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Abstract

Recent studies on image memorability have shed light
on what distinguishes the memorability of different images
and the intrinsic and extrinsic properties that make those
images memorable. However, a clear understanding of the
memorability of specific objects inside an image remains
elusive. In this paper, we provide the first attempt to an-
swer the question: what exactly is remembered about an
image? We augment both the images and object segmenta-
tions from the PASCAL-S dataset with ground truth mem-
orability scores and shed light on the various factors and
properties that make an object memorable (or forgettable)
to humans. We analyze various visual factors that may in-
fluence object memorability (e.g. color, visual saliency, and
object categories). We also study the correlation between
object and image memorability and find that image memo-
rability is greatly affected by the memorability of its most
memorable object. Lastly, we explore the effectiveness of
deep learning and other computational approaches in pre-
dicting object memorability in images. Our efforts offer a
deeper understanding of memorability in general thereby
opening up avenues for a wide variety of applications.

1. Introduction
Consider the left image in Figure 1. Even though the

person on the right is comparable in size to the person on the
left, he is remembered far less by human subjects, indicated
by their respective memorability scores of 0.18 and 0.64.
Moreover, people tend to remember the person on the left
and the fish in the center, even after 3 minutes and more
than 70 additional visual stimuli have passed. Interestingly,
despite vibrant colors and considerable size, the boat is far
less memorable with a memorability score of 0.18.

One of the primary goals of computer vision is to aid
human-relevant tasks, such as object recognition, object de-
tection, and scene understanding. Much of the algorithms

* denotes equal contribution

Figure 1: Not all objects are equally remembered. Image showing
objects and their respective memorability scores (left) obtained from our
experiment. We note that certain objects (the fish and left person) are more
memorable than other objects. Right panel shows the ground truth map
generated from the object segments and memorability scores.

in service of this goal have to make inferences about all
objects in a scene. In comparison, humans are incredibly
selective in the information they consider from the possi-
ble visual candidates they encounter, and as a result, many
human tasks are dependent on this filtering mechanism to
be performed effectively. For this reason, it is important
for vision systems to have information on hand concern-
ing what objects humans deem important in the world, or
in our specific case, which of them are worth remembering.
Such information holds exciting promise. For example, it
can help in building assistive devices (goggles) so that the
elderly can easily memorize objects that they tend to for-
get, or help design better instructional diagrams involving
memorable graphic objects.

Going back to Figure 1, why are the fish and left per-
son more memorable and how do these objects influence
the overall memorability of the photo? The community
has made great strides in understanding comparable visual
properties of the world such as saliency [19, 15, 16, 7,
4, 11, 12] and importance [3], but we still do not have a
clear understanding of what objects are worth remember-
ing in the world. Although recent studies related to im-
age memorability [17, 22, 24, 18, 8] have explored this at
the image-level, no work has explored what exactly in an
image is remembered. Using object annotations and pre-
dictive models, such knowledge can be potentially inferred
from the memorability score of an image alone [25], but
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Figure 2: Object Memory Game. Participants viewed a series of images followed by a sequence of objects and were asked to indicate whether each
object was seen in the earlier sequence of full images.

these methods will ultimately require ground truth object
memorability data to be properly evaluated and analyzed.
To enable the development of such approaches, we collect
ground truth object-level memorability scores and conduct
an extensive empirical investigation of memorability at the
object level. This allows for a simple yet powerful strategy
that provides detailed answers to many interesting questions
at hand. While image memorability studies have provided
invaluable knowledge, the study of object memorability will
enable unique applications in the field of computer vision
and computational photography not possible from the study
of image memorability alone. It can guide cameras to au-
tomatically focus on memorable objects and in the process
help take photographs that are more memorable. Similarly,
it can enable intelligent ad placement software that embeds
products (objects) in adverts in such a way that humans are
likely not to forget.

In this paper, we systematically explore the memorabil-
ity of objects within individual images and shed light on the
various factors that drive object memorability. In exploring
the connection between object memorability, saliency, ob-
ject categories, and image memorability, our paper makes
several important contributions.
Contributions. (1) This paper presents the first work that
studies the problem of object memorability and provides a
deeper understanding of what makes objects in an image
memorable or forgettable. While previous work has tried
to infer such knowledge computationally [25], our work is
the first to directly quantify and study what objects in an
image humans actually remember. (2) We uncover the re-
lationship between visual saliency and object memorability
and demonstrate those instances where visual saliency di-
rectly predicts object memorability and when/why it fails
to do so. While there have been a few very recent stud-
ies that explore the connection between image memorabil-
ity and visual saliency [8, 34, 26], our work is the first to
explore the connection between object-level memorability
and visual saliency. (3) We make significant headway in
disambiguating the link between image and object memo-
rability. We show that in many cases, the memorability of
an image is primarily driven by the memorability of its most
memorable object. Furthermore, we show that our compiled
dataset can serve as a benchmark for evaluating automated

object memorability algorithms and enable/encourage fu-
ture work in this exciting line of research.

