
Modeling Intelligence via Graph Neural Networks

Keyulu Xu
MIT

Representation: objects in the world as graphs

ℝn prediction

Reasoning: learning to implement an algorithm

(Santoro et al. 2018, Zhang et al 2019)

IQ testsIQ tests
(Wu et al. 2017, Battagalia et al 2016, Janner et al 2019)

Physical reasoning

(Saxton et al. 2019, Lample et al 2020)

Mathematical reasoning
(Santoro et al 2016)

VQA

Graph Neural Networks (GNNs)

(Gori et al. 2005, Merkwirth & Lengauer 2005, Scarselli et al 2009, Duvenaud et al., 2015, Battaglia et al., 2016, Dai et al., 2016, Defferrard et al., 2016, Kearnes
et al., 2016, Li et al., 2016, Gilmer et al., 2017, Hamilton et al., 2017, Kipf & Welling, 2017, Velickovic et al., 2018, Xu et al., 2018)

hu

In each round:

Aggregate over neighbors

For concurrently:u ∈ V

h(k)
u = AGGREGATE(k)({(h(k−1)

v , h(k−1)
u)} v ∈ 𝒩(u))

Representation of neighbor
node in round v k − 1

…………
Graph-level readout

hG = READOUT({h(K)
u } u ∈ V)

I. Representation:
Expressive Power

ICML’18 (long talk)

ICLR’19 (oral)

II. Reasoning:
Generalization

NeurIPS’19

ICLR’20 (spotlight)

III. Reasoning:
Extrapolation

ICLR’21 (oral)

IV. Optimization

ICML’21

ICML’21

I. Representation: Expressive power

How Powerful are Graph Neural Networks?

K. Xu, W. Hu, J. Leskovec, S. Jegelka
ICLR’19 (oral)

Representation Lerning on Graphs with Jumping
Knowledge Networks

K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, S. Jegelka
ICML’18 (long talk)

Expressive power as graph isomorphism test

Which graphs can a GNN distinguish?

How powerful are GNNs?

Theorem (XHLJ’19)
GNNs are at most as powerful as a Weisfeiler-Lehman graph
isomorphism test*.

This upper bound is achieved if AGGREGATE and READOUT
are injective multiset functions.

*(Weisfeiler & Lehman 1968, Babai, Erdös, Selkow 1980, Babai & Kucera 1979,
Cai, Furer, Immerman 1992, Evdokimov & Ponomarenko 1999, Douglas 2011)

neighborhood - multiset

failure cases: certain regular graphs

A maximally powerful GNN

Lemma (XHLJ’19) 
Any (injective) multi-set function g can be decomposed as

(generalizing Zaheer et al 2017, Ravanbakhsh et al 2016, Qi et al 2017,…)

‣Graph Isomorphism Network (GIN):

Puzzle of the underperformance of deeper GNNs

XLTSKJ’18
Optimal depth depends on the subgraph structure (expander vs. tree).

JK-Net: adaptively select the depth via skip connections.

What Can Neural Networks Reason About?
K. Xu, J. Li, M. Zhang, S. Du, K. Kawarabayashi, S. Jegelka

ICLR’20 (spotlight)

Graph Neural Tangent Kernel
S. Du, K. Hou, B. Poczos, R. Salakhutdinov, R. Wang, K. Xu

NeurIPS’19

II. Reasoning: Generalization

Reasoning with object representations

?

h_1

h_n

…

a collection of
object features

perception
processing

Graph Neural
Network

answer

(Weston et al., 2015; Johnson et al., 2017a; Wu et al. 2017, Fleuret et al., 2011; Antol et al., 2015; Battaglia et al., 2016, 2018; Watters et
al., 2017; Fragkiadaki et al., 2016; Chang et al., 2017, 2019; Saxton et al., 2019; Santoro et al., 2018…)

question

Equal expressive power, different generalization

concat

feedforward network Deep Set GNN e.g., neural programs

…..

concatenate

Input: a set of objects

Approaches of generalization analysis

more “practical”

more assumptions

+ Network & task structure

(X., Zhang, Li, Du, Kawarabayashi, Jegelka 2020, 2021)

+ Training algorithm
(Du, Hou, Poczos, Salakhutdinov, Wang, X. 2019)

Complexity based
(Scarselli et al 2018, Garg et al 2020)

