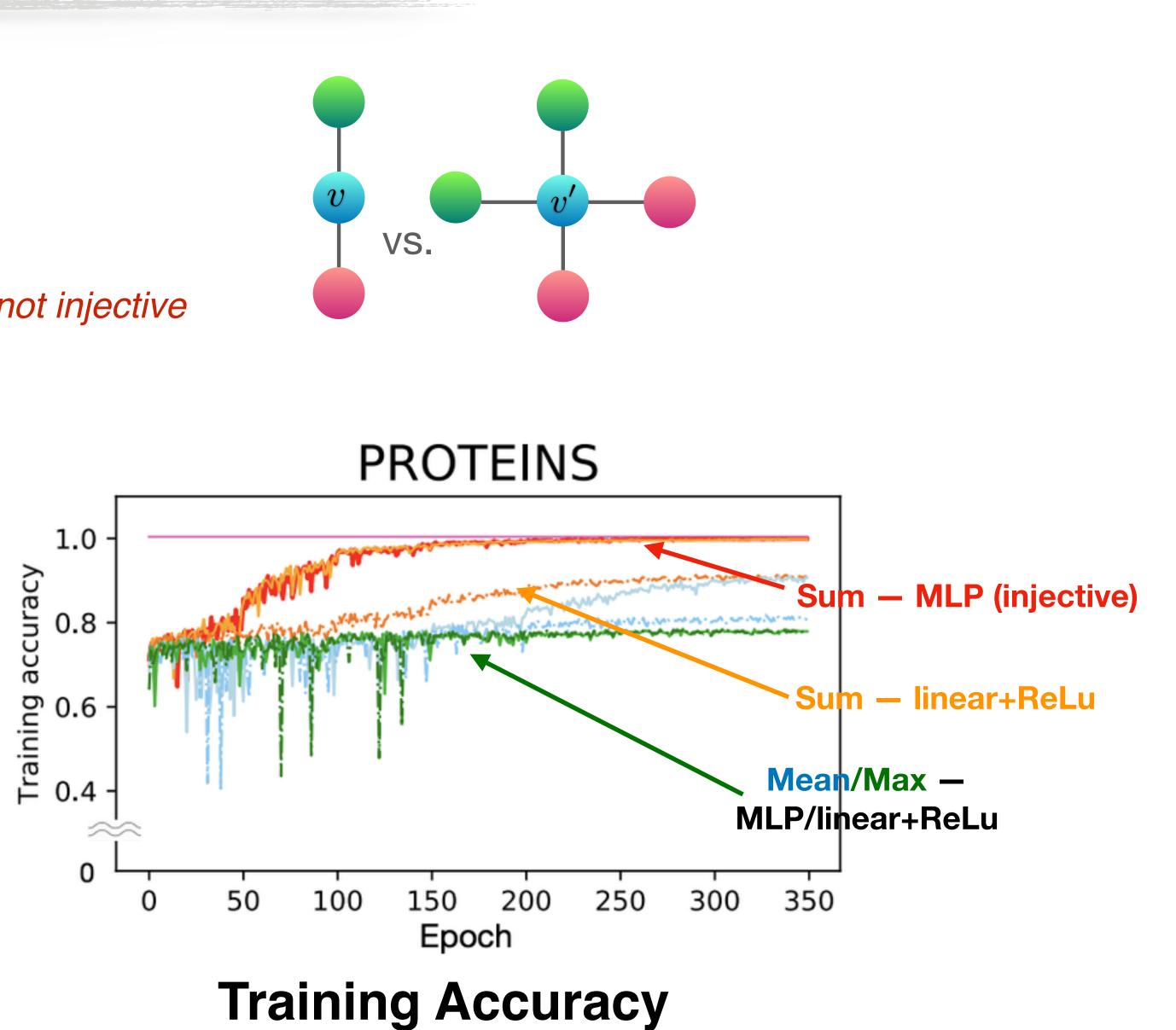
Less powerful GNNs

$$g(X) = \phi\left(\sum_{x \in X} f(x)\right)$$

MEAN: $g(X) = \phi (MEAN\{f(x) : x \in X\})$ MAX: $g(X) = \phi (MAX\{f(x) : x \in X\})$ not injective

Linear+ReLU vs. MLP for ϕ

not universal approximator



Selected related & follow-up work

Pursuing more power

- Consider higher-order structure and tensors
- Add auxiliary node identifitation 2
- Incorporate domain-specific structure & features 3

(Barceló et al. 2020, Bouritsas et al. 2020, Corso et al. 2020, Klicpera et al. 2020, Zhang et al. 2020)

Approximation

- Equivalence of graph isomorphism test and function approximation, lower bound on width, counting substructures

(Kondor et al. 2018, Keriven et al. 2019, Maron et al. 2019, Morris et al. 2019, Murphy et al. 2019)

(Sato et al. 2019, 2020; Vignac et al. 2020)

(Scarselli et al. 2009, Chen et al. 2019, 2020; Garg et al. 2020, Loukas et al. 2020ab)

Roadmap

Expressive power

How Powerful are Graph Neural Networks?

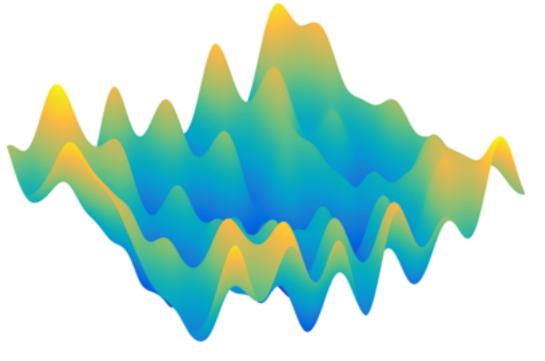
Generalization

Graph Neural Tangent Kernel

What Can Neural Networks Reason About?

How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks

Generalization



non-convex landscape

Why do GNNs trained by GD generalize despite high complexity?

What **tasks** can GNNs generalize well in? How to **design** architectures?

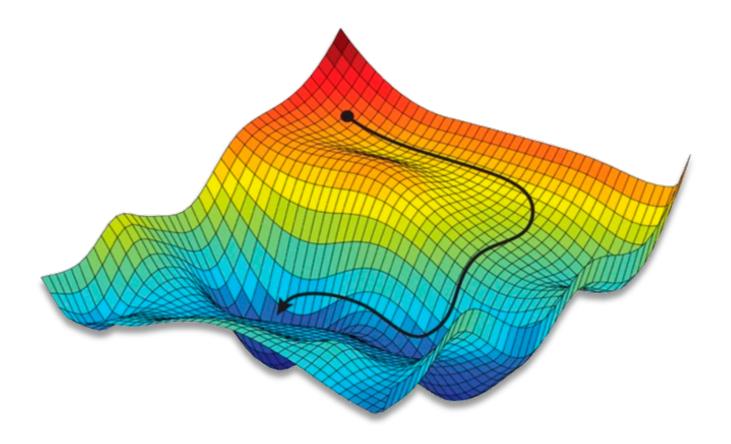
GNN with sufficient expressive power

There exists a GNN parameter that fits all data* * except graphs that GNNs cannot distinguish

Graph Neural Tangent Kernel. DHPSWX'19

What Can Neural Networks Reason About? XLZDKJ'20

Graph Neural Tangent Kernel



DHPSWX'19 Over-parameterized GNNs trained by GD is equivalent to that of kernel regression with Graph NTK:

k(G, G)

Parameter trajectory $\theta_{GNN}(t)$

GNN output $f(\theta_{GNN}, G)$

(NTK theory: Jacot et al 2018, Li and Liang 2018, Allen-Zhu et al 2019, Arora et al 2019ab, Cao and Gu 2019, Du et al 2019ab...)

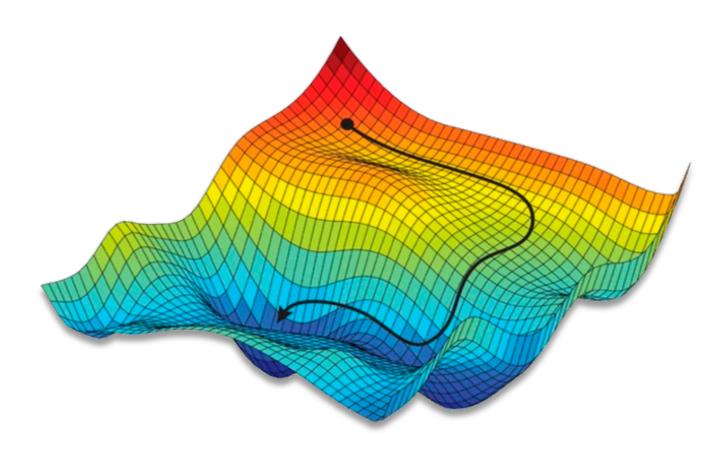
$$G') = \mathbb{E}_{\theta_{GNN} \sim \mathcal{W}} \left[\left\langle \frac{\partial f(\theta_{GNN}, G)}{\partial \theta_{GNN}}, \frac{\partial f(\theta_{GNN}, G')}{\partial \theta_{GNN}} \right\rangle \right]$$

Refer to paper for exact formula of Graph NTK

Assumptions: very wide, infinitesimally small learning rate, initialization with certain scaling.

Intuition of NTK

Introduced in Jacot et al 2018; concurrently developed by Li and Liang 2018, Allen-Zhu et al 2019, Arora et al 2019, Du et al 2019...



Network out

Dynamic fol

Parameter trajectory $\theta(t)$ NN output $f(\theta, x)$

 $\boldsymbol{H}(t)_{ij} = \Big\langle$

Itput
$$u(t) = (f(\theta(t), x_i))_{i=1}^n$$

Hows $\frac{du}{dt} = -H(t)(u(t) - y)$

$$\frac{\partial f(\theta(t), x_i)}{\partial \theta}, \frac{\partial f(\theta(t), x_j)}{\partial \theta} \right\rangle \text{ for } (i, j) \in [n] \times [n]$$

When width $\rightarrow \infty$, $H(t) \approx H(0)$ a fixed kernel NTK

Optimization & generalization error

Over-parameterized GNNs trained by GD = Graph NTK

Can GD find a global minimum for GNN?

Yes, Graph NTK is convex

Why do GNNs trained by GD generalize despite high complexity?