2. Measuring Object Memorability
As a first step towards understanding memorability of

objects in images, we compile an image dataset containing
a variety of objects from a diverse range of categories. We
then measure the probability that every object in each im-
age will be remembered by a large group of subjects after
a single viewing. This helps provide ground truth memo-
rability scores for objects inside images (defined as image
segments) and allows for a precise analysis of the memo-
rable elements within an image.

Toward this, we utilized the PASCAL-S dataset [30], a
fully segmented dataset built on the validation set of the
PASCAL VOC 2010 [13] segmentation challenge. To im-
prove segmentation quality, we manually refined the seg-
mentations from this dataset. We removed all homoge-
nous non-object or background segments (e.g. ground,
grass, floor, and sky), along with imperceptible object frag-
ments and excessively blurred regions. All remaining ob-
ject segmentations were tested for memorability. In sum-
mary, our final dataset comprises 850 images and 3, 412 ob-
ject segmentations (i.e. an average of 4 objects per image),
for which we gathered ground truth memorability through
crowd sourcing.

2.1. Object Memory Game
To measure the memorability of individual objects in

each dataset image, we created an alternate version of the
Visual Memory Game through Amazon Mechanical Turk
following the basic design in [18], with the exception of
a few key differences (refer to Figure 2). In our game,
participants first viewed a sequence of 35 images one at a
time, with a 1.5 second interval between image presenta-
tions. The subjects were asked to remember the contents
and objects inside these images to the best of their abil-
ity. To ensure that subjects would not only just look at the
salient or center objects, they were given unlimited time to
freely view the images. Once they were done viewing an
image, they could press any key to advance to the next im-
age. After the initial image sequence, participants viewed
a sequence of 45 objects, their task then being to indicate



through a key press which of those objects was present in
one of the previously shown images. Each object was dis-
played for 1.5 seconds, with a 1.5 second gap between each
object in the sequence. Pairs of corresponding image and
object sequences were broken up into 10 blocks. Each block
consisted of 80 total stimuli (35 images and 45 objects), and
lasted approximately 3 minutes. At the end of each block,
the subject could take a short break. Overall, the experiment
takes approximately 30 minutes to complete.

Unknown to the subjects, each sequence of images in-
side each block was pseudo-randomly generated to consist
of 3 “target” images taken from the PASCAL-S dataset,
whose objects were later presented to the participants for
identification. The remaining images in the sequence con-
sisted of 16 “filler” images and 16 “familiar” images. Filler
images were randomly selected from the DUT-OMRON
dataset [39], while the familiar ones were randomly sam-
pled from the MSRA dataset [32]. In a similar fashion, the
object sequence in each block was also generated pseudo-
randomly to consist of 3 target objects (1 object taken ran-
domly from each previously shown target image). The re-
maining objects in the sequence consisted of 10 control, 16
filler, and 16 familiar objects. Filler objects were sampled
randomly from the 80 different object categories in the Mi-
crosoft COCO dataset [31], while the familiar objects were
sampled from objects taken from the previously displayed
familiar images in the image sequence. The familiars en-
sured that the subject were always engaged in the task and
the fillers helped provide spacing between the target images
and target objects. While the fillers and familiars (both im-
ages and objects) were taken from datasets of real world
scenes and objects, the control objects were artificial stimuli
randomly sampled from the dataset proposed in [6]. Control
objects were meant to be easy to remember and served as a
criteria to ensure quality [6, 18]. Target images and their
corresponding target objects were spaced 70 − 79 stimuli
apart, while familiar images and their objects were spaced
1 − 79 stimuli apart.

All images and objects appeared only once, and each
subject was tested on only one object from each target im-
age. Objects were centered within the image they originated
from and non-object pixels were set to grey. Participants
were required to complete the entire task, which included
10 blocks (∼30 minutes) and could not participate in the
experiment a second time. The maximum time that sub-
jects could take to finish the experiment was 1 hour. Af-
ter collecting the data, we assigned a memorability score to
each target object in our dataset, defined as the percentage
of correct detections by subjects (refer to Figure 1 for an
example). Strict criteria was undertaken to screen subjects’
performance and to ensure that our final dataset consisted
of quality subjects. We discarded all subjects whose accu-
racy on the control objects was below 70%. The accuracy
of these subjects on filler objects and familiar objects was

greater than chance (> 75%) demonstrating that our data
consists of subjects who were paying attention to the task
at hand. The mean time taken by the subjects to view an
image was 2.2 seconds with a standard deviation of 1.6 sec-
onds. In total, we had 1, 823 workers from Mechanical Turk
each having at least 95% approval rating in Amazon’s sys-
tem. On average, each object was scored by 16 subjects and
the average memorability score was 0.33 with a standard
deviation of 0.28.

