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Abstract. We consider the problem of sampling a uniformly random
spanning tree of a graph. This is a classic algorithmic problem for which
several exact and approximate algorithms are known. Random spanning
trees have several connections to Laplacian matrices; this leads to al-
gorithms based on fast matrix multiplication. The best algorithm for
dense graphs can produce a uniformly random spanning tree of an n-
vertex graph in time O(n*3%). This algorithm is intricate and requires
explicitly computing the LU-decomposition of the Laplacian.

We present a new algorithm that also runs in time O(n?*?®®) but has
several conceptual advantages. First, whereas previous algorithms need
to introduce directed graphs, our algorithm works only with undirected
graphs. Second, our algorithm uses fast matrix inversion as a black-box,
thereby avoiding the intricate details of the LU-decomposition.
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1 Introduction

Enumerating and sampling spanning trees of a graph is a classic problem in
combinatorics dating back to Kirchhoff’s celebrated matrix-tree theorem [16]
from 1847. From this result, one can fairly easily derive a polynomial-time algo-
rithm to generate a uniformly random spanning tree. Over the past few decades,
researchers have developed several startling algorithms for this problem with
improved running times.

The existing algorithms fall into three broad classes.

Laplacian-based algorithms Properties of the graph’s Laplacian matrix al-
low one to compute the number of spanning trees in the graph. Similarly, one
can compute the probability that a given edge is in a uniformly random span-
ning tree. A sequence of papers [12,18, 8,9] developed improved algorithms
following this approach. This culminated in the algorithm of Colbourn, Myr-
vold and Neufeld which has running time O(n*), where w < 2.373 is the
best-known exponent for matrix multiplication. These algorithms are most
efficient on dense graphs.
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Random walks Aldous [1], Broder [3] and Wilson [21] showed that remarkably
simple algorithms using random walks can be used to generate a uniformly
random spanning tree. These algorithms are particularly efficient on graphs
whose cover time or mean hitting time is small.

Approximate algorithms Recent advances in algorithmic spectral graph the-
ory have led to nearly-linear time algorithms for approximately solving lin-
ear systems involving Laplacian matrices [17]. These methods can be used
to accelerate the random walk algorithms by identifying regions of the graph
where the random walk will be slow [15,20]. These algorithms are most ef-
ficient on sparse graphs.

Applications. The interest in enumerating and sampling spanning trees is not
only due to its origins as a foundational problem in combinatorics. Random
spanning trees have also turned out to be useful in many other contexts in
combinatorics and computer science. For example, Colbourn et al. [7] showed
how the coefficients of the reliability polynomial can be estimated using random
spanning trees. Goyal, Rademacher and Vempala [11] have used random span-
ning trees to generate expander graphs. Recent breakthroughs on the traveling
salesman problem [2, 10] involve so-called “A-random spanning trees”, which are
essentially uniformly random spanning trees in multigraphs. Other distributions
on spanning trees have been used to show results in spectral graph theory [14].
More generally, random distributions on matroid bases have had interesting ap-
plications in submodular optimization [6].

1.1 Related Work

Consider the following algorithm for sampling any subgraph [18, Algorithm A].
Consider the edges in order; for each edge, decide if it is in the subgraph or not
with probability conditioned on the previous decisions. It is a trivial consequence
of the chain rule for conditional probabilities that this generates a random sub-
graph according to the desired distribution.

This algorithm can be used to generate uniformly random spanning trees if
one can determine the probability of an edge being in the tree, conditioned on
all previous decisions. It turns out that conditioning on an edge not being in the
tree is the same as deleting the edge, whereas conditioning on an edge being in
the tree is the same as contracting the edge. Thus, we may use the matrix-tree
theorem to determine the sampling probability for each edge, by considering
the graph with all the necessary deletions and contractions. Guenoche [12] and
Kulkarni [18] discussed this method and showed that it can be implemented in
time O(n®m). A more detailed discussion of this method is given in Section 3.

Colbourn, Day and Nel [8] showed that the runtime of this method can be
improved to O(n?). Their algorithm is recursive and applies partial Gaussian
elimination. Colbourn, Myrvold and Neufeld [9] presented a different algorithm
that also has runtime O(n3). Their first observation is that the desired sam-
pling probabilities can be determined in constant time from the inverse of the
(modified) Laplacian matrix (which they call the Kirchhoff matrix). Then, they
observe that, after contracting an edge, the new inverse of the Laplacian matrix
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can be computed in O(n?) time by the Sherman-Morrison formula. Since the
algorithm performs n — 1 contractions, the total runtime is O(n?).

The best running time for dense graphs is obtained by another algorithm of
Colbourn, Myrvold and Neufeld (CMN) [9]. They show that fast matrix mul-
tiplication can be used to give an algorithm with runtime O(n*). This algo-
rithm abandons the Sherman-Morrison formula and instead computes the LU-
decomposition of the Laplacian matrix via a “six-way divide-and-conquer algo-
rithm”. The rather intricate details of this approach are strongly reminiscent of
the Bunch-Hoperoft algorithm [4] for fast matrix inversion.

1.2 Owur Techniques

In this paper, we present a new algorithm for sampling a uniformly random
spanning tree in O(n®) time. Our approach is different from, and arguably sim-
pler than, the CMN algorithm. We recursively enumerate all edges in the graph,
and lazily update the inverse of the Laplacian matrix as edges are chosen to be
added to the tree or not. The updates are determined by an extension of the
Sherman-Morrison formula and can be performed using fast matrix inversion as
a black box. This avoids many of the intricacies of the approach based on LU-
decomposition. Our idea for this approach originates from a similar algorithm
for non-bipartite matching that also uses fast matrix inversion [13].

Nevertheless, there are numerous challenges that must be addressed in the
present work. One challenge is that the Laplacian matrix is not invertible. Previ-
ous algorithms dealt with that by deleting the row and column associated with
an arbitrary vertex and inverting the resulting matrix instead. We avoid this
issue by working with the Moore-Penrose pseudoinverse of the Laplacian, which
always exists. We must then derive a new extension of the Sherman-Morrison
formula for updating the pseudoinverse. Such formulas are known, but quite
complicated in general — a standard reference [5, §3.1] describes an algorithm
that involves six different cases! Our formulas are much simpler.

Another challenge relates to the contraction of edges. Normally contracting
an edge involves decreasing the number of vertices by one. Performing the corre-
sponding operation to the Laplacian and its pseudoinverse is quite cumbersome.
The CMN algorithm avoids this issue by working with directed graphs and sam-
pling arboresences. In a directed graph, the analog of this contraction operation
is to delete all-but-one incoming arc to a vertex; this does not affect the number
of vertices. We adopt a different approach that avoids unnecessarily resorting to
directed graphs. We effectively contract an edge by increasing its weight to be
a large value k. In the limit £ — oo, this is equivalent to contracting the edge,
from the point of view of electrical networks and spanning trees.

2 Preliminaries

The graph G is assumed to be undirected, simple, connected and unweighted.
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2.1 Notations

In this section, we explain the notations that we use in the algorithms and
theorems.

Definition 1. Given an unweighted graph G = (Vg, Eg) with |Vg| = n, its
Laplacian matric Lg = (l; j)nxn is defined as L = D — A, where D s the
degree matriz and A is the adjacency matriz, i.e.

deg(vi)  (ifi=1j)
l@j = -1 (ZfZ %] and ViV € EG) .
0 otherwise

Given any set E C Eq, we may define its Laplacian Lg to be the Laplacian of
the subgraph (Vg, E).

We also define the Laplacian of a graph with finite weights. Suppose that
w: B — R>q assigns weights to the edges of G. Then the weighted Laplacian is
Ly = (Li,j)nxn where

Ze incident on % We (Zfl = -7)
lij = §—We (ife=1{i,j} € E)
0 (otherwise)

Definition 2. Let A be a matriz. A submatriz containing rows S and columns
T is denoted As . A submatriz containing all rows (resp., columns) is denoted

Asr (resp., As ).

