
Graph Neural Networks:

Generalization and Extrapolation

Keyulu Xu

MIT

Applications

Drug discovery

(Duvenaud et al. 2015)

Recommender system

(Ying et al. 2018)

Physical reasoning

(Wu et al. 2017)

Google Map ETA

(Lange et al. 2020)

Symbolic mathematics

(Saxton et al 2019, Lample et al. 2020)

Graph Neural Networks (GNNs)

(Gori et al. 2005, Merkwirth & Lengauer 2005, Scarselli et al 2009, Duvenaud et al., 2015, Battaglia et al., 2016, Dai et al., 2016, Defferrard et al., 2016, Kearnes
et al., 2016, Li et al., 2016, Gilmer et al., 2017, Hamilton et al., 2017, Kipf & Welling, 2017, Velickovic et al., 2018, Xu et al., 2018)

hu

In each round:

Aggregate over neighbors

For concurrently:u ∈ V

h(k)
u = AGGREGATE(k)({(h(k−1)

v , h(k−1)
u)} v ∈ 𝒩(u))

Representation of neighbor
node in round v k − 1

…………
Graph-level readout

hG = READOUT({h(K)
u } u ∈ V)

Training GNNs

1. Parameterize and AGGREGATE(k) READOUT

Other aggregation also possible, e.g., attention

2. Specify a loss on node/graph/edge representations

3. Train on data points with SGD

Extrapolation

Extrapolation vs. interpolation

Train NN to learn underlying function with training set

Interpolation

Train Test

Approaches of generalization analysis

more “practical”

more assumptions

+ Network & task structure

(X., Zhang, Li, Du, Kawarabayashi, Jegelka 2020, 2021)

+ Training algorithm
(Du, Hou, Poczos, Salakhutdinov, Wang, X. 2019)

Complexity
(Scarselli et al 2018, Garg et al 2020)

Learning dynamics: Graph NTK

Parameter trajectory
θGNN(t)

(NTK theory: Jacot et al 2018, Li and Liang 2018, Allen-Zhu et al 2019, Arora et al 2019ab, Cao and Gu 2019, Du et al 2019ab…)

Refer to paper for exact formula of Graph NTK

DHPSWX’19  
Over-parameterized GNNs trained by GD is equivalent to
that of kernel regression with Graph NTK:

k(G, G′￼) = 𝔼θGNN∼𝒲[⟨ ∂f(θGNN, G)
∂θGNN

,
∂f(θGNN, G′￼)

∂θGNN ⟩]

Assumptions: very wide, infinitesimally small learning
rate, initialization with certain scaling.

f(θGNN, G)GNN output

Generalization error

Wide GNNs trained by GD = Graph NTK

- training labels
- number of training data

- graph NTK matrix (computable based on training data)

(Bartlett and Mendelson 2002)

Task structure in algorithmic tasks

(Santoro et al. 2018, Zhang et al 2019)

IQ testsIQ tests
(Wu et al. 2017, Battagalia et al 2016, Janner et al 2019)

Physical reasoning

(Saxton et al. 2019, Lample et al 2020)

Mathematical reasoning
(Santoro et al 2016)

VQA

Architecture is crucial for generalization

? e.g., colors of the furthest pair of objects?

Neural Network
MLP
CNN
RNN

…

answer

(Weston et al., 2015; Johnson et al., 2017a; Wu et al. 2017, Fleuret et al., 2011; Antol et al., 2015; Battaglia et al., 2016, 2018; Watters et
al., 2017; Fragkiadaki et al., 2016; Chang et al., 2017, 2019; Saxton et al., 2019; Santoro et al., 2018…)

GNN for algorithmic reasoning tasks

?

h_1

h_n

…

a collection of

object features

perception
processing

Graph Neural
Network

answer

(Weston et al., 2015; Johnson et al., 2017a; Wu et al. 2017, Fleuret et al., 2011; Antol et al., 2015; Battaglia et al., 2016, 2018; Watters et
al., 2017; Fragkiadaki et al., 2016; Chang et al., 2017, 2019; Saxton et al., 2019; Santoro et al., 2018…)

question

How task & NN structure affect sample efficiency

(NTK theory: Jacot et al 2018, Li and Liang 2018, Allen-Zhu et al 2019, Arora et al 2019ab, Cao and Gu 2019, Du et al 2019ab…)

shortest path distance?