2.2. Consistency Analysis
To assess human consistency in remembering objects,

we repeatedly divided our entire subject pool into two equal
halves and quantified the degree to which memorability
scores for the two sets of subjects were in agreement us-
ing Spearmans rank correlation (ρ), a nonparametric mea-
sure for testing monotonic relationship between two vari-
ables. We computed the average correlation over 25 of
these random split iterations, yielding an average correla-
tion of ρ = 0.76. This high consistency in object memora-
bility indicates that, like full images, object memorability is
a shared property across subjects. People tend to remember
(and forget) the same objects in images, and exhibit simi-
lar performance in doing so. Thus memorability of objects
in images can potentially be predicted with high accuracy.
In the next section, we study the various factors that drive
object memorability in images.

3. Understanding Object Memorability
In this section, we aim to better understand how object

memorability is influenced by visual factors that manifest
themselves in natural images. Specifically, we study the
relationship between simple color features, visual saliency,
object semantics, and how memorable or forgettable an ob-
ject in an image is to humans. The results of this study can
be used to guide the development and innovation of auto-
mated algorithms that can predict object memorability.

3.1. Can simple features explain memorability?
While simple low-level image features are traditionally

poor predictors of image memorability [18] (with good rea-
son [27]), the question arises whether such features play
any role in determining object memorability in images. To
address this question and following a similar strategy as
in [18], we compute the mean and variance of each HSV
color channel for each object in our dataset, and compute
the Spearman rank correlation with the corresponding ob-
ject memorability score (refer to Figure 3). We see that the
mean (ρ = 0.1) and variance (ρ = 0.25) of the V chan-
nel correlates weakly with object memorability, suggesting
that brighter and higher contrast objects may be more mem-
orable. On the other hand, essentially no relationship ex-
ists between memorability and either the H or S channels.



This deviates slightly from the findings in [18], which show
mean hue to be weakly predictive of image memorability.
This difference could be due to the fact that the dataset in
[18] contains blue and green outdoor landscapes that are
less memorable than the warmly colored human faces and
indoor scenes. In contrast, outdoor scene-related segments
such as sky and ground were not included as objects in our
dataset. From these results, we see that, like image memo-
rability, simple pixel statistics do not play a significant role
in determining object memorability in images.

3.2. What is the role of saliency in memorability?
Intuitively, we expect that objects within an image that

are most salient are likely to be remembered, since they
tend to draw a viewer’s attention, i.e. a majority of his/her
eye fixations will lie within those object regions. On the
other hand, it is conceivable that some visually appealing
regions will not be memorable, especially since aesthetic
images are known to be less memorable [18]. When can vi-
sual saliency predict object memorability and what are the
possible differences between the two? Studying the rela-
tionship between saliency and memorability is paramount
for understanding object memorability in greater depth.

To address this query, we utilize the eye fixation data
made available for the PASCAL-S dataset [30]. First, we
compute the number of unique fixation points within the im-
age segment of each object and the correlation between this
metric and the object’s memorability score (refer to Figure
4 (left)). We find this correlation to be positive and con-
siderably high (ρ = 0.71), suggesting that fixation count
and visual saliency may drive object memorability consid-
erably. However, the large concentration of points on the
bottom left part of the scatter plot in Figure 4 (left) suggests
that part of the reason for this high correlation is that objects
that have not been viewed (i.e. no fixation points associ-
ated with them) at all have essentially no memorability, and

Figure 3: Simple color features do not explain object memorability.
Correlations of object memorability scores with hue and saturation are near
zero. Only value shows a weak correlation.

Figure 4: Correlations between memorability, fixation count, and
number of objects. Left: Memorability and fixation counts correlate pos-
itively. Middle: Memorability and number of objects are negatively corre-
lated. Right: Fixations and object counts are weakly negatively correlated.