Remark 1. Throughout this paper we will use the notation of Definition 2 for
matrices such as Lg whose notation already involves a subscript. Mathemati-
cal correctness would suggest using the notation (Lg)s but for typographical
clarity we will instead use the notation Lgg ;.

Definition 3. Let A € M,,,xn, a pseudoinverse of A is defined as AT € M, xm
satisfying all of the following criteria: AATA = A, AYAAT = At (AAN)T =
AAT, (ATA)T = AT A.

Definition 4. Define w € R as the infimum over all ¢ € R such that multiplying
two n X n matrices takes O (n°) time. Matriz inverse of an n X n matriz can
also be computed in O(n“) time.

2.2 Facts

We will use the following basic facts. Proofs of these facts can be found in books
on linear algebra and spectral graph theory.

Fact 1 (Sherman-Morrison-Woodbury formula). Let M € M, x,,U €
M,y xk, V € My k. Suppose M is non-singular. Then M + UV is non-singular
if and only if I + VT MU is non-singular. If M + UV is non-singular, then

(M+UVT)_1 — M—l —M_lU(I+VTM_1U)_1VTM_1
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Fact 2. For any L € M, «,, with kernel span(1), we have LL*T = I — % We

call I — % the projection matrix P.
Fact 3 (Facts about Submatrices).

1. For any A, B € M,,,xy, and index set S, (A+ B)ss = As.s + Bs.s.

2. For any matrices C,D,E, F and index set S, if C = DEF, then Cgs =
DsEF, 3.

8. For any A € M, xn, B € M,,«; and index set S, if A or B is only non-zero
in S, S, then (AB)g,s = Ag,s X Bss.

4. For any matrices C = DEF and index set S. If D, g =0 and Fge , =0,
then C = D*7SES,SFS,*.

5. Suppose D = [M 0] and E = [ B] where M, A are n-by-n and MA — I is
non-singular. Then we have

L [MA-D)T (MA-1)T'MB

(DE - I) 0 o

Fact 4. Let A, B € M, «, with B symmetric positive semi-definite. Suppose
x is an eigenvector of AB corresponding to eigenvalue . Then BY?x is an
eigenvector of BY2ABY? corresponding to eigenvalue \.

Fact 5. Let G be a graph with n vertices. Let \y < --- < A\, be the eigenvalues
of Lg with the corresponding eigenvectors vy,--- ,v,. Then Lg is symmetric
positive semi-definite. \y = 0 and vy = 1. Moreover, Ao > 0 if and only if G is
connected, i.e. G is disconnected if and only if 3z with 271 =0 and 2T Lgz = 0.
Everything above holds for Lg as well.

3 The Chain-Rule Algorithm

Given a simple undirected connected graph G = (Vg, Fq), let T be the set of
all spanning trees of G. We want to sample a uniformly random spanning tree
T C Eq such that for any T e T, P(T = T) = 1/|T].

As described in Section 1.1, there is a simple algorithm for generating uni-
formly random spanning trees based on the chain-rule for conditional probabil-
ities [12] [18, Algorithm A8] [19, §4.2]. The algorithm traverses the graph and
samples an edge with the conditional probability of it belonging to the tree.
Fact 6 below shows that this conditional probability is determined by effective
resistances in the graph where edges are contracted or deleted in accordance
with the algorithm’s previous decisions. This algorithm is shown in Algorithm 1.

Fact 6. Given an graph G = (Vg, Eg) with Laplacian Lg, the effective resis-
tance of an edge e = {u,v} € Eq is defined as

R = (&, — X)TLE(X, — X)),

where X, is a unit vector of size |Vg| with X,(u) =1 and 0 otherwise. Let T be
a random variable denoting a uniformly random spanning tree, i.e. IP(T =T)=
1/|T| for any T € T, where T is the set of all spanning trees of G. Then for
any e € Eg, we have Ple € T) = R,
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Algorithm 1 Sampling a uniformly random spanning tree using the chain-rule.