Generalization bound

H - graph NTK matrix; we provide an analytical form \boldsymbol{y} - training labels n - number of training data

$$\overline{{}^{1}\boldsymbol{y}\cdot\mathrm{tr}\left(\boldsymbol{H}
ight)}$$

n

(Bartlett and Mendelson 2002)

Approaches of generalization analysis

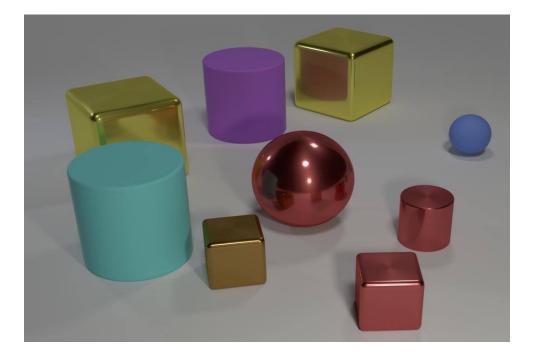
	Predict Performance	Explanation	Assumptions	Examples
Norm based		Norm <i>unknown</i> before training	Less	Scarselli et al 2018, Garg et al 2020
Trajectory based (GNTK*)		Fine-grained analysis of <i>simple</i> functions	Medium	DHPSWX'19
Inductive biases (algo alignment)		Structured functions e.g., <i>algorithms</i>	Medium+	XLZDKJ'20

(Other trajectory based regimes for non-GNN: Chizat and Bach 2018, Mei et al 2018...)

Reasoning and perception

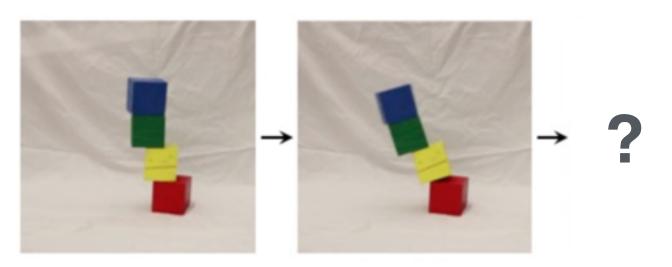
Perception

Color of her sweater?



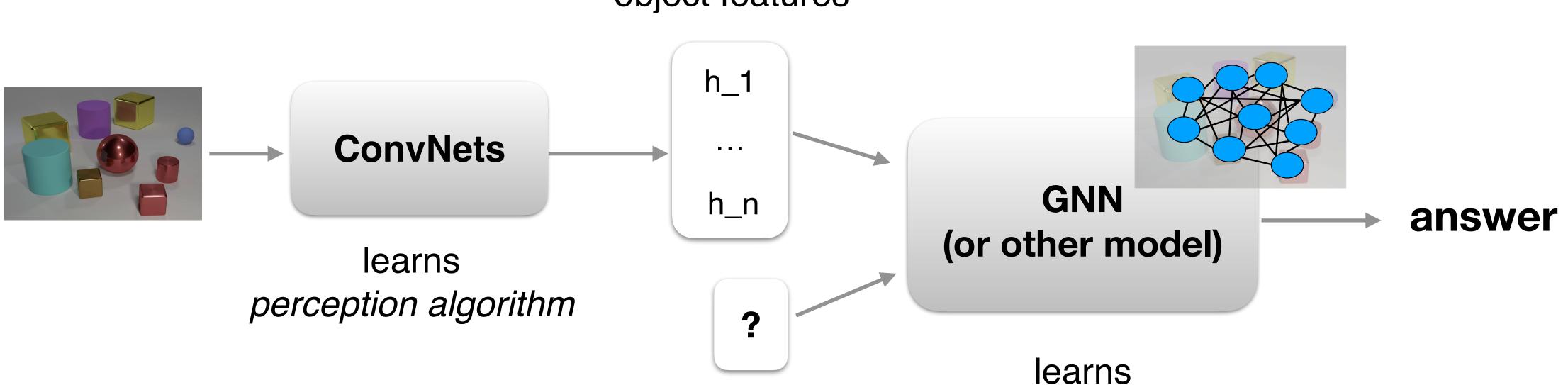
Furthest pair of objects?

Reasoning



Next position of the block?

Specialized architectures for learning different algorithms



(Weston et al., 2015; Johnson et al., 2017a; Wu et al. 2017, Fleuret et al., 2011; Antol et al., 2015; Battaglia et al., 2016, 2018; Watters et al., 2017; Fragkiadaki et al., 2016; Chang et al., 2017, 2019; Saxton et al., 2019; Santoro et al., 2018...)

a collection of object features

reasoning algorithm

Formalizing inductive bias of architectures

Algorithmic alignment (XLZDKJ'20) Network can simulate algorithm via *few, easy-to-learn* "modules". **Claim:** Better algo alignment implies better generalization.