Figure 5: Correlation between object memorability and object fixation
count as a function of minimum number of objects (left) and minimum
number of fixations (right).

therefore will always imply correlation. If we remove these
simple cases, we can examine whether or not the full range
of memorability scores is predicted by fixation count. To
investigate this, we plot the change in correlation between
object memorability and fixations as the minimum number
of fixations inside objects increases. For each minimum fix-
ation count, we compute the memorability-fixation correla-
tion again but only using objects that contain at least this
number of fixations (refer to Figure 5 (right)). The decreas-
ing trend in correlation indicates that as the number of fixa-
tions inside an object increases, the predictive ability dimin-
ishes significantly, indicating that the full range of memo-
rability scores are not well predicted. In addition, Figure 5
(left) plots this correlation as a function of total number of
objects in an image. Interestingly, as the number of objects
in an image increases, the correlation between saliency, i.e.
number of fixations, and memorability decreases sharply.
The two remaining scatter plots in Figure 4 (middle) and
(right) provide additional clues about the relationship be-
tween memorability and fixation count. Note that object
count is negatively correlated with both memorability and
fixation count. This makes sense, since people have more
to look at in an image when more objects are present. In this
case, they tend to look less at any single object, especially
if some of these objects compete for saliency, and therefore
may have a more difficult time remembering those objects.

In summary, saliency is a surprisingly good predictor of
object memorability in simple contexts where few objects
exist in an image or when an object has few interesting
points, but it is a much weaker predictor of object memo-
rability in complex scenes containing multiple objects that
have many points of interest (refer to Figure 6).
Center Bias: Figure 7 illustrates another example where
saliency and memorability diverge. Previous studies related



Figure 6: Memorability prediction by saliency in complex scenes.
Top row: the memorability of the dog is low even though many humans
fixate on it. Bottom row: Humans look at the person more than the horse
although the horse is more memorable than the person.

to visual saliency have shown that saliency is heavily influ-
enced by center bias [21, 40], primarily due to photographer
bias (also evident in Figure 7 (left)) and viewing strategy
[38]. Since our data collection experiment tries to control
for the viewing strategy, memorability exhibits compara-
tively less center bias than saliency. This is most apparent
when considering the difference in the solid ellipse in the
right plot (shows where 95% of fixations are located), and
the dashed ellipse (shows where 95% of the above-median
memorable objects are located).

To the best of our knowledge, this work is the first to
give an in-depth study of the relationship between saliency
and memorability and to highlight how the two phenomena
differ from each other.

3.3. How do object categories affect memorability?
In the previous section, we explored the relationship be-

tween visual saliency and object memorability. Now, we
explore how an object’s category influences the probability
that it will be remembered.

3.3.1 Are some object categories more memorable?

For this analysis, we had three in-house annotators manu-
ally label the object segmentations in our dataset. The anno-

Figure 7: Memorable objects and fixation locations. Left: Normalized
object locations for entire image data set. Both center of object bounding
boxes (CBB, blue) and object center of mass (COM, red) are shown. Mid-
dle: Locations for memorable objects only. Right: Average ground truth
saliency map across the entire dataset. The solid yellow line marks the re-
gion with 95% of all normalized fixation locations. The dashed blue line
marks the region with above-median memorable objects. Center bias is
more strongly expressed in the fixation locations.

tators were provided the original image (for reference) and
the object segmentation and asked to assign a single cate-
gory to the segment out of 7 possible categories: animal,
building, device, furniture, nature, person, and vehicle. We
chose these categories so that a wide range of object classes
could be covered. For example, category “device” includes
objects like utensils, bottles, and televisions, while “nature”
includes objects like trees, mountains, and flowers etc. Fig-
ure 8 shows the distribution of the memorability scores of
all 7 object categories in our dataset.

Results in Figure 8 give a sense of how memorability
changes across different object categories. Animal, person,
and vehicle are all highly memorable classes, each asso-
ciated with an average memorability score greater than or
close to 0.5. Interestingly, all other categories have an aver-
age memorability lower than 0.25, indicating that humans
do not remember objects from these categories very well.
In particular, furniture is the least memorable category with
an average score of only 0.14. This is possibly due to the
fact that most objects in the furniture, nature, and build-
ing categories either appear mostly in the background or are
occluded, which likely decreases their memorability signif-
icantly. In contrast, objects from the animal, person, and
vehicle categories appear mostly in the foreground, leading
to a higher memorability score on average. Interestingly,
the most memorable objects from building, furniture, and
nature tend to have an average memorability in the range of
0.4− 0.8, whereas the score of the most memorable objects
from person, animal and vehicle is higher than 0.9. While
the differences in the memorability of different object cat-
egories could be driven due to factors like occlusion, size,
background/foreground, or photographic bias, the distribu-
tion in Figure 8 suggests that humans remember some ob-
ject classes such as person, animal, and vehicle irrespective
of external nuisance factors and these categories are intrin-
sically more memorable than others.

Figure 8: Some object categories are more memorable than others.
Categories like furniture, nature, building, and device tend to have a large
majority of objects with very low memorability scores. Objects belonging
to animal, person, and vehicle categories are remembered more often.



Figure 9: Memorability of object categories. Most memorