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Abstract

In this work, we propose to use attributes and parts for
recognizing human actions in still images. We define action
attributes as the verbs that describe the properties of human
actions, while the parts of actions are objects and poselets
that are closely related to the actions. We jointly model
the attributes and parts by learning a set of sparse bases
that are shown to carry much semantic meaning. Then,
the attributes and parts of an action image can be recon-
structed from sparse coefficients with respect to the learned
bases. This dual sparsity provides theoretical guarantee
of our bases learning and feature reconstruction approach.
On the PASCAL action dataset and a new “Stanford 40 Ac-
tions” dataset, we show that our method extracts meaning-
ful high-order interactions between attributes and parts in
human actions while achieving state-of-the-art classifica-
tion performance.

1. Introduction

Recognizing human actions in still images has many po-

tential applications in image indexing and retrieval. One

straightforward solution for this problem is to use the whole

image to represent an action and treat action recognition as

a general image classification problem [13, 28, 4, 30]. Such

methods have achieved promising performance on the re-

cent PASCAL challenge using spatial pyramid [16, 4] or

random forest [30] based methods. These methods do not,

however, explore the semantically meaningful components

of an action, such as human poses and the objects that are

closely related to the action.

There is some recent work which uses objects [12, 29, 6,

24] interacting with the person or human poses [27, 22] to

build action classifiers. However, these methods are prone

to problems caused by false object detections or inaccu-

rate pose estimations. To alleviate these issues, some meth-

ods [29] rely on labor-intensive annotations of objects and
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Figure 1. We use attributes (verb related properties) and parts (ob-

jects and poselets [2]) to model action images. Given a large num-

ber of image attributes and parts, we learn a number of sparse

action bases, where each basis encodes the interactions between

some highly related attributes, objects, and poselets. The attributes

and parts of an image can be reconstructed from a sparse weighted

summation of those bases. The colored bars indicate different at-

tributes and parts, where the color code is: green - attribute, red -

object, blue - poselet. The height of a bar reflects the importance

of this attribute or part in the corresponding basis.

human body parts during training time, posing a serious

concern towards large scale action recognition.

Inspired by the recent work on using objects and body

parts for action recognition as well as global and local at-

tributes [9, 15, 1, 23] for object recognition, in this paper,

we propose an attributes and parts based representation of

human actions in a weakly supervised setting. The action

attributes are holistic image descriptions of human actions,



usually associated with verbs in the human language such

as “riding” and “sitting” (as opposed to “repairing” or “lift-

ing”) for the action “riding bike”. The action parts include

objects that are related to the corresponding action (e.g.

“bike”, “helmet”, and “road” in “riding bike”) as well as

different configurations of local body parts (we use pose-

let described in [2]). Given an image of a human action,

many attributes and parts1 contribute to the recognition of

the corresponding action.

Given an image collection of many different actions,

there is a large number of possible attributes, objects and

poselets. Furthermore, there is a large number of possible

interactions among these attributes and parts in terms of co-

occurrence statistics. For example, the “riding” attribute is

likely to co-occur with objects such as “horse” and “bike”,

but not “laptop”, while the “right arm extended upward”

poselet is more likely to co-occur with objects such as “vol-

leyball” and the attribute “hitting”. We formulate these in-

teractions of action attributes and parts as action bases for

expressing human actions. A particular action in an image

can therefore be represented as a weighted summation of a

subset of these bases, as shown in Fig.1.

This representation can be naturally formulated as a re-

construction problem. Our challenge is to: 1) represent each

image by using a sparse set of action bases that are mean-

ingful to the content of the image, 2) effectively learn these

bases given far-from-perfect detections of action attributes

and parts without meticulous human labeling as proposed

in previous work [29]. To resolve these challenges, we pro-

pose a dual sparsity reconstruction framework to simulta-

neously obtain sparsity in terms of both the action bases as

well as the reconstruction coefficients for each image. We

show that our method has theoretical foundations in sparse

coding and compressed sensing [32, 14]. On the PASCAL

action dataset [7] and a new “Stanford 40 Actions” dataset,

our attributes and parts representation significantly outper-

forms state-of-the-art methods. Furthermore, we visualize

the bases obtained by our framework and show semantically

meaningful interpretations of the images.

The remaining part of this paper is organized as follows.

Related work are described in Sec.2. The attributes and

parts based representation of actions and the method to learn

action bases are elaborated in Sec.3 and Sec.4 respectively.

Experiment results are shown and discussed in Sec.5.