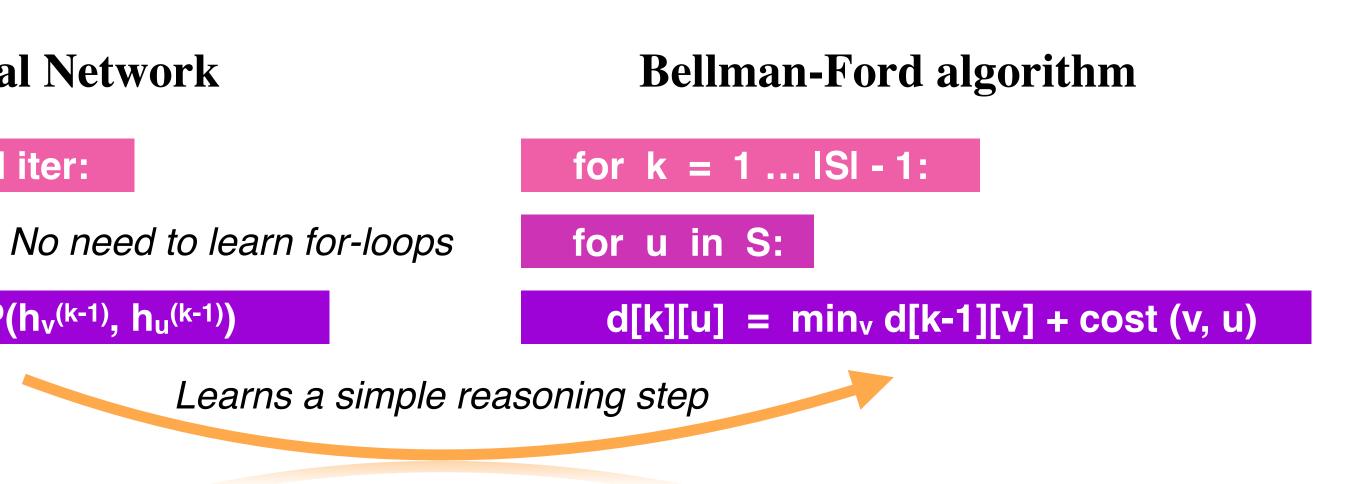
Graph Neural Network

for $k = 1 \dots GNN$ iter:

for u in S:

 $h_{u}^{(k)} = \Sigma_{v} MLP(h_{v}^{(k-1)}, h_{u}^{(k-1)})$

Without good alignment -> need to learn complicated functions e.g., for-loop



Algo alignment measure

Algorithmic alignment (XLZDKJ'20) algorithm via n weight-shared modules, each of which is (ϵ, δ) PAClearnable with M/n samples.

 $\mathbb{P}_{x \sim \mathcal{D}} \left[\| f(x) - g \right]$

learned function

A neural network (M, ϵ, δ) -aligns with an algorithm if it can simulate the

$$|y(x)|| \le \epsilon] \ge 1 - \delta$$

(Valiant 1984)

true function (algorithm)

* Sample complexity of learning simple modules can be estimated via e.g., NTK (Arora et al. 2019)

Better alignment implies better generalization

Theorem (XLZDKJ'20)

assumptions^{*}, the task is $(O(\epsilon), O(\delta))$ PAC-learnable by the network with M examples.

If a neural network and a task algorithm (M, ϵ, δ) -align, then, under

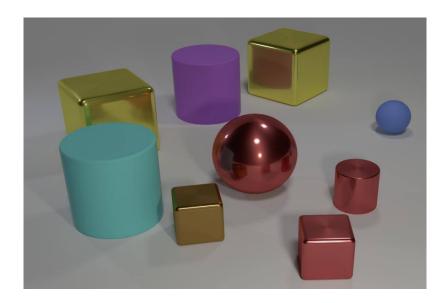
- * Lipschitznes and SGD sequential training
- * Related work experimenting assumptions: Veličković et al 2020

GNNs sample-efficiently learn dynamic programming

DP-Update: simple module easily learned by GNN's MLP modules

Answer[k][i] = DP-Update $h_{s}^{(k)} = \sum_{t \in S} MLP_{1}^{(k)}$

Reasoning tasks as DP:

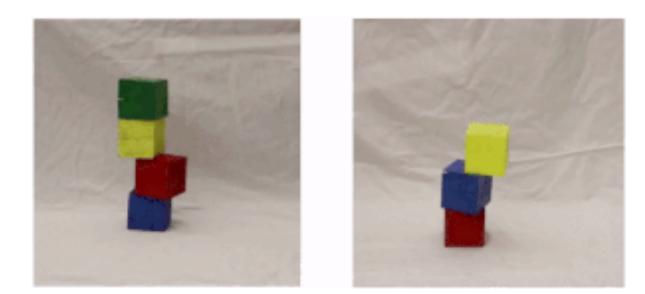


many graph algorithms

visual question answering

$$(\{\text{Answer}[k-1][j], \ j = 1...n\})$$

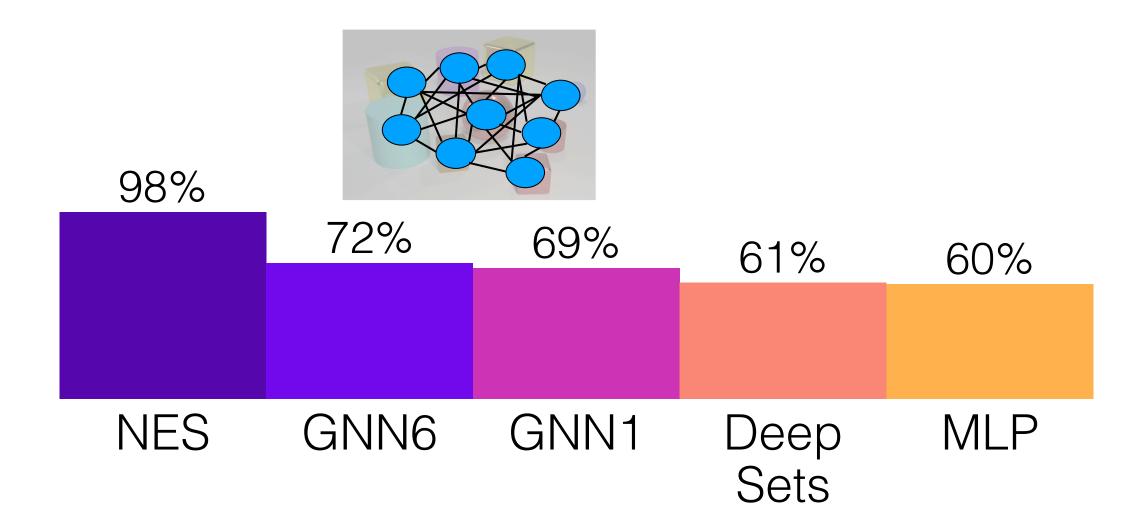
$${}^{(k)}_{1} \left(h_{s}^{(k-1)}, h_{t}^{(k-1)}\right)$$



Intuitive physics

Limits of GNN: NP-hard problem

Subset sum: Can any subset of a set of numbers sum to zero?

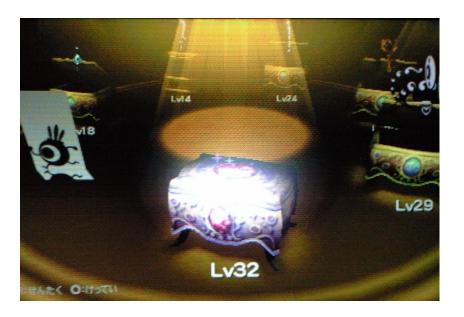


NES (Neural Exhaustive Search) - based on algo alignment

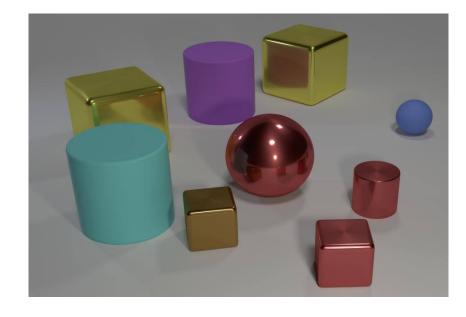
 $MLP_2(\max_{\tau \subseteq S} MLP_1 \circ LSTM(X_1, ..., X_{|\tau|} : X_1, ..., X_{|\tau|} \in \tau))$

$y = \max_{S} 1[h(S) = 0], h(S) = \Sigma_{x \text{ in } S} X$

A hierarchy of tasks



Summary statistics What is the maximum value difference among treasures?



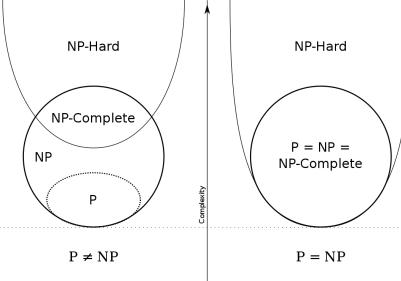
Relational argmax What are the colors of the furthest pair of objects?

Graph Neural Network (GNN)

(Zaheer et al. 2017)

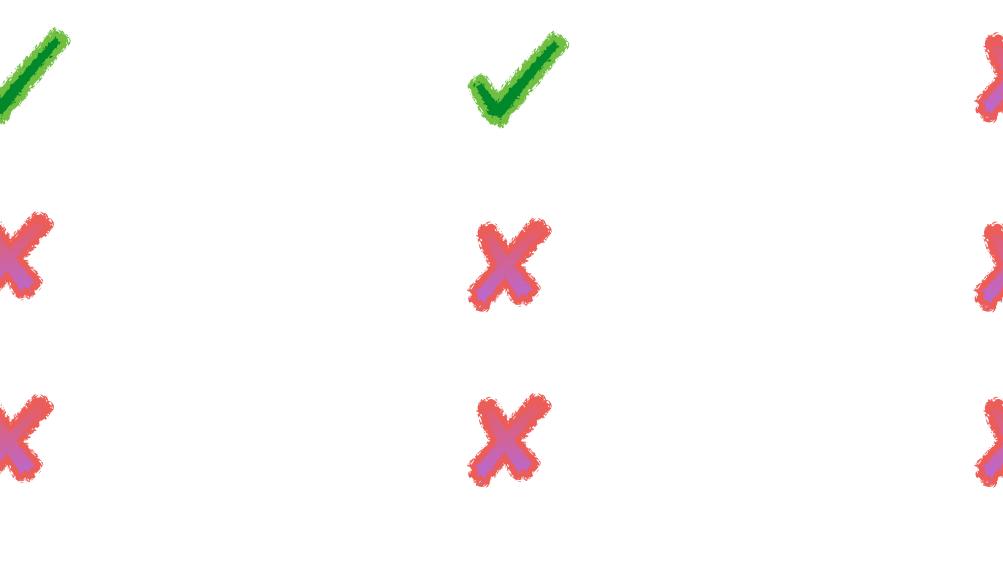
MLP

Neural Exhaustive Search (NES)



Dynamic programming What is the cost to defeat monster X by following the optimal path?

NP-hard problem Subset sum: Is there a subset that sums to 0?