1: function SAMPLESPANNINGTREE(G = (V, E))
2: for e = {u,v} € E do
R« (X, — X)TLE(X, — &)
Flip a biased coin that turns head with probability RST
if head then
Add e to the spanning tree
Contract e from G and update Lg
else
Delete e from G and update Lg

The algorithm involves three key properties that guarantee correctness.

— P1: It visits every edge of E¢ exactly once.

— P2: It examines Lg to compute the correct conditional probability of sam-
pling an edge.

— P3: It updates LE to incorporate the contraction or deletion of that edge.

The naive method to update Lg is to recompute it from scratch, which would
require O(n?) time. There are at most n? edges, so overall the algorithm runs in
O(n®) time.

4 A Recursive Algorithm with Lazy Updates

In this section, we present Algorithm 2, which, based on Algorithm 1, provides
a faster way to update the Laplacian pseudoinverse and reduces the runtime
to O(n*). The only difference between Algorithm 2 and Algorithm 1 is that
Algorithm 2 visits the edges in a specific order to exploit lazy updates to Lg.

4.1 Update Formulas

In this subsection, we present our update formulas for Lg. We first observe that
the effective resistance of any edge only depends on four entries of LE. To see
that, for any edge {u, v}, it follows from Fact 3.4 that

o 1
= (0 T - 0 = [ )

Therefore, when we are deciding whether to sample an edge, all we need to
ensure is that the value of the corresponding entries in the Laplacian pseudoin-
verse is correct, which makes lazy updates desirable. Suppose we have made
sampling decisions for some edges of a graph G but have not changed Lg to re-
flect these decisions. Let F' be the set of edges sampled and D be the set of edges
discarded. We want to (partially) update Lg to the Laplacian pseudoinverse of
the graph obtained by contracting edges in F' and deleting edges in D from G.

Because the order of updates does not matter, we make the deletion updates
all together before making the contraction updates. Theorem 1 and Corollary 1
give update formulas for deletion. Lemma 1 states that these formulas are well-
defined.
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Lemma 1. Let G = (Vg, Eg) be a connected graph and D C Eg. I — LDLg 18
non-singular iff G\ D contains at least one spanning tree.

Proof. I — LDLg is singular iff 1 € eig(LDLJCS) because [ only has eigenvalue 1.
eig(LDLJé) = eig((Lg—Lg\D)Lg). By Fact 5, 1 lies in the kernel of LJCS. Suppose
1 € eig(LpLf). Let # L 1 be an eigenvector of (Lg — Ly p)L¢: corresponding
to eigenvalue 1. Let y = (LE)Y 2z /|| (L)Y ?2||. By Fact 4, y is an eigenvector of
(LE)Y*(La — Layp)(LE)Y? corresponding to eigenvalue 1. We have

v (LE)V(La — Lawp)(LE) Py =1
Also, it is clear that
YT (L) P La(LE) Py =y " L Loy = y" Py =y (I =171 /n)y = yTy =1

It follows that y” (LE)Y2Le\p(LE)Y 2y = 0. Also, yT(LE)Y?1 = 2TLEL = 0.
By Fact 5, G\ D is disconnected. Hence LpLZ; is non-singular if G'\ D contains
at least one spanning tree.

Conversely, suppose G \ D is disconnected. Then by Fact 5 and Fact 4,
there exists y L 1 of length 1 such that y”(LE)Y2Le\p(LE)Y?y = 0. Also,
Yy (LE)PLa(LE) Yy = y"y = 1. Hence y" (LE)?(La — La\p)(LE) Py = 1.
It follows that 1 € eig(LpLg) and I — Lp LY, is singular.

(Lg—Lp)T is the Laplacian pseudoinverse of the graph obtained by deleting
edges in D from G. The runtime of each update in Theorem 1 is O(|Vg|¥).

Theorem 1. Let G = (Vig, Eg) be a connected graph and D C Eq. If G\ D
contains at least one spanning tree, then

(La — Lp)* = L — LE (LpLs — 1) LpL
Proof. By Lemma 1, (LpL{ — I)~! is well-defined. Since G and G \ D are
connected, by Fact 5 and Fact 2, (Lg — Lp)(Lg — Lp)™ = P. We have
(L — Lp)(L§ — LE(LpLg — 1) 7' LpLE)
=LoL{ — LpL, — (LeLy — LpLE)(LpLy — 1) *LpLY)
=P —LpLL+ ((LpLE —I+1-1"/n)(LpLf, —TI)"'LpLf)
=P —LpLL+LpLE+1-1"/n(LpLs — 1) 'LpLE
We claim 17(Lp L5 — I)~! = —17. To see that,
—1"(LpLL —1) =171 - LpL})
=1"(I — LeL{, + La\pLE)
=171 -1"/n+ Le\pLE)
=1"+1"(Lg\pLE) =17

It follows from the claim that 1-17 /n(Lp L& —1)"'LpLE = 0 because 17 Lp =
0. Hence (Lg — LD)(Lg — Lg(LDLg — I)_lLDLJé) = P,
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The formula in Theorem 1 updates the entire LE, which is unnecessary be-
cause we will not be using most entries of LE immediately. Corollary 1 gives a
formula that updates a submatrix of L(Jg, using only the values of that submatrix.
The updated submatrix has the same value as the submatrix of the Laplacian
pseudoinverse of the graph obtained by deleting edges in D from G. The runtime
of each update is improved to O(]S|*).

Corollary 1. Let G = (Vg, Eg) be a connected graph and D C G. Let S C V.
Define E[S] as the set of edges whose vertices are in S. Suppose D C E|[S] and
G\ D contains at least one spanning tree, then

(LG - LD);,S = LES,S - LgSYS(LDS,SLE&S - I)_lLDS,SLgS’S'

Proof. Lp is only non-zero on the rows and columns indexed by S, since D C
E[S]. Fact 3.5 implies that

(LDS,SLJCC‘S,S _1)71 (LDS,SLJCC‘S,S _I)ilLDs,sLGs,sc

(LoLg-D7" = : > (1)

and in particular that
(LDLE - I);}S = (LDS,SLgs)S - I)_l' (2)
Combining Theorem 1, Fact 3.1 and 3.3 gives

(Le —Lp)ts = L, — LgsyS(LDLg - I)gigLDSYngS’S.
The result now follows from (2).

We present similar update formulas for contraction. As mentioned in Sec-
tion 1.2, algorithms for generating random spanning trees must contract edges
but somehow avoid the cumbersome updates to the Laplacian that result from
decreasing the number of vertices. Our approach is to increase the edge’s weight
to a large value k. By Fact 7 below, this is equivalent to contracting the edge in
the limit as & — oo. One must be careful to specify formally what this means,
because we have only defined the Laplacian of a weighted graph when the weights
are finite. However, this does not matter. The main object of interest to us is
Lg, and this does have a finite limit as k — oo.

To emphasize the graph under consideration, we use the following notation:
RS®[H) denotes the effective resistance of edge e in the graph H.

Fact 7. Let G be a weighted graph. Let e, f be distinct edges in G. Let G/e
be the graph obtained by contracting edge e. Let G + ke be the weighted graph
obtained by increasing e’s weight by k. Then

RP[G/e] = Jim. RP[G + ke].

Let us make explicit the dependence on k in the graphs and matrices used by
the algorithm. For any finite &, define G(k) := G \ D + kF, the graph obtained



Generating Random Spanning Trees via Fast Matrix Multiplication 9

by deleting the edges D then increasing the weight of edges in F' by k. For any
edge e = {u,v}, we have

RUIG\ D/F] = Jim RE[G(k)]  (by Fact 7)

= lim (X, — XU)TLg(k)(Xu —X&,)  (by Fact 6)

k—o0

= (X, — )T lim L},
k—

oo G(k)(X“ - X’u)

Thus, if the Laplacian pseudoinverse is updated to limg_. s Lg(k), then the al-
gorithm will sample edges with the correct probability. The next few theorems
give the update formulas. Let us first give a definition of incidence matrices.