2. Related Work
Most of the action recognition approaches [28, 4, 7] for

still images treat the problem as a pure image classification

problem. There are also algorithms which model the objects

1Our definition of action attributes and parts are different from the at-

tributes and parts in common object recognition literature. Please refer to

Sec.2 for details. In this work we use “action attribute” and “attribute”,

“action part” and “part” interchangeably, if not explicitly specified.

or human poses for action classification, such as the mu-

tual context model [29] and poselets [2, 22]. However, the

mutual context model requires supervision of the bounding

boxes of objects and human body parts, which are expen-

sive to obtain especially when there is a large number of

images. Also, we want to put the objects and human poses

in a more discriminative framework so that the action recog-

nition performance can be further improved. While pose-

lets have achieved promising performance on action recog-

nition [22], it is unclear how to jointly explore the semantic

meanings of poselets and the other concepts such as objects

for action recognition.

In this paper, we propose to use attributes and parts for

action classification. Inspired by the recent work of learn-

ing attributes for object recognition [9, 15, 1, 23] and action

recognition in videos [19], the attributes we use are linguis-

tically related description of the actions. We use a global

image based representation to train a classifier for each at-

tribute. Compared to the attributes for objects which are

usually adjectives or shape related, the attributes we use to

describe actions are mostly related to verbs. The parts based

models have been successfully used in object detection [10]

and recognition [11]. However unlike these approaches that

use low-level descriptors, the action parts we use are objects

and poselets with pre-trained detectors as in [18, 22]. The

discriminative information in those detectors can help us al-

leviate the problem of background clutter in action images

and give us more semantic information of the images [18].

In the attributes and parts based representation, we learn

a set of sparse action bases and estimate a set of coefficients

on these bases for each image. This dual sparsity makes our

problem different from traditional dictionary learning and

sparse coding problems [25, 17, 21], given that our action

bases are sparse (in the large set of attributes and parts, only

a small number of them are highly related in each basis)

and far from being mutually orthogonal (consider the two

bases “riding - sitting - bike” and “riding - sitting - horse”).

In this work, we solve this dual sparsity problem using the

elastic-net constrained set [32], and show that our approach

has theoretical foundations in the compressed network the-

orem [14].

3. Action Recognition with Attributes & Parts

3.1. Attributes and Parts in Human Actions

Our method jointly models different attributes and parts

of human actions, which are defined as follows.

Attributes: The attributes are linguistically related de-

scriptions of human actions. Most of the attributes we use

are related to verbs in human language. For example, the

attributes for describing “riding a bike” can be “riding” and

“sitting (on a bike seat)”. It is possible for one attribute to

correspond to more than one action. For instance, “riding”



can describe both “riding a bike” and “riding a horse”, while

this attribute can differentiate the intentions and human ges-

tures in the two actions with the other ones such as “drink-

ing water”. Inspired by the previous work on attributes for

object recognition [9, 15, 1], we train a discriminative clas-

sifier for each attribute.

Parts: The parts we use are composed of objects and

human poses. We assume that an action image consists

of the objects that are closely related to the action and the

descriptive local human poses. The objects are either ma-

nipulated by the person (e.g. “bike” in “riding a bike”) or

related to the scene context of the action (e.g. “road” in

“riding a bike”, “reading lamp” in “reading a book”). The

human poses are represented by poselets [2], where the hu-

man body parts in different images described by the same

poselet are tightly clustered in both appearance space and

configuration space. In our approach, each part is modeled

by a pre-trained object detector or poselet detector.

To obtain our features, we run all the attribute classifiers

and part detectors on a given image. A vector of the nor-

malized confidence scores obtained from these classifiers

and detectors is used to represent this image.

3.2. Action Bases of Attributes and Parts

Our method learns high-order interactions of image at-

tributes and parts. Each interaction corresponds to the co-

occurrence of a set of attributes and parts with some specific

confidence values (Fig.1). These interactions carry richer

information about human actions and are thus expected to

improve recognition performance. Furthermore, the com-

ponents in each high-order interaction can serve as context

for each other, and therefore the noise in the attribute clas-

sifiers and part detectors can be reduced. In our approach,

the high-order interactions are regarded as the bases of the

representations of human actions, and each image is repre-

sented as a sparse distribution with respect to all the bases.

Examples of the learned action bases are shown in Fig.4.

We can see that the bases are sparse in the whole space of

attributes and parts, and many of the attributes and parts are

closely correlated in human actions, such as “riding - sitting

- bike” and “using - keyboard - monitor - sitting” as well as

the corresponding poselets.