Learning dynamics: Graph NTK

Parameter trajectory
θGNN(t)

(NTK theory: Jacot et al 2018, Li and Liang 2018, Allen-Zhu et al 2019, Arora et al 2019ab, Cao and Gu 2019, Du et al 2019ab…)

DHPSWX’19  
Over-parameterized GNNs trained by GD is equivalent to
that of kernel regression with Graph NTK:

k(G, G′) = 𝔼θGNN∼𝒲[⟨ ∂f(θGNN, G)
∂θGNN

,
∂f(θGNN, G′)

∂θGNN ⟩]
f(θGNN, G)GNN output

Generalization for simple functions on graphs

- training labels
- number of training data

- graph NTK matrix

(Bartlett and Mendelson 2002)

Generalization error

How task and NN structure affect sample efficiency

(NTK theory: Jacot et al 2018, Li and Liang 2018, Allen-Zhu et al 2019, Arora et al 2019ab, Cao and Gu 2019, Du et al 2019ab…)

shortest path distance?

Example

S

T

for k = 1 … GNN iter:

hu(k) = Σv MLP(hv(k-1), hu(k-1))

Graph Neural Network

 for u in S:

for k = 1 … |S| - 1:

 d[k][u] = minv d[k-1][v] + cost (v, u)

Bellman-Ford algorithm

 for u in S:

Learns a simple reasoning step

No need to learn for-loops

Other architectures need to learn functions with higher complexity, e.g., for-loops

Algorithmic alignment: formalizing inductive biases

(NTK theory: Jacot et al 2018, Li and Liang 2018, Allen-Zhu et al 2019, Arora et al 2019ab, Cao and Gu 2019, Du et al 2019ab…)

Algorithmic alignment (XLZDKJ’20)
Network can simulate algorithm via few, easy-to-learn “modules”.

Claim: Better algo alignment implies better generalization.

Better alignment implies better generalization

Algorithmic alignment (XLZDKJ’20)
A neural network -aligns with an algorithm if it can simulate the
algorithm via weight-shared modules, each of which is PAC-
learnable with samples.

(M, ϵ, δ)
n (ϵ, δ)
M/n

* Sample complexity of modules by e.g., NTK

Theorem (XLZDKJ’20)
If a neural network and a task algorithm -align, then, under
assumptions*, the task is PAC-learnable by the
network with examples.

(M, ϵ, δ)
(O(ϵ), O(δ))

M

GNNs can sample-efficiently learn DP

Answer[k][i] = DP-Update({Answer[k � 1][j], j = 1 . . . n})
<latexit sha1_base64="iFT2cX5/NI5eGmpG/4hBn2I0V10=">AAACO3icbVBNT9tAFFwDLTT9SuHYy4qoUiqVyKZIIFVIQHvgGKoGItlWtF4/J0vWa2v3GYgs/y8u/AluXHrpoRXqtXc2iQ9t6EgrjWbm6e2bKJfCoOveOUvLK0+erq49azx/8fLV6+ab9VOTFZpDj2cy0/2IGZBCQQ8FSujnGlgaSTiLxp+n/tkFaCMy9Q0nOYQpGyqRCM7QSoPm1wDhCstDZS5BV/449EVI9+lc/dLd6uUxQ6jaQUkXklte6J+HH4JP9HzfC2ScoaGKBtX7QbPldtwZ6GPi1aRFanQHzdsgzniRgkIumTG+5+YYlkyj4BKqRlAYyBkfsyH4liqWggnL2e0VfWeVmCaZtk8hnal/T5QsNWaSRjaZMhyZRW8q/s/zC0z2wlKovEBQfL4oKSTFjE6LpLHQwFFOLGFcC/tXykdMM4627oYtwVs8+TE53e54HzvbJzutg6O6jjXylmySNvHILjkgx6RLeoSTa/Kd/CS/nBvnh3Pv/J5Hl5x6ZoP8A+fPA3QgraI=</latexit>

graph algorithms visual question answering Intuitive physics

Reasoning tasks as dynamic programming (DP):

How Neural Networks Extrapolate:
From Feedforward to Graph Neural Networks

K. Xu, M. Zhang, J. Li, S. Du, K. Kawarabayashi, S. Jegelka
ICLR’21 (oral)

III. Reasoning: Extrapolation

Extrapolation

Extrapolation vs. interpolation

Train NN to learn underlying function with training set

Interpolation

Train Test

Linear extrapolation behavior of ReLU MLPs

Theorem (XZLDKJ’21)
Let be a two-layer ReLU MLP trained by GD*. For any direction , let