Definition 5. Let G = (Vg, Eg) be a graph with n vertices. Given an edge
e = {u,v} € Eg, we define the incidence vector of e as ve = (X, — Xy). Given
a set of edges E = {e1,ea, - ,em} C Eg, we define the incidence matriz of E
as Vi = [Vey |Vey| - -+ |Ve,,] -

By the definition of the weighted Laplacian, Lgixr = Lo + kVFVZ. The next
two lemmas state that our contraction update formulas are well-defined.

Lemma 2. Let G = (Vg, Eg) be a connected graph. Given F C E¢ with |F| =
r, let V be the incidence matriz of F'. VTLEV is non-singular iff F' is a forest.

Proof. Suppose I is a forest. For any x € R", z # 0, let y = V. Since F is a
forest, V has full column rank. Therefore y # 0. Clearly y71 = 27(V71) = 0.
By Fact 5, L, is PSD and ker(L) = 1. Thus y L ker(L(). We have

xTVTLng = yTLgy >0
Hence VT LEV is positive definite and thus non-singular. The converse is trivial.

Lemma 3. Let G be a connected graph. Given F C Eg, let V be the incidence
matriz of F. If F' is a forest, then I/k+ VTLEV is non-singular for any k > 0.

Proof. By Lemma 2, VT LLV is positive definite. Since k > 0, I /k is also positive
definite. The lemma follows from the sum of two positive definite matrices is
positive definite.

Theorem 2 and Corollary 2 give contraction update formulas for a finite k.
Corollary 2 improves on Theorem 2 by only updating a submatrix. The runtime
of each update in Corollary 2 is O(|S|*).

Theorem 2. Let G = (Vig, Eg) be a connected graph. Given a forest F' C Eg,
let V' be the incidence matriz of F'. For any k > 0,

(Lg+k-Lp)t =LL - LEV(I/k+VILLV) ' VTILE
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Proof. Let My, = Lg +k-Lr = Lg+k-VVT and N, = LJ(E — LgV(I/k +
VILEV)=WTLE. By Lemma 3, Ny, is well-defined. By Fact 5, ker(Lg) =
span(1). By Fact 2, LgL{, = P =1—1-17/|Vg|. We have
MgNy = (Lg + kVVI)LE = LEV Ik + VILEV)TWWVTLE)
=P+ kVVTLE — (LaLEV + kVVILEV)(I/k+ VILEV) WL
=P+ kVVILE —kV(I/k+VILEV)I/k+VILEV)'VILE  (3)
=P+kVVTLE —kVVTLE =P

where (3) follows from the sum of any column of an incidence matrix is 0. Since
G + kF is connected, we have M;" = Nj.

Corollary 2. Let G = (Vg, Eg) be a connected graph. Given a forest F C Eg,
let V' be the incidence matriz of F. Suppose F C E[S], where S C V. Then for
any k > 0,

(La+k-Lp)ég=L&, o — L, VsI/k+ V4, L

—1y,/T 7+
GS,SVSV‘) VS,*LGSVS

Proof. V is only non-zero in rows in S. By Fact 3.4 Vg;*LgS Vs = VTLEV.
The corollary then follows from Fact 3.1, 3.2 and 3.3. 1

Remark 2. Because the set of sampled edges, i.e. contracted edges F is a forest,
V has at most |S| columns.

The following theorem extends the result in Theorem 2 to k = oo and gives
a contraction update formula that we use in Algorithm 2.

Theorem 3. Let G be a graph with finite weights. Let G(k) = G + kF for a
forest F1 C Eq. Let Fy C Eg be disjoint from Fy such that Fy U Fy is a forest.