Now we formalize the action bases in a mathematical

framework. Assume we have 𝑃 attributes and parts, and let

a ∈ ℝ
𝑃 be the vector of confidence scores obtained from

the attribute classifiers and part detectors. Denoting the set

of action bases as Φ = [𝝓1, ⋅ ⋅ ⋅ ,𝝓𝑀 ] where each 𝝓𝑚 ∈
ℝ

𝑃 is a basis, the vector a can be represented as

a =
𝑀∑

𝑚=1

𝑤𝑚𝝓𝑚 + 𝜺 (1)

where w = {𝑤1, ⋅ ⋅ ⋅ , 𝑤𝑀} are the reconstruction coeffi-

cients of the bases, and 𝜺 ∈ ℝ
𝑃 is a noise vector. Note that

in our problem, the vector w and {𝝓𝑚}𝑀𝑚=1 are all sparse.

This is because on one hand, only a small number of at-

tributes and parts are highly related in each basis of human

actions; on the other hand, a small proportion of the ac-

tion bases are enough to reconstruct the set of attributes and

parts in each image.

3.3. Action Classification Using the Action Bases

From Eqn.1, we can see that the attributes and parts rep-

resentation a of an action image can be reconstructed from

the sparse factorization coefficients w. w reflects the dis-

tribution of a on all the action bases Φ, each of which en-

codes a specific interaction between action attributes and

parts. The images that correspond to the same action should

have high coefficients on the similar set of action bases. In

this paper, we use the coefficients vector w to represent an

image, and train an SVM classifier for action classification.

The above classification approach resolves the two chal-

lenges of using attributes and parts (objects and poselets)

for action recognition that we proposed in Sec.1. Since we

only use the learned action bases to reconstruct the feature

vector, our method can correct some false detections of ob-
jects and poselets by removing the noise component 𝜀 in

Eqn.1. Also, those action bases correspond to some high-

order interactions in the features, and therefore they jointly
model the complex interactions between different attributes,
objects, and poselets.

4. Learning the Dual-Sparse Action Bases and
Reconstruction Coefficients

Given a collection of training images represented as

𝒜 = {a1,a2, ⋅ ⋅ ⋅ ,a𝑁} as described in Sec.3.2, where each

a𝑖 is the vector of confidence scores of attribute classifi-

cations and part detections computed from image 𝑖. Intu-

itively, there exists a latent dictionary of bases where each

basis characterizes frequent co-occurrence of attributes, ob-

jects, and poselets involved in an action, e.g. “cycling” and

“bike”, such that each observed data a𝑖 can be sparsely re-

constructed with respect to the dictionary. Our goal is to

identify a set of sparse bases Φ = [𝝓1, ⋅ ⋅ ⋅ ,𝝓𝑀 ] such that

each a𝑖 has a sparse representation with respect to the dic-

tionary, as shown in Eqn.1.

During the bases learning stage, we need to learn the

bases Φ and find the reconstruction coefficients w𝑖 for each

a𝑖. Given a new image represented by a, we want to find a

sparse w such that a can be reconstructed from the learned

Φ. Therefore our bases learning and action reconstruction

can be achieved by the following two optimization prob-

lems respectively,

min
Φ∈𝒞,W∈ℝ𝑀×𝑁

𝑁∑
𝑖=1

(1
2
∥a𝑖 −Φw𝑖∥22 + 𝜆∥w𝑖∥1

)
, (2)



min
w∈ℝ𝑀

1

2
∥a−Φw∥22 + 𝜆∥w∥1, (3)

where W = [w1, ⋅ ⋅ ⋅ ,w𝑁 ] ∈ ℝ
𝑀×𝑁 , 𝜆 is a regularization

parameter, and 𝒞 is the convex set that Φ belongs to. The

𝑙1-norm in Eqn.2 makes the reconstruction coefficients w𝑖

tend to be sparse. In our setting, the bases Φ should also be

sparse, even though the given 𝒜 might be quite noisy due

to the error-prone object detectors and poselet detectors. To

address this issue, we construct the convex set 𝒞 as:

𝒞 = {Φ ∈ ℝ
𝑃×𝑀 , s.t. ∀𝑗, ∥Φ𝑗∥1 + 𝛾

2
∥Φ𝑗∥22 ≤ 1}. (4)

where 𝛾 is another regularization parameter.

Including both 𝑙1-norm and 𝑙2-norm to define the convex

set 𝒞, the sparsity requirement of the bases are encoded.

This is called the elastic-net constraint set [32]. Further-

more, the sparsity on Φ implies that different action bases

have small overlaps, therefore the coefficients learned from

Eqn.2 are guaranteed to generalize to the testing case in

Eqn.3 according to the compressed network theorem [14].

Please refer to the supplementary document2 for details.

In our two optimization problems, Eqn.3 is convex while

Eqn.2 is non-convex. However Eqn.2 is convex with respect

to each of the two variables Φ and W when the other one

is fixed. We use an online learning algorithm [21] which

scales up to large datasets to solve this problem.

5. Experiments and Results

5.1. Dataset and Experiment Setup

We test the performance of our proposed method on

the PASCAL action dataset [7] and a new larger scale

dataset collected by us. The new dataset, called Stanford
40 Actions, contains 40 diverse daily human actions, such

as “brushing teeth”, “cleaning the floor”, “reading book”,

“throwing a frisbee”, etc. All the images are obtained from

Google, Bing, and Flickr. We collect 180∼300 images for

each class. The images within each class have large vari-

ations in human pose, appearance, and background clut-

ter. The comparison between our dataset and the existing

still image action datasets are summarized in Table 1. As

there might be multiple people in a single image, we pro-

vide bounding boxes for the humans who are doing one of

the 40 actions in each image, similar to [7]. Examples of

the images in our dataset3 are shown in Fig.2.

On the PASCAL dataset, we use the training and valida-

tion set specified in [7] for training, and use the same testing

set. On the Stanford 40 Action dataset, we randomly select

2The supplementary document can be found on the author’s website.
3Please refer to http://vision.stanford.edu/Datasets/40actions.html for

more details of the Stanford 40 Actions dataset.

Figure 2. Example

images of the Stan-

ford 40 Actions

Dataset.

Dataset
No. of No. of

Clutter?
Poses Visibility

actions images vary? varies?

Ikizler [13] 5 1727 Yes Yes Yes
Gupta [12] 6 300 Small Small No

PPMI [28] 24 4800 Yes Yes No

PASCAL [7] 9 1221 Yes Yes Yes
Stanford 40 40 9532 Yes Yes Yes

Table 1. Comparison of our Stanford 40 Action dataset and other

existing human action datasets on still images. “Visibility” vari-

ation refers to the variation of visible human body parts, e.g. in

some images the full human body is visible, while in some other

images only the head and shoulder are visible. Bold font indicate

relatively larger scale datasets or larger image variations.

100 images in each class for training, and the remaining im-

ages for testing. For each dataset, we annotate the attributes

that can be used to describe the action in each image, and

then train a binary classifier for each attribute. We take a

global representation of the attributes as in [9], and use the

Locality-constrained Linear Coding (LLC) method [26] on

dense SIFT [20] features to train the classifier for each at-

tribute. As in [4], the classifiers are trained by concatenating

the features from both the foreground bounding box of the

action and the whole image. We extend and normalize the

bounding boxes in the same way as in [4]. For objects, we

use the ImageNet [5] dataset with provided bounding boxes

to train the object detectors by using the Deformable Parts

Model [10], instead of annotating the positions of objects in



Method Phoning
Playing

Reading
Riding Riding

Running
Taking Using

Walking Overall
instrument bike horse photo computer

SURREY MK 52.6 53.5 35.9 81.0 89.3 86.5 32.8 59.2 68.6 62.2

UCLEAR DOSP 47.0 57.8 26.9 78.8 89.7 87.3 32.5 60.0 70.1 61.1

WILLOW LSVM 49.2 37.7 22.2 73.2 77.1 81.7 24.3 53.7 56.9 52.9

POSELETS 45.9 45.8 23.7 79.9 87.6 83.1 26.2 44.9 66.6 56.0

Ours Conf Score 49.5 56.6 31.4 82.3 89.3 87.0 36.1 67.7 73.0 63.7

Ours Sparse Bases 42.8 60.8 41.5 80.2 90.6 87.8 41.4 66.1 74.4 65.1

Table 2. Comparison of our method and the other action classification approaches evaluated using the percentage of average precision.

“Overall” indicates the mean Average Precision (mAP) on all the nine classes. The bold fonts indicate the best performance. SURREY MK

UCLEAR DOSP, WILLOW SVMSIFT, and POSELETS are the approaches presented in the PASCAL challenge [7].

the action data. For poselets, we use the pre-trained poselet

detectors in [2]. For each object or poselet detector, we use

the highest detection score in the response map of each im-

age to measure the confidence of the object or poselet in the

given image. We linearly normalize the confidence scores

of all the attribute classifiers and part detectors so that all

the feature values are between 0 and 1.