Example

S

T

for k = 1 … GNN iter:

hu(k) = Σv MLP(hv(k-1), hu(k-1))

Graph Neural Network

 for u in S:

for k = 1 … |S| - 1:

 d[k][u] = minv d[k-1][v] + cost (v, u)

Bellman-Ford algorithm

 for u in S:

Learns a simple reasoning step

No need to learn for-loops

Other architectures need to learn functions with higher complexity, e.g., for-loops

Algorithmic alignment: formalizing inductive biases

(NTK theory: Jacot et al 2018, Li and Liang 2018, Allen-Zhu et al 2019, Arora et al 2019ab, Cao and Gu 2019, Du et al 2019ab…)

Algorithmic alignment (XLZDKJ’20) 
Network can simulate algorithm via few, easy-to-learn “modules”.

Claim: Better algo alignment implies better generalization.

Better alignment implies better generalization

Algorithmic alignment (XLZDKJ’20) 
A neural network -aligns with an algorithm if it can simulate the
algorithm via weight-shared modules, each of which is PAC-
learnable with samples.

(M, ϵ, δ)
n (ϵ, δ)
M/n

* Sample complexity of modules by e.g., NTK

Theorem (XLZDKJ’20) 
If a neural network and a task algorithm -align, then, under
assumptions*, the task is PAC-learnable by the
network with examples.

(M, ϵ, δ)
(O(ϵ), O(δ))

M

* Lipschitznes and SGD sequential training

* Related work experimenting assumptions:

Veličković et al 2020

GNNs can sample-efficiently learn DP

Answer[k][i] = DP-Update({Answer[k � 1][j], j = 1 . . . n})
<latexit sha1_base64="iFT2cX5/NI5eGmpG/4hBn2I0V10=">AAACO3icbVBNT9tAFFwDLTT9SuHYy4qoUiqVyKZIIFVIQHvgGKoGItlWtF4/J0vWa2v3GYgs/y8u/AluXHrpoRXqtXc2iQ9t6EgrjWbm6e2bKJfCoOveOUvLK0+erq49azx/8fLV6+ab9VOTFZpDj2cy0/2IGZBCQQ8FSujnGlgaSTiLxp+n/tkFaCMy9Q0nOYQpGyqRCM7QSoPm1wDhCstDZS5BV/449EVI9+lc/dLd6uUxQ6jaQUkXklte6J+HH4JP9HzfC2ScoaGKBtX7QbPldtwZ6GPi1aRFanQHzdsgzniRgkIumTG+5+YYlkyj4BKqRlAYyBkfsyH4liqWggnL2e0VfWeVmCaZtk8hnal/T5QsNWaSRjaZMhyZRW8q/s/zC0z2wlKovEBQfL4oKSTFjE6LpLHQwFFOLGFcC/tXykdMM4627oYtwVs8+TE53e54HzvbJzutg6O6jjXylmySNvHILjkgx6RLeoSTa/Kd/CS/nBvnh3Pv/J5Hl5x6ZoP8A+fPA3QgraI=</latexit>

graph algorithms visual question answering Intuitive physics

Reasoning tasks as dynamic programming (DP):

Extrapolation

What function does a GNN implement outside training distribution?

Train Test

Generalize across graph structure, size, node & edge features?

MLP
modules

Linear extrapolation behavior of ReLU MLPs

Theorem (XZLDKJ’21) 
Let be a two-layer ReLU MLP trained by GD*. For any direction , let

. For any , as , with rate
f v ∈ ℝd

x = tv h > 0 t → ∞ f(x + hv) − f(x) → βvh O(1/t)

* Assumption: NTK regime

NN

tv

Implication of linear extrapolation

MAPE extrapolation error: lower the better

* Note: this does not follow from ReLU networks have finitely
many linear egions, which only implies asymptotic behavior

Data geometry for learning linear functions

Theorem (XZLDKJ’21) 
Let be a two-layer ReLU MLP trained by GD*. Suppose target function is

 and support of training distribution covers all directions. As the number of
training examples , .

f
β⊺x

n → ∞ f(x) → β⊺x

* Assumption: NTK regime

Implications for GNNs

Under review as a conference paper at ICLR 2021

In summary, we analyze how MLPs extrapolate and provide two insights: (1) MLPs cannot extrapolate
most non-linear tasks, because they quickly converge to directionally linear functions (Theorem 3);
and (2) MLPs can extrapolate well when the target function is linear, provided the training distribution
is “diverse” (Theorem 5). In the next section, these results will help us understand how more complex
networks extrapolate, specifically, GNNs for non-linear algorithmic tasks.

4 HOW GRAPH NEURAL NETWORKS EXTRAPOLATE

Above, we saw that extrapolation in non-linear tasks is hard for MLPs (Theorem 3). Despite this
limitation, GNNs have been shown to extrapolate well in some non-linear algorithmic tasks, such as
intuitive physics (Battaglia et al., 2016; Sanchez-Gonzalez et al., 2018), graph algorithms (Battaglia
et al., 2018; Velickovic et al., 2020), and symbolic mathematics (Lample & Charton, 2020). To address
this discrepancy, we build on our MLP results and study how GNNs trained by GD extrapolate.

4.1 HYPOTHESIS: LINEAR ALGORITHMIC ALIGNMENT HELPS EXTRAPOLATION

We begin with an example: training GNNs to solve the shortest path problem. For this task, prior
works observe that a modified GNN architecture with min-aggregation can generalize to graphs larger
than those in the training set (Battaglia et al., 2018; Velickovic et al., 2020):

h
(k)
u = min

v2N (u)
MLP(k)

�
h
(k�1)
u ,h

(k�1)
v ,w(v,u)

�
. (2)

We first provide an intuitive explanation (Fig 2a). Shortest path can be solved by the Bellman-Ford
(BF) algorithm (Bellman, 1958) with the following update:

d[k][u] = min
v2N (u)

d[k � 1][v] +w(v, u), (3)

where w(v, u) is the weight of edge (v, u), and d[k][u] is the shortest distance to node u within k

steps. The two equations are similar: GNNs can simulate the BF algorithm if the MLP modules learn
a linear function d[k� 1][v] +w(v, u). Since MLPs can extrapolate well in linear tasks (Theorem 5),
this “alignment” might explain why min-aggregation GNNs can extrapolate well in this task.

For comparison, we can reason why we would not expect GNNs with the more commonly used
sum-aggregation (Eqn. 1) to extrapolate well in this task. With sum-aggregation, the MLP modules
need to learn a non-linear function to simulate the BF algorithm, but Theorem 3 suggests that they
will not extrapolate for most nonlinearities outside the training support.

We can extend the above intuition to other algorithmic tasks. Many target tasks where GNNs
extrapolate well can be solved by dynamic programming (DP) (Bellman, 1966), an algorithmic
paradigm with a recursive structure similar to GNNs’ (Eqn. 1) (Xu et al., 2020).
Definition 6. Dynamic programming (DP) is a recursive procedure with updates

Answer[k][s] = DP-Update({Answer[k � 1][s0]} , s0 = 1...n), (4)

where Answer[k][s] is the solution to a sub-problem indexed by iteration k and state s, and DP-Update
is a task-specific update function that solves the sub-problem based on the previous iteration.