Let V' be the incidence matrix of Fs. For k > 0, define N = limy_, o, Lg(k). Then
. T —1y,T
klg{.loLg(ka& = N-NV(V'NV)""V*N.
Furthermore ker(limy_, o L(-g(k)+kF2) = span(Vp,ur, U1).
Proof. We first show that limy_, . Lg-kkF = Lg — LEV(VTLEV)’lVTLE,

where V' is the incidence matrix of F. By Lemma 2, VTLgV is invertible so
the RHS of the formula above is well-defined. Let Ny = (Lg + k- Lp)* =
LE — LEV(I/k+ VILEV)WWTLE and N = LE — LEV(VILEV)T'WWTLE.
We show as k — oo, N converges to N with respect to any matrix norm. Let
A=VTLLV. We have

[Nk = NI = ILEV ((I/k + A~ = ATHVTLE|
LGP VA IV /R + )~ = A7 (4)
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By the Sherman-Morrison-Woodbury formula (Fact 1),

I(I/k+A) = A =A™ = AT I+ AT k)T AT R = AT
= AT I+ AT )T AT K|
<ATHP I+ AT ER) T R
= AP /% (5)
-0 (6)

where (5) follows from the fact that I + A~!/k — I uniformly as k — oo, and
the facts that matrix norm and matrix inverse are continuous functions for non-
singular matrices. Hence, combining (4) and (6), ||Nx — N|| — 0 as k — .
The theorem then follows from the fact that the order of applying the update
formulas does not matter and that applying the formula for F; and F5 is the
same as for I} U F5.

A similar argument as Corollary 1 can show that the submatrix version of
Theorem 3 holds as well. The only remaining detail is to establish that V' NV
is non-singular. This follows by the same argument as Lemma 2 because the
columns of Vp, are not spanned by the columns of Vg, since F U F5 is a forest.

4.2 The Recursive Algorithm

We say an edge {u, v} is in a submatrix if entries (u,v) and (v, u) are inside the
submatrix. Corollary 1 and Corollary 2 say that if we have only made sampling
decisions for edges in a submatrix, then we can update the submatrix of the
Laplacian pseudoinverse with a small cost, using only the values of that sub-
matrix. Algorithm 2 samples the edges in a matrix by diving the matrix into
submatrices and recursively samples the edges in each submatrix. Whenever the
algorithm returns from a recursive call to a submatrix, it updates the current
matrix with the formulas given by Corollary 1 and Theorem 3 to ensure that the
next submatrix it enters has been updated, which is enough for the algorithm
to correctly sample the edges in that submatrix. Let us formally define the way
we recurse on the edges.

Definition 6. Let G = (Vg, Eg) be an graph and S, R be disjoint sets of V.
We define the following subsets of edges.
E[S] = {{u,v} € Eg:u,ve S}
E[R,S) = {{u,v} € Eg:ue R,ve S}

Remark 3. Suppose that R = Ry U Ry and S = 57 U S5. Then
E[S] = E[S1]UE[S2]U E[Sy, S2]
E[R,S] = FE[R1,51]UE[R1,S2]UE[Ry,S1] U E[R2, S,

The formulas in Remark 3 give a recursive way to traverse the graph, vis-
iting each edge exactly once. This is the approach adopted by Algorithm 2.
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The algorithm samples the edges in E[S] with SAMPLEEDGESWITHIN(S), where
we partition the current vertex set S into S = Sy U Sy and then recurse to
visit edges in E[S], E[S2] and E[S1,Ss], calling SAMPLEEDGESWITHIN(.S])
and SAMPLEEDGESWITHIN(S2) respectively on E[S;], E[Sz] and calling SAM-
PLEEDGESCROSSING(S1,.52) on E[S],S2]. In SAMPLEEDGESCROSSING (ST, S2)
We do a similar splitting and recursion. So, Algorithm 2 satisfies the property
P1 mentioned in Section 3.