. For any , as , with rate
f v ∈ ℝd

x = tv h > 0 t → ∞ f(x + hv) − f(x) → βvh O(1/t)

* Assumption: NTK regime

NN

tv

Conditions for ReLU MLPs to extrapolate well

Theorem (XZLDKJ’21)
Let be a two-layer ReLU MLP trained by GD*. Suppose target function is

 and support of training distribution covers all directions. As the number of
training examples , .

f
β⊺x

n → ∞ f(x) → β⊺x

Implications for GNNs

Under review as a conference paper at ICLR 2021

In summary, we analyze how MLPs extrapolate and provide two insights: (1) MLPs cannot extrapolate
most non-linear tasks, because they quickly converge to directionally linear functions (Theorem 3);
and (2) MLPs can extrapolate well when the target function is linear, provided the training distribution
is “diverse” (Theorem 5). In the next section, these results will help us understand how more complex
networks extrapolate, specifically, GNNs for non-linear algorithmic tasks.

4 HOW GRAPH NEURAL NETWORKS EXTRAPOLATE

Above, we saw that extrapolation in non-linear tasks is hard for MLPs (Theorem 3). Despite this
limitation, GNNs have been shown to extrapolate well in some non-linear algorithmic tasks, such as
intuitive physics (Battaglia et al., 2016; Sanchez-Gonzalez et al., 2018), graph algorithms (Battaglia
et al., 2018; Velickovic et al., 2020), and symbolic mathematics (Lample & Charton, 2020). To address
this discrepancy, we build on our MLP results and study how GNNs trained by GD extrapolate.

4.1 HYPOTHESIS: LINEAR ALGORITHMIC ALIGNMENT HELPS EXTRAPOLATION

We begin with an example: training GNNs to solve the shortest path problem. For this task, prior
works observe that a modified GNN architecture with min-aggregation can generalize to graphs larger
than those in the training set (Battaglia et al., 2018; Velickovic et al., 2020):

h
(k)
u = min

v2N (u)
MLP(k)

�
h
(k�1)
u ,h

(k�1)
v ,w(v,u)

�
. (2)

We first provide an intuitive explanation (Fig 2a). Shortest path can be solved by the Bellman-Ford
(BF) algorithm (Bellman, 1958) with the following update:

d[k][u] = min
v2N (u)

d[k � 1][v] +w(v, u), (3)

where w(v, u) is the weight of edge (v, u), and d[k][u] is the shortest distance to node u within k

steps. The two equations are similar: GNNs can simulate the BF algorithm if the MLP modules learn
a linear function d[k� 1][v] +w(v, u). Since MLPs can extrapolate well in linear tasks (Theorem 5),
this “alignment” might explain why min-aggregation GNNs can extrapolate well in this task.

For comparison, we can reason why we would not expect GNNs with the more commonly used
sum-aggregation (Eqn. 1) to extrapolate well in this task. With sum-aggregation, the MLP modules
need to learn a non-linear function to simulate the BF algorithm, but Theorem 3 suggests that they
will not extrapolate for most nonlinearities outside the training support.

We can extend the above intuition to other algorithmic tasks. Many target tasks where GNNs
extrapolate well can be solved by dynamic programming (DP) (Bellman, 1966), an algorithmic
paradigm with a recursive structure similar to GNNs’ (Eqn. 1) (Xu et al., 2020).
Definition 6. Dynamic programming (DP) is a recursive procedure with updates

Answer[k][s] = DP-Update({Answer[k � 1][s0]} , s0 = 1...n), (4)

where Answer[k][s] is the solution to a sub-problem indexed by iteration k and state s, and DP-Update
is a task-specific update function that solves the sub-problem based on the previous iteration.

Building on the extrapolation behavior of MLPs, we hypothesize that: given a DP task, if we can
encode appropriate non-linearity in the model architecture and input representations so that the MLP
modules only need to learn a linear step, then GNNs can extrapolate well.
Hypothesis 7. (Linear algorithmic alignment). Let f : X ! R be an algorithm and N a neural
network with m MLP modules. Suppose there exist m linear functions {gi}mi=1 so that by replacing
N ’s MLP modules with gi’s, N simulates f . Given ✏ > 0, there exists {(xi, f(xi))}ni=1 ⇢ D (X
so that N trained on {(xi, f(xi))}ni=1 by GD with squared loss learns f̂ with kf̂ � fk < ✏.