Building on the extrapolation behavior of MLPs, we hypothesize that: given a DP task, if we can
encode appropriate non-linearity in the model architecture and input representations so that the MLP
modules only need to learn a linear step, then GNNs can extrapolate well.
Hypothesis 7. (Linear algorithmic alignment). Let f : X ! R be an algorithm and N a neural
network with m MLP modules. Suppose there exist m linear functions {gi}mi=1 so that by replacing
N ’s MLP modules with gi’s, N simulates f . Given ✏ > 0, there exists {(xi, f(xi))}ni=1 ⇢ D (X
so that N trained on {(xi, f(xi))}ni=1 by GD with squared loss learns f̂ with kf̂ � fk < ✏.

Our hypothesis builds on the algorithmic alignment framework of (Xu et al., 2020), which suggests
that GNNs can interpolate well if MLP modules are “aligned” to easy-to-learn (possibly non-linear)
functions. Successful extrapolation is harder: MLP modules need to align with linear functions.

To satisfy the linear algorithmic alignment assumption, we can encode appropriate non-linear oper-
ations in either the architecture or input representation (Fig. 2). The shortest path example shows

6

Shortest Path:

GNN (sum):

GNN that encodes the nonlinearity min

Data distribution and architecture

Max Degree Shortest Path

Theorem (XZLDKJ’21) 
A GNN encoding max in aggregation trained by GD* learns max degree if
training data spans .

<latexit sha1_base64="gYbAC6dVKQtE/GtTimJ9aEfu1eU=">AAACX3icbVFbS8MwFE7rbc7b1CfxJTgEBRmtKPoiDHzQJ1FwKqyzpNnpFkzTkpyKo/RP+ib44j8xu4E6DwQ+vgsn+RJlUhj0vA/HnZtfWFyqLFdXVtfWN2qbWw8mzTWHFk9lqp8iZkAKBS0UKOEp08CSSMJj9HI51B9fQRuRqnscZNBJWE+JWHCGlgprr4GEGIMi6EIvLIKEvZUHV6E4PKJTRqgpc/M8NoSFKGf9I9Waf6rTLA206PUxGIoXfvlsF9e9hjcaOgv8CaiTydyGtfegm/I8AYVcMmPavpdhp2AaBZdQVoPcQMb4C+tB20LFEjCdYtRPSfct06Vxqu1RSEfsz0TBEmMGSWSdCcO++asNyf+0do7xeacQKssRFB8vinNJMaXDsmlXaOAoBxYwroW9K+V9phlH+yVVW4L/98mz4OG44Z82vLuTevN8UkeF7JI9ckB8ckaa5Jrckhbh5NNxnRVn1flyl9x1tza2us4ks01+jbvzDTUEthE=</latexit>�
degmax(Gi), degmin(Gi), N

max
i degmax(Gi), N

min
i degmin(Gi)

 n

i=1 ℝ4

* Assumption: NTK regime

Data diversity: feature direction (MLP), graph structure (GNN)

Linear algorithmic alignment

Linear algorithmic alignment (XZLDKJ’21) 
Network can simulate underlying function via easy-to-learn linear “modules”

Hypothesis: Linear algo alignment helps extrapolation

Application: Encode nonlinearity in architecture or input representation.

Encoding nonlinearities in architecture

Encode exp log for learning multiplication
(Trask et al. 2018, Madsen & Johansen 2020)

Encode a library of programs (~2K)
(Johnson et al 2017, Yi et al. 2018, Mao et al 2019…)

Activation, pooling, symbolic operations etc…

Symbolic output (Cranmer et al 2020)

Encoding nonlinearities in input representation

Specialized features, feature transformation

Representation learning with out-of-distribution data (e.g., BERT)

Summary

Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels. S. S.
Du, K. Hou, B. Poczos, R. Salakhutdinov, R. Wang, K. Xu. NeurIPS 2019.

What Can Neural Networks Reason About? K. Xu, J. Li, M. Zhang, S. S. Du, K.
Kawarabayashi, S. Jegelka. ICLR 2020.

How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks. K. Xu,
M. Zhang, J. Li, S. S. Du, K. Kawarabayashi, S. Jegelka. ICLR 2021.

1. Analysis of training algorithm, network & task structure, data distribution

2. Better alignment implies better generalization

3. Non-linearities matter for extrapolation