Roadmap

Expressive power

How Powerful are Graph Neural Networks?

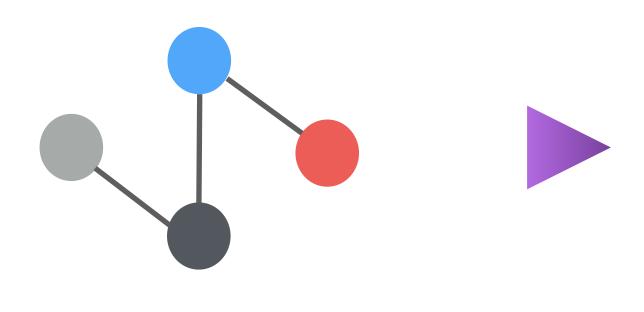
Graph Neural Tangent Kernel

What Can Neural Networks Reason About?

How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks

Extrapolation

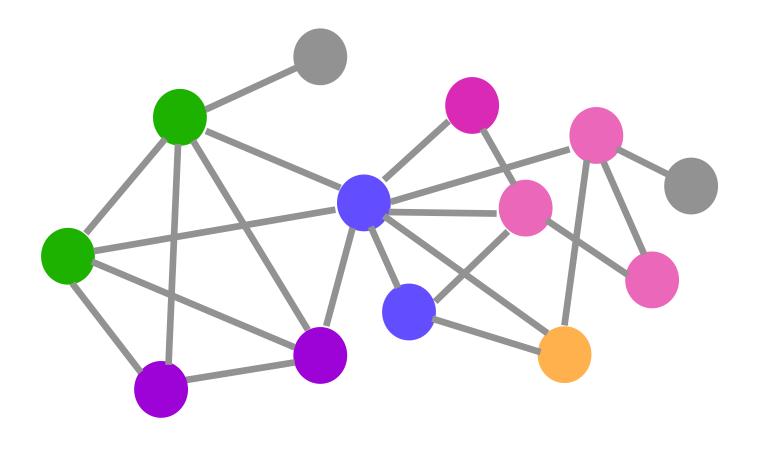
What function does a neural network trained by GD implement outside the support of the training distribution?



Train

Generalize across graph structure, size, node & edge features?

* In-distribution generalization: train = test distribution



Test

Prior works report GNNs successfully extrapolate to larger graphs

Prior works also report MLPs and ConvNets fail out-of-distribution

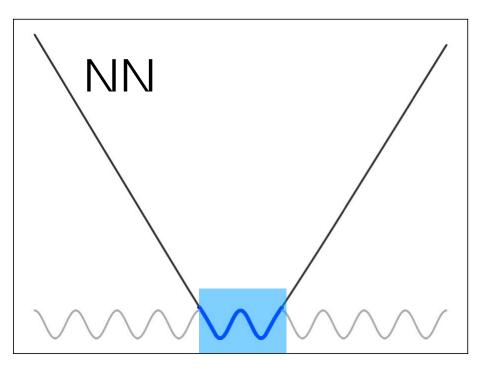
(Barnard and Wessels, 1992; Haley and Soloway, 1992; Santoro et al. 2018; Arjovsky et al. 2019...)

But GNNs have MLP modules...

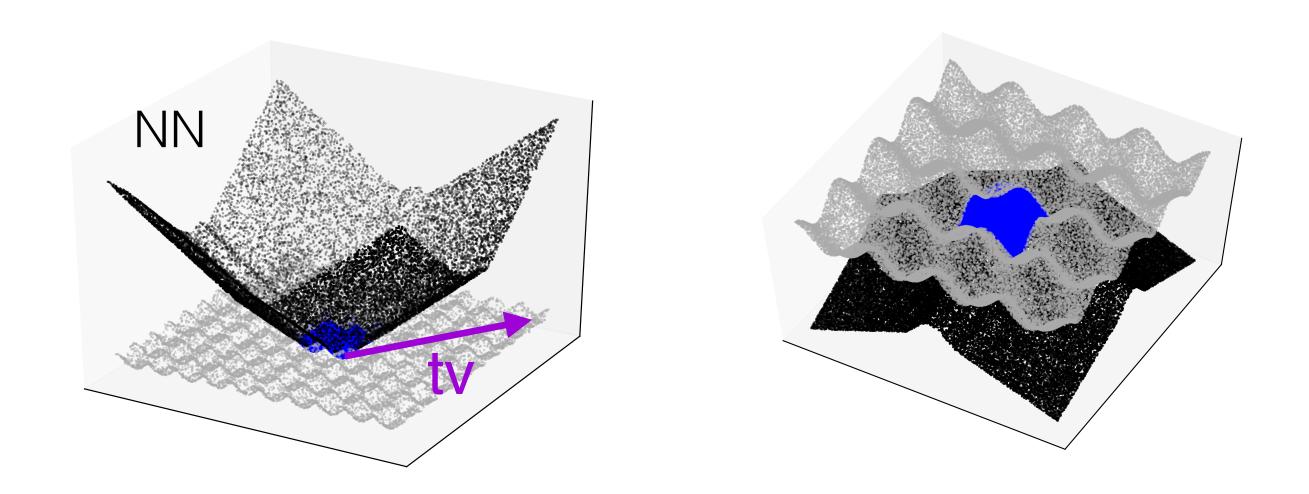
$$\boldsymbol{h}_{u}^{(k)} = \sum_{v \in \mathcal{N}(u)} \mathsf{MLP}^{(k)} \Big(\boldsymbol{h}_{u}^{(k-1)}, \boldsymbol{h}_{v}^{(k-1)}, \boldsymbol{w}_{(v,u)} \Big), \quad \boldsymbol{h}_{G} = \mathsf{MLP}^{(K+1)} \Big(\sum_{u \in G} \boldsymbol{h}_{u}^{(K)} \Big)$$

(Battaglia et al. 2016, 2018; Lample and Charton 2020, Velickovic et al., 2020 ...)

Linear extrapolation of ReLU MLPs



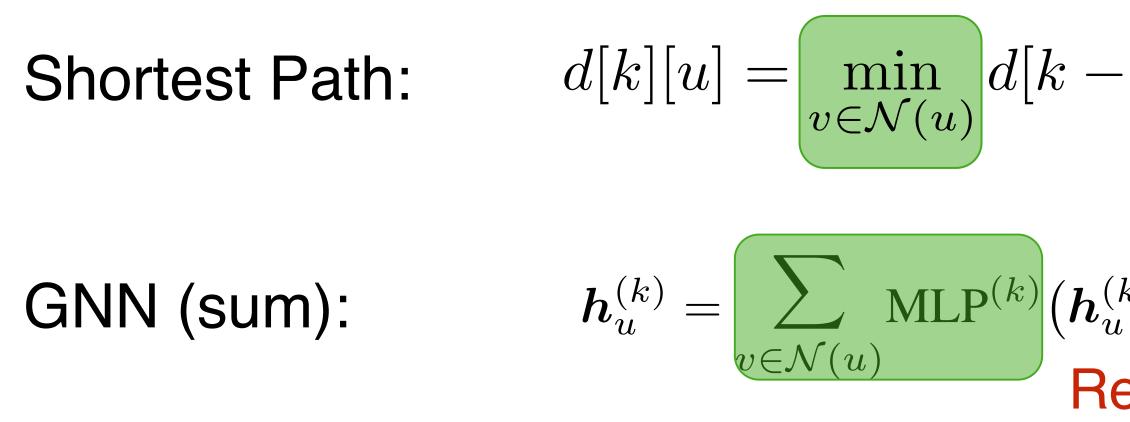
Training data



Theorem (XZLDKJ'20) Let *f* be a two-layer ReLU MLP trained by GD*. For any direction $v \in \mathbb{R}^d$, let x = tv. For any h > 0, as $t \to \infty$, $f(x + hv) - f(x) \to \beta_v h$ with rate O(1/t)

* Assumption: NTK regime

Implications for GNNs



Battaglia et al 2018; Velickovic et al 2020 extrapolate with:

$$\boldsymbol{h}_{u}^{(k)} = \min_{v \in \mathcal{N}(u)} \text{MLP}^{(k)} \left(\boldsymbol{h}_{u}^{(k-1)}, \boldsymbol{h}_{v}^{(k-1)}, \boldsymbol{w}_{(v,u)} \right)$$

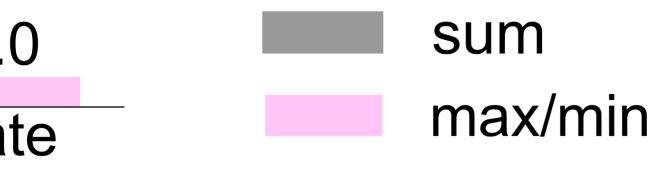
Need to extrapolate

$$[-1][v] + \boldsymbol{w}(v, u)$$

$$m{h}_{u}^{(k-1)},m{h}_{v}^{(k-1)},m{w}_{(v,u)}ig)$$

Requires non-linear extrapolation

e linear function



Encoding non-linearity in architecture and features

Linear algorithmic alignment (XZLDKJ'20) Network can simulate algorithm via *easy-to-learn linear* "modules". **Claim:** Linear algo alignment helps *extrapolation*.

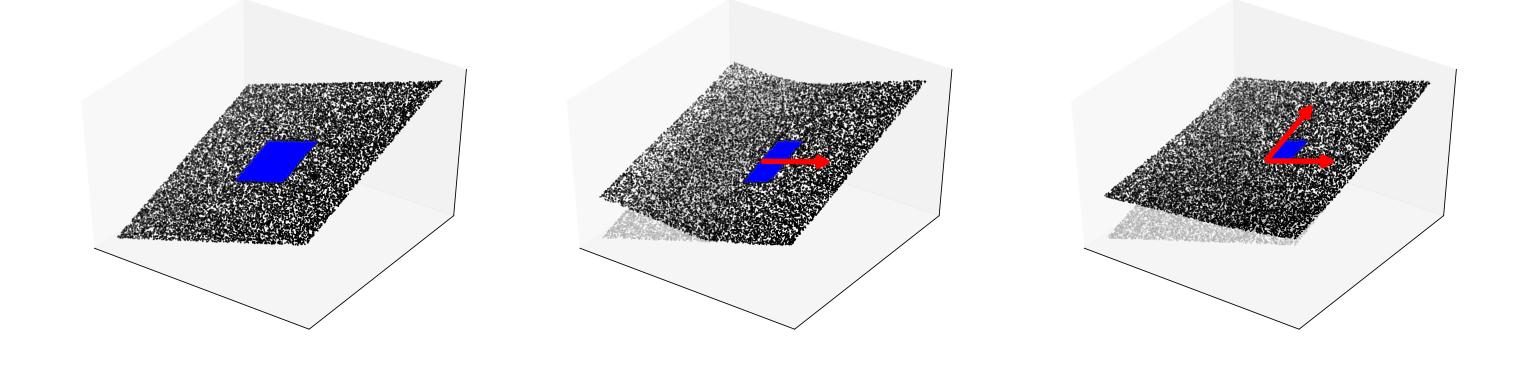
Architecture: symbolic modules, activation, architecture search

Features: feature engineering, pre-training on out-of-distribution data (e.g., BERT)

(Devlin et al., 2019, Chen et al., 2020, Lample and Charton 2020, Hu et al 2020, Hendrycks et al 2020)

(Johnson et al 2017, Battaglia et al 2018, Yi et al 2018, Velickovic et al 2020)

Requirement on geometry of training distribution

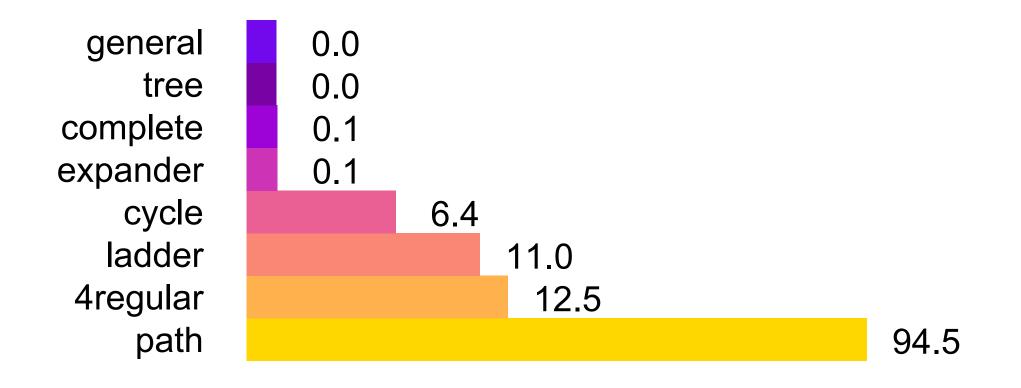


Theorem (XZLDKJ'20) training examples $n \to \infty$, $f(x) \to \beta^{T} x$.

Let f be a two-layer ReLU MLP trained by GD*. Suppose target function is $\beta^{T}x$ and support of training distribution covers all directions. As the number of

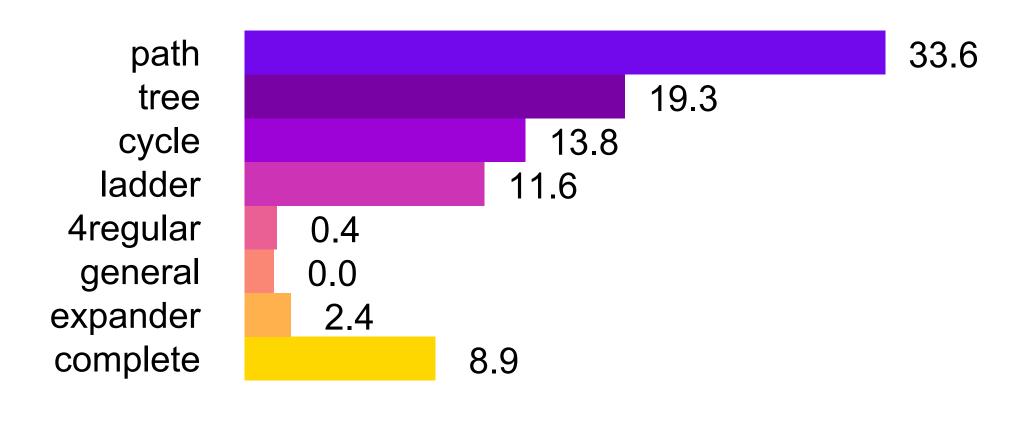
* Assumption: NTK regime

Requirement on training graph structure



Max Degree

Proposition (XZLDKJ'20) $\{\deg_{\max}(G_i), \deg_{\min}(G_i), N_i^{\max}\deg_{\max}(G_i), N_i^{\min}\deg_{\min}(G_i)\}_{i=1}^n$ spans \mathbb{R}^4 .



Shortest Path

A max-aggregation GNN trained by GD* learns max degree if training data

* Assumption: NTK regime

Summary

Expressive power: How to build powerful GNNs

Generalization: Trajectory analysis, Inductive bias of architectures

Extrapolation: Non-linearities matter

How Powerful are Graph Neural Networks? K. Xu, W. Hu, J. Leskovec and S. Jegelka. ICLR 2019.

Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels. S. S. Du, K. Hou, B. Poczos, R. Salakhutdinov, R. Wang, K. Xu. NeurIPS 2019.

What Can Neural Networks Reason About? K. Xu, J. Li, M. Zhang, S. S. Du, K. Kawarabayashi, S. Jegelka. ICLR 2020.

How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks. K. Xu, M. Zhang, J. Li, S. S. Du, K. Kawarabayashi, S. Jegelka. arXiv 2009.11848