We use 14 attributes and 27 objects for the PASCAL

data, 45 attributes and 81 objects for the Stanford 40 Ac-

tion data. We only use the attributes and objects that we be-

lieve are closely related to the actions in each dataset. Also

some useful objects are not included, e.g. cigarette which

is helpful for recognizing the action of “smoking cigarette”

but there is no cigarette bounding box in ImageNet images.

Please refer to the supplementary document for the list of at-

tributes and objects that we use. We use 150 poselets as pro-

vided in [2] on both datasets. The number of action bases

are set to 400 and 600 respectively. The 𝜆 and 𝛾 values in

Eqn.2, 3, and 4 are set to 0.1 and 0.15.

In the following experiment, we consider two ap-

proaches of using attributes and parts for action recogni-

tion. One is to simply concatenate the normalized confi-

dence scores of attributes classification and parts detection

as feature representation (denoted as “Conf Score”), the

other is to use the reconstruction coefficients on the learned

sparse bases as feature representation (denoted as “Sparse

Bases”). We use linear SVM classifiers for both feature

representations. As in [7], we use mean Average Precision

(mAP) to evaluate the performance on both datasets.

5.2. Results on the PASCAL Action Dataset

On the PASCAL dataset, we compare our methods with

four approaches from the PASCAL challenge [7]: the

SURREY MK and UCLEAR DOSP which mainly rely on

general image classification methods and achieve the best

performance in the challenge, WILLOW LSVM which is

a parts based model, and POSELETS which also uses the

poselet features for classification.

The average precision of different approaches is shown

in Table 2. We can see that by simply concatenating the con-

fidence scores of attributes classification and parts detec-

tion, our method outperforms the best result in the PASCAL

challenge in terms of the mean Average Precision (mAP).

The performance can be further improved by learning high-

order interactions of attributes and parts, from which the

feature noise can be reduced. A visualization of the learned

bases of our method is shown in Fig.4. We observe that al-

most all the bases are very sparse, and many of them carry

useful information for describing specific human actions.

However due to the large degree of noise in both object de-

tectors and poselet detectors, some bases contain noise, e.g.

“guitar” in the basis of “calling - cell phone - guitar”. In

Fig.4 we also show some action images with the annotations

of attributes and objects that have high confidence score in

the feature representation reconstructed from the bases.

Our approach considers three concepts: attributes, parts

as objects, and parts as poselets. To analyze the contribu-

tion of each concept, we remove the confidence scores of at-

tribute classifiers, part detectors, and poselet detectors from

our feature set, one at a time. The classification results are

shown in Fig.3. We observe that using the reconstruction

coefficients consistently outperform the methods that sim-

ply concatenating the confidence scores of classifiers and
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Figure 3. Comparison of the methods by removing the confidence

scores obtained from attributes (A), objects (O), and poselets (P)

from the feature vector, one at a time. The performance are evalu-

ated using mean Average Precision on the PASCAL dataset.
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Figure 4. Visualization of the 400 learned bases from the PASCAL action dataset. Each row in the left-most matrix corresponds to one

basis. Red color indicates large magnitude in the action bases while blue color indicates low magnitude. We observe that the bases are

indeed very sparse. We also show some semantically meaningful action bases learned by our results, e.g. “riding - grass - horse”. By using

the learned action bases to reconstruct the attributes and parts representation, we show the attributes and objects that have high confidence

scores on some images. Magenta color indicates wrong tags.

detectors. We can also see that attributes make the biggest

contribution to the performance, because removing the at-

tribute features makes the performance much worse. This

is due to the large amount of noise produced from objects

and poselets detectors which are pre-trained from the other

datasets. However, objects and poselets do contain comple-

mentary information with the attributes, and the effect of

the noise can be alleviated by the bases learned from our

approach. We observe that in the case of only considering

objects and poselets, learning the sparse bases significantly

improves the performance. By combining attributes, ob-

jects and poselets and learning the action bases, our method

achieves state-of-the-art classification performance.

Our learning method (Eqn.2) has the dual sparsity on

both action bases Φ and reconstruction coefficients W.

Here we compare our method with a simple 𝑙1-norm method

- 𝑙1 logistic regression based on the concatenation of the

confidence scores of attributes and parts. The mAP result

of 𝑙1 logistic regression is 47.9%, which is lower than our

results. This shows that a simple 𝑙1-norm logistic regres-

sion cannot effectively learn the information from the noisy

attributes classification and parts detection features. Fur-

thermore, in order to demonstrate the effectiveness of the

two sparsity constraints, we remove the constraints one at

a time. To remove the sparsity constraint on the recon-

struction weight W, we simply change ∥w𝑖∥1 in Eqn.2 and

Eqn.3 to ∥w𝑖∥2. To remove the sparsity constraint on the

bases Φ, we change the convex set 𝒞 in Eqn.4 to be:

𝒞 = {Φ ∈ ℝ
𝑃×𝑀 , s.t. ∀𝑗, ∥Φ𝑗∥22 ≤ 1}. (5)

In the first case, where we do not have sparsity constraint on

W, the mAP result drops to 64.0%, which is comparable to

directly concatenating all attributes classification and parts

detection confidence scores. This shows that the sparsity

on W helps to remove noise from the original data. In the

second case where we do not have sparsity constraint on Φ,

the performance becomes 64.7% which is very close to that

of having sparsity constraint on Φ. The reason might be

that although there is much noise in the parts detections and

attribute classifications, the original vector of confidence

scores already has some level of sparsity. However, by ex-

plicitly imposing the sparsity on Φ, we can guarantee the

sparsity of the bases, so that our method can explicitly ex-

tract more semantic information and its performance is also

theoretically guaranteed. Please refer to the supplementary

document of this paper for more details.



5.3. Results on the Stanford 40 Actions Dataset

We next show the performance of our proposed method

on the new Stanford 40 Actions dataset. We setup two base-

lines on this dataset: LLC [26] method with densely sam-

pled SIFT [4] features, and object bank [18]. Comparing

these two algorithms with our approach, the mAP is shown

in Table 3. The results show that compared to the base-

lines which uses image classifiers or object detectors only,

combining attributes and parts (objects and poselets) sig-

nificantly improved the recognition performance by more

than 10%. The reason might be that, on this relatively large

dataset, more attributes are used to describe the actions and

more objects are related to the actions, which contains a lot

of complementary information.

As done in Sec.5.2, we also remove the features that are

related to attributes, objects, and poselets from our feature

set, one at a time. The results are shown in Fig.5. On this

dataset, the contribution of objects is larger than that on the

PASCAL dataset. This is because more objects are related

to the actions on this larger scale dataset, and therefore we

can extract more useful information for recognition from

the object detectors.

The average precision obtained from LLC and our

method by using reconstruction coefficients as feature rep-

resentation for each of the 40 classes is shown in Fig.6.

Using a sparse representation on the action bases of at-

Method
Object

LLC [26]
Ours Ours

Bank [18] Conf Score Sparse Bases

mAP 32.5% 35.2% 44.6% 45.7%

Table 3. Comparison of our attributes and parts based action recog-

nition methods with the two baselines: object bank [18] and

LLC [26]. The performance is evaluated with AP. The bold font

indicates the best performance.
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Figure 5. Comparison of the methods by removing the confidence

scores obtained from attributes (A), objects (O), and poselets (P)

from the feature vector, one at a time. The performance is eval-

uated using mean Average Precision on the Stanford 40 Actions

dataset.
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Figure 6. Average precision of our method (Sparse Bases) on each

of the 40 classes of the Stanford 40 Actions dataset. We compare

our method with the LLC algorithm.

tributes and parts, our method outperforms LLC on all the

40 classes. Furthermore, the classification performance on

different actions varies a lot, ranging from 89.2% on “riding

a horse” to only 6.2% on “texting message”. It is interesting

to observe that the result shown in Fig.6 is somewhat sim-

ilar to that on the PASCAL dataset in Table 2. The classes

“riding a horse” and “riding a bike” have high classifica-

tion performance on both datasets while the classes “call-

ing”, “reading a book” and “taking photos” have low classi-

fication performance, showing that the two datasets capture

similar image statistics of human actions. The classes “rid-

ing a horse” and “riding a bike” can be easily recognized

in part because the human poses do not vary much within

each action, and the objects (horse and bike) are easy to de-

tect. However, the performance on “feeding a horse” and

“repairing a bike” is not as good as that on “riding a horse”

and “riding a bike”. One reason is that the body parts of

horses in most of the images of “feeding a horse” are highly



occluded, and therefore the horse detector is difficult to de-

tect them. From the images of “repairing a bike”, we can

see that the human pose changes a lot and the bikes are

also occluded or disassembled, making them difficult to be

recognized by bike detectors. There are some classes on

which the recognition performance is very low, e.g. “tak-

ing photos”. The reason is that the cameras are very small,

which makes it difficult to distinguish “taking photos” and

the other actions.

6. Discussion
In this work, we use attributes and parts for action recog-

nition. The attributes are verbs related description of human

actions, while the parts are composed of objects and pose-

lets. We learn a set of sparse bases of the attributes and parts

based image representation, allowing an action image to be

reconstructed by a set of sparse coefficients with respect

to the bases. Experimental results show that our method

achieves state-of-the-art performance on two datasets. One

direction of our future work is to use the learned action

bases for image tagging, so that we can explore more de-

tailed semantic understanding of human actions in images.
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A. The Stanford-40 Action Dataset
Here we give more details of the Stanford 40 Actions

dataset collected by us. Our motivation of collecting this

dataset is to provide a relatively large scale dataset of daily

human actions. The images in the dataset contain large hu-

man appearance variation, pose variation, and background

clutter. The list of the 40 actions and the number of images

in each action is summarized in Table 4. Example images

of our dataset are shown in Fig.8.

The images are collected in the following procedure. For

each action, we first use some keywords to crawl as many

images as we can from Google, Bing, and Flickr. Instead of

only using the action name as the keyword, we also consider

some other keywords which we believe can help collecting

more images of the corresponding action. For example, the

query keywords we use for “watching TV” is: “watching

television”, “man watching TV”, “woman watching TV”,

“family watching TV”, and “children watching TV”. We

can crawl 10,000+ images for each class. Then, we select

Action Name
#

Action Name
#

imgs imgs

applauding 284 playing violin 260

blowing bubbles 259 pouring liquid 200

brushing teeth 200 pushing cart 235

cleaning floor 212 reading 245

climbing 295 riding bike 293

cooking 288 riding horse 296

cutting trees 203 rowing boat 185

cutting vegetables 189 running 251

drinking 256 shooting arrow 214

feeding horse 287 smoking 241

fishing 273 taking photos 197

fixing bike 228 texting message 193

fixing car 251 throwing frisby 202

gardening 199 using computer 230

holding umbrella 292 walking dog 293

jumping 295 washing dishes 182

looking thru microscope 191 watching TV 223

looking thru telescope 203 waving hands 210

phoning 259 writing on board 183

playing guitar 289 writing on book 246

Table 4. The Stanford 40 Action dataset: the list of actions and

number of images in each action.
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Figure 7. Example images in the Stanford 40 Action dataset.
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Figure 8. In the case of “riding a bike”, we want to collect images

such as (a). The other images are not satisfying because: (b) the

human is not riding the bike; (c) the human’s head is totally outside

of the image; (d) it is a cartoon image; (d) it is an advertisement

image and texts are placed on the image; (e) the human is riding a

bike while making a phone call.

the desired images from the crawling results in each class.

The selection criteria are: (1) the human should be doing

the corresponding action; (2) the human’s head needs to be

visible; (3) the image is not a cartoon image; (4) the image

should not be significantly edited (e.g. with many texts on

it); (5) the human should not be doing more than one of our

40 actions (e.g. pushing a cart while calling). The next step



is to de-duplicate the selected images by a simple color his-

togram matching method. Finally, we check the remaining

images and further manually remove some images to guar-

antee the image diversity within each class.

B. Optimization Guarantees of Dual Sparsity

We used dual sparsity on both action bases and recon-

struction coefficients in the basis learning step (Eqn.2 and 4

of the main paper). We now show that this dual sparsity en-

ables the uniqueness of the attributes and parts reconstruc-

tion in the testing step (Eqn.3 of the main paper). Unique-

ness is important in the Lasso problem especially when we

look for interpretable bases for action recognition. Other-

wise if the solution for the problem is not unique, one might

reconstruct the attributes and parts of an action image from

other confusing bases which also optimize our objective but

are totally irrelevant to the action in the image.

It has been shown that the ℓ1-norm minimization prob-

lem has a unique sparse solution, if the basis matrix satisfies

the so-called Restricted Isometry Property (RIP) condition,

which requires that every subset of columns in the support

of the sparse signal are nearly orthogonal [3]. In [31], the

Irrepresentable Condition (IRR) was proposed for stably re-

covering a sparse signal w∗ by solving the Lasso problem:

min
w

1

2
∥a−Φw∥22 + 𝜆∥w∥1. (6)

The basis matrix Φ satisfies the IRR condition with respect

to 𝑆 = {∀𝑗, 𝑤∗
𝑗 ∕= 0}, if Φ𝑇

𝑆Φ𝑆 is invertible and

∥Φ𝑇
𝑆𝑐Φ𝑆

(
Φ𝑇

𝑆Φ𝑆

)−1 ∥∞ < 1. (7)

where Φ𝑆 is a sub-matrix of Φ with 𝑆 selecting the

columns, Φ𝑇
𝑆 is the transpose of Φ𝑆 , 𝑆𝑐 is the complement

of 𝑆.

The IRR condition is satisfied in some specific situations,

such as Gaussian random matrices. But it does not hold for

general matrices. However, it has been shown that when

the basis matrix Φ is sparse, it turns out that IRR still holds

in many different situations [14]. Please refer to [14] for

further materials explaining the conditions to guarantee the

success of solving the Lasso problem. In our problem, we

impose sparsity on Φ so that a unique sparse solution of w
can be obtained for most of the vectors a.

C. Implementation Details of Our Experiment

In this work, we use attributes, objects, and poselets for

action recognition. In Sec.5.1, we have described how we

use them for image representation. More details are pro-

vided below.

C.1. Attribute Representation

We use 14 attributes for the PASCAL data and 45 at-

tributes for the Stanford 40 data. The list of attributes on

the two datasets are:

∙ Attributes on PASCAL Actions: calling, playing, read-

ing, riding, running, taking, using, walking, cycling,

standing, sitting, squatting, lying, and moving.

∙ Attributes on Stanford 40 Actions: applauding, bend-

ing, blowing, brushing, calling, cooking, cutting, cy-

cling, drinking, feeding, fishing, fixing, filling, hang-

ing, holding, jumping, looking through, lying, mop-

ping, playing, poling, pulling, pushing, reading, repair-

ing, riding, rowing, running, shooting, singing, sitting,

smoking, speaking, standing, squatting, taking, throw-

ing, typing, using, walking, watching, waving, wear-

ing, withdrawing, and writing.

We train an SVM classifier for each action attribute,

where the humans whose actions are described by the at-

tribute are regarded as positive examples, while others are

negative examples. Following the approach in [4], each hu-

man is described by a “foreground” image (an extension of

the bounding box of the human) and a “background” im-

age (the whole image that the human belongs to). We ex-

tract SIFT [20] descriptors from the images, and use the

Locality-constrained Linear Coding method for feature rep-

resentation. We use a four-layer spatial pyramid [16] on the

foreground and a two-layer pyramid on the background. We

use LIBLINEAR [8] for SVM training.

C.2. Object Representation

Whether an image appears in an image is represented

by the confidence of object detection scores. We take the

object detectors trained from the object bank [18] method.

The detectors we use for the two datasets are:

∙ Objects on PASCAL Actions: beach, bicycle, bicycle

built for two, camcorder, camera, cello, cellular tele-

phone, computer, computer keyboard, desktop com-

puter, dial telephone, flute, grass, guitar, keyboard, lap-

top, monitor, motorcycle, musical instrument, news-

paper, notebook, pay phone, piano, skyscraper, tele-

phone, and violin.

∙ Objects on Stanford 40 Actions: African hunting dog,

Eskimo dog, Polaroid camera, beach, beer, beer bot-

tle, beer glass, bicycle, bicycle built for two, black-

board, boat, boathouse, bow, bowl, broom, bulldog,

camcorder, camera, car-12982, car-1527, car-1634, car

tire, coat, computer, computer keyboard, cup, cuppa,

desktop computer, dog, fish, fishing rod, gas pump,



glass, golden retriever, grass, guitar, hand-held com-

puter, handcart, laptop, laundry cart, male horse, mo-

torcycle, mountain bike, mug, newspaper, notebook,

optical telescope, passenger car, point-and-shoot cam-

era, radio telescope, sheet, shopping cart, sky, street-

car, television, violin, washbasin, washer, and wheel.

The objects we consider are limited to the ones that have

annotated bounding boxes in ImageNet [5]. For instance,

“car-12982”, “car-1527”, and “car-1634” are three different

cars in ImageNet. For each object, there is a corresponding

deformable part detector [10] in object bank. Each detector

consists of two components with six scales each component.

Therefore if there is 𝑁 objects, the dimension of the object

feature will be 12𝑁 .

C.3. Pose Representation

We use the 150 pre-trained poselet detectors provided

in [2]. This gives us a 150-dimensional pose feature repre-

sentation on each image.


