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Applications

Google Maps ETA Improvements Around the World
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Drug discovery Recommender system Google Map ETA
(Duvenaud et al. 2015) (Ying et al. 2018) (Lange et al. 2020)

Question: Calculate —-841880142.544 + 411127.
Answer: -841469015.544

. Question: Let x(g) = 9%g + 1. Let g(c) = 2xc + 1. Let f(i) = 3%1i -
o 39. Let w(j) = g(x(j)). Calculate f(w(a)).

—
| ' Answer: 54xa — 30
- - ._\1. Question: Let e(l) = 1 - 6. Is 2 a factor of both e(9) and 27?

Answer: False

Physical reasoning Symbolic mathematics
(Wu et al. 2017) (Saxton et al 2019, Lample et al. 2020)



Graph Neural Networks (GNNSs)

In each round:

For u € V concurrently:

Representation of neighbor
node vin round k — 1

Aggregate over neighbors

n® = AGGREGATE® ({ (h&=D,nf=0) |y € #w)

Graph-level readout

hg = READOUT ({h{®)} |u € V)

(Gori et al. 2005, Merkwirth & Lengauer 2005, Scarselli et al 2009, Duvenaud et al., 2015, Battaglia et al., 2016, Dai et al., 2016, Defferrard et al., 2016, Kearnes
etal., 2016, Li et al., 2016, Gilmer et al., 2017, Hamilton et al., 2017, Kipf & Welling, 2017, Velickovic et al., 2018, Xu et al., 2018)



Training GNNs

1. Parameterize AGGREGATE® and READOUT E/g\ﬁ
DX
HHE B

R = 3 MLP®W (h,g’“—l), h(k-1), w(v,u)), he = MLPEFD ( Y h,gK))
vEN (u) ueG

Other aggregation also possible, e.qg., attention

2. Specity a loss on node/graph/edge representations

3. Train on data points with SGD



Extrapolation vs. interpolation

Train NN f to learn underlying function g : X — IR with training set {(xi,v:)}1—1 C D

Extrapolation

D

Train Test

Interpolation train — Plest




Approaches of generalization analysis

Complexity

(Scarselli et al 2018, Garg et al 2020)

+ Training algorithm

(Du, Hou, Poczos, Salakhutdinov, Wang, X. 2019)
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+ Network & task structure

(X., Zhang, Li, Du, Kawarabayashi, Jegelka 2020, 2021)

more “practical”

more assumptions



Learning dynamics: Graph NTK

DHPSWX’19
Over-parameterized GNNs trained by GD is equivalent to
that of kernel regression with Graph NTK:

aHGNN aQGNN

" 1 0f(Onns G) (O, G \
KG.G)=Ey o <f(G ) 2 )>

Parameter trajectory
Onn(1)

Refer to paper for exact formula of Graph NTK

GNN output f(Ognn. G)
Assumptions: very wide, infinitesimally small learning
rate, initialization with certain scaling.

(NTK theory: Jacot et al 2018, Li and Liang 2018, Allen-Zhu et al 2019, Arora et al 2019ab, Cao and Gu 2019, Du et al 2019ab...)



(Generalization error

Wide GNNs trained by GD = Graph NTK

VY H 'y -tr(H)

n

(Bartlett and Mendelson 2002)

H - graph NTK matrix (computable based on training data)
Y - training labels
N - number of training data



Task structure in algorithmic tasks

VQA

(Santoro et al 2016)
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|Q tests

(Santoro et al. 2018, Zhang et al 2019)

Question: Calculate -841880142.544 + 411127.

Answer: -841469015.544

Question: Let x(g) = 9%xg + 1. Let g(c) = 2%c + 1. Let f (i)
39. Let w(3j) = g(x(j)). Calculate f(w(a)).

Answer: 54xa - 30

Question: Let e(l) =1 - 6. Is 2 a factor of both e(9) and 27

Answer: False

Mathematical reasoning

(Saxton et al. 2019, Lample et al 2020)

~hysical reasoning

(Wu et al. 2017, Battagalia et al 2016, Janner et al 2019)

3%x1 —



Architecture is crucial for generalization

Neural Network
MLP
CNN —> answer
RNN

? e.q., colors of the furthest pair of objects?

Mo—

(Weston et al., 2015; Johnson et al., 2017a; Wu et al. 2017, Fleuret et al., 2011; Antol et al., 2015, Battaglia et al., 2016, 2018; Watters et
al., 2017, Fragkiadaki et al., 2016, Chang et al., 2017, 2019; Saxton et al., 2019; Santoro et al., 2018...)



GNN for algorithmic reasoning tasks

a collection of
object features

h 1
perception
processing T
h_n Graph Neural answer
Network
:
question

(Weston et al., 2015; Johnson et al., 2017a; Wu et al. 2017, Fleuret et al., 2011; Antol et al., 2015, Battaglia et al., 2016, 2018; Watters et
al., 2017, Fragkiadaki et al., 2016, Chang et al., 2017, 2019; Saxton et al., 2019; Santoro et al., 2018...)



How task & NN structure affect sample efficiency

Example

|

W,
) S

— shortest path distance?

Graph Neural Network Bellman-Ford algorithm

DECIATRGREIN  Noneed to learn for-loops IR

ho® = 3, MLP(hyk1, hytk) d[k][u] = min, d[k-1][v] + cost (v, u)

Learns a simple reasoning step

Other architectures need to learn functions with higher complexity, e.g., for-loops



Algorithmic alignment: formalizing inductive biases

Algorithmic alignment (XLZDKJ’20)
Network can simulate algorithm via few, easy-to-learn “modules”.

Claim: Better algo alignment implies better generalization.
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Better alignment implies better generalization

Algorithmic alignment (XLZDKJ 20)
A neural network (M, €, 0)-aligns with an algorithm if it can simulate the

algorithm via n weight-shared modules, each of which is (€, 0) PAC-

learnable with M/n samples. * Sample complexity of modules by e.g., NTK

Theorem (XLZDKJ’20)

If a neural network and a task algorithm (M, €, 0)-align, then, under

assumptions*, the task is (O(¢€), O(0)) PAC-learnable by the
network with M examples.

* Lipschitznes and SGD sequential training

* Related work experimenting assumptions:
Velickovic et al 2020



GNNs can sample-efficiently learn DP

Answer k||i]| = DP—Uate({Answer[k —1ll4], y=1...n})

Ryt = ZtesMLpgk) (hgk_l)a hﬁk_l))

Reasoning tasks as dynamic programming (DP):

graph algorithms visual question answering Intuitive physics



Extrapolation

What function does a GNN implement outside training distribution” E/g\ﬂ

DX}
T MLP

modules

Generalize across graph structure, size, node & edge features?



Linear extrapolation behavior of ReLU MLPs

Theorem (XZLDKJ’21)
Let f be a two-layer ReLU MLP trained by GD*. For any direction v € | d, let
x=1tv.Forany h > 0, ast — oo, f(x + hv) — f(x) = p h with rate O(1/)

* Assumption: NTK regime



Implication of linear extrapolation
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MAPE extrapolation error: lower the better

* Note: this does not follow from Rel.U networks have finitely
many linear egions, which only implies asymptotic behavior



Data geometry for learning linear functions

Theorem (XZLDKJ’21)

Let f be a two-layer ReLU MLP trained by GD*. Suppose target function is
[1x and support of training distribution covers all directions. As the number of
training examples n — oo, f(x) = flx.

* Assumption: NTK regime



Implications for GNNs

@
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Shortest Path: d[k][u] = glvl? dlk — 1][v] + w(v, u)
GNN (sum): h® = B3 MLP® (h*=D, h*=D (v, u))

GNN that encodes the nonlinearity min

h® = [T MLP® (R0, B%D (v, u))
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Data distribution and architecture

Data diversity: feature direction (MLP), graph structure (GNN)

general 0.0 path 33.6
tree 0.0 tree
complete 0.1 cycle
expander 0.1 ladder
cycle 6.4 4regular
ladder 11.0 general
4regular 12.5 expander .
path 94.5 complete 8.9
Max Degree Shortest Path

Theorem (XZLDKJ’21)

A GNN encoding max in aggregation trained by GD* learns max degree if
tra|n|ng data {degmaX(G ) degmln(G ) Nmax degmaX(G ) len degmln(G )}z 1 SpanS \. 4

* Assumption: NTK regime



Linear algorithmic alignment

Linear algorithmic alignment (XZLDKJ’21)
Network can simulate underlying function via easy~te-feara- linear “modules”

Hypothesis: Linear algo alignment helps extrapolation

Application: Encode nonlinearity in architecture or input representation.




Encoding nonlinearities in architecture

Activation, pooling, symbolic operations etc...

NALU: y=gGa+(l—-g)Om

m = exp W (log(|x| +¢)), g = o(Gx)

Encode exp log for learning multiplication Q: What direction is the closest

(Trask et al. 2018, Madsen & Johansen 2020) creature facmg?

P: scene, filter creature,
filter closest, unique,
query direction

Qo

- O ) .
 Se—o ‘} a; = ﬁ (1 o Tij)Tz'j A: left
" _
Encode a library of programs (~2K)
SymbO“C OUtpUt (Granmer et al 2020) (Johnson et al 2017, Yi et al. 2018, Mao et al 2019...)



Encoding nonlinearities in input representation

f : hard for extrapolation

HG)

S

G : input graph

X

h: input transform
g . easier for extrapolation

h 8

—> h(G) ——> fG)

v

W original features

11.0

6.3

B W

improved features

1.2 07

extrapolate dist extrapolate mass
n-body problem

Specialized features, feature transtormation

Representation learning with out-of-distribution data (e.g., BERT)

iInterpolate



Summary

1. Analysis of training algorithm, network & task structure, data distribution
2. Better alignment implies better generalization
3. Non-linearities matter for extrapolation
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