Our hypothesis builds on the algorithmic alignment framework of (Xu et al., 2020), which suggests
that GNNs can interpolate well if MLP modules are “aligned” to easy-to-learn (possibly non-linear)
functions. Successful extrapolation is harder: MLP modules need to align with linear functions.

To satisfy the linear algorithmic alignment assumption, we can encode appropriate non-linear oper-
ations in either the architecture or input representation (Fig. 2). The shortest path example shows

6

Shortest Path:

GNN (sum):

GNN that encodes the nonlinearity min

Training distribution for GNNs to extrapolate well

Max Degree Shortest Path

Theorem (XZLDKJ’21)
A GNN encoding max in aggregation trained by GD* learns max degree if
training data spans .

<latexit sha1_base64="gYbAC6dVKQtE/GtTimJ9aEfu1eU=">AAACX3icbVFbS8MwFE7rbc7b1CfxJTgEBRmtKPoiDHzQJ1FwKqyzpNnpFkzTkpyKo/RP+ib44j8xu4E6DwQ+vgsn+RJlUhj0vA/HnZtfWFyqLFdXVtfWN2qbWw8mzTWHFk9lqp8iZkAKBS0UKOEp08CSSMJj9HI51B9fQRuRqnscZNBJWE+JWHCGlgprr4GEGIMi6EIvLIKEvZUHV6E4PKJTRqgpc/M8NoSFKGf9I9Waf6rTLA206PUxGIoXfvlsF9e9hjcaOgv8CaiTydyGtfegm/I8AYVcMmPavpdhp2AaBZdQVoPcQMb4C+tB20LFEjCdYtRPSfct06Vxqu1RSEfsz0TBEmMGSWSdCcO++asNyf+0do7xeacQKssRFB8vinNJMaXDsmlXaOAoBxYwroW9K+V9phlH+yVVW4L/98mz4OG44Z82vLuTevN8UkeF7JI9ckB8ckaa5Jrckhbh5NNxnRVn1flyl9x1tza2us4ks01+jbvzDTUEthE=</latexit>�
degmax(Gi), degmin(Gi), N

max
i degmax(Gi), N

min
i degmin(Gi)

 n

i=1 ℝ4

* Assumption: NTK regime

feature direction (MLP) & graph structure (GNN)

Linear algorithmic alignment improves extrapolation

(Trask et al. 2018, Madsen & Johansen 2020)

(Johnson et al 2017, Yi et al. 2018, Mao et al 2019…)

Encoding non-linearities in architecture & representations

GraphNorm: A Principled Approach to
Accelerating GNN Training

T. Cai, S. Luo, K. Xu, D. He, T. Liu, L.Wang
ICML’21

Optimization of GNNs: Implicit Accleration by
Skip Connections and More Depth

K. Xu, M. Zhang, S. Jegelka, K. Kawaguchi
ICML’21

IV. Optimization

Global convergence and implicit acceleration

Theorem (XZJK’21)
Gradient descent training a linearized GNN, with or without skip connections,
converges to a global minimum at a linear rate.

GraphNorm accelerates training

I. Representation:
Expressive Power

ICML’18 (long talk)

ICLR’19 (oral)

II. Reasoning:
Generalization

NeurIPS’19

ICLR’20 (spotlight)

III. Reasoning:
Extrapolation

ICLR’21 (oral)

IV. Optimization

ICML’21

ICML’21

Information Obfuscation of Graph Neural Networks
P. Liao, H. Zhao, K. Xu, T. Jaakkola, G. Gordon, S. Jegelka,

R. Salakhutdinov. ICML’21

Are Girls Neko or Shōjo?
M. Zhang, K. Xu, K. Kawarabayashi, S. Jegelka,

J. Boyd-Graber. ACL’19

Other Research

Noisy Labels Can Induce Good
Representations

J. Li, M.Zhang, K. Xu, J. Dickerson, J. Ba

Distributional Adversarial Networks
C. Li, D. Alvarez-Melis, K. Xu, S. Jegelka, S. Sra

ICLR’18 workshop

Ackowledgements