Because Algorithm 2 does lazy updates, in order not to confuse with the
true Lg, we denote the matrix that Algorithm 2 maintains by N. The way N is
updated ensures that the following invariants are satisfied.

Invariant 1: SAMPLEEDGESWITHIN(.S) initially has Ng g = Lgs < The algo-
rithm restores this property after each recursive call to the functions SAM-
PLEEDGESWITHIN(SS;) and SAMPLEEDGESCROSSING(S;,.5;).

Invariant 2: SAMPLEEDGESCROSSING(R, S) initially has Nryus rus = LERUS,RUS.
The algorithm restores this property after each recursive call to the function
SAMPLEEDGESCROSSING(R;, S;).

Since the two invariants guarantee that for any edge {r,s}, Ny, ) ¢rs} 18
equal to LE{M}Y{M} when we are deciding whether to keep the edge, the values
of the effective resistances are correct for all edges. So, Algorithm 2 satisfies the
properties P2 and P3.

4.3 Analysis of Runtime

Let f(n) and g(n) respectively denote the runtime of SAMPLEEDGESWITHIN(S)
and SAMPLEEDGESCROSSING(R, S), where n = |R| = |S|. Updating N requires
O(]S|“) time. Therefore, we have

f(n) =2f(n/2) + g(n) + O(n")
g9(n) =4g(n/2) + O(n*)

By standard theorems on recurrence relations, the solutions of these recurrences
are g(n) = O(n*) and f(n) = O(n*). Thus, the runtime of Algorithm 2 is O(n®).

5 Conclusions

In this paper, we have shown a new algorithm for sampling random spanning
trees, which is arguably simpler and cleaner than the algorithm of Colbourn,
Myrvold and Neufeld (CMN)[9]. Our algorithm uses a similar framework as the
algorithm for non-bipartite matching of Harvey [13]. Some open questions are
whether the same type of framework can be applied to other graph-theoretic
problems, and whether it is possible to bring this line of work and the recent
results on the sparse graph case of random spanning trees generation closer
together.
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Algorithm 2 A Recursive Algorithm

1: function SAMPLESPANNINGTREE(G = (Vg, Eg))

2: N Lé

3: SAMPLEEDGESWITHIN(V)

4: return the uniform spanning tree T’

5: function SAMPLEEDGESWITHIN(S)

6: if |S| =1 then return

T Divide S in half: S =51 US>

8: for i € {1,2} do

9: SAMPLEEDGESWITHIN(.S;)

10: Restore N, s, to its value before entering the recursion
11: F + the set of edges contracted in SAMPLEEDGESWITHIN(.S;)
12: D + the set of edges deleted in SAMPLEEDGESWITHIN(S;)
13: UPDATE(S, F, D)

14: SAMPLEEDGESCROSSING(S1, S2)

15: function SAMPLEEDGESCROSSING(R, S)
16: if |[R| =1 then

17: Let r € Rand s € S, R°*T « (X, — X,)TN(X, — &)

18: Flip a biased coin that turns head with probability R°%

19: if head then

20: Add e, s to the uniform spanning tree 7' and the set of contracted edges
21: else

22: Add e, s to the set of deleted edges

23: else

24: Divide R and S each in half: R = Ry U Rz and S = 51 U Ss

25: for i € {1,2} and j € {1,2} do

26: SAMPLEEDGESCROSSING(R;, Sj)

27: Restore NRiusj,Rius_,» to its value before entering the recursion

28: F + the set of edges contracted in SAMPLEEDGESCROSSING(R;, S;)
29: D < the set of edges deleted in SAMPLEEDGESCROSSING(R;, S;)
30: UPDATE(RU S, F, D)

31: procedure UPDATE(S, F, D)

32: Let V be the incidence matrix for F

33: Let Lp be the Laplacian matrix for D

34: Ns,s < Ns,s — Ns,sVs«(Vd . Ns,sVs,«) 'Vd . Ns,s
35: Ns,s < Ns,s — Ns,s(Lpg sNs,s — 1) 'Lpg s Ns,s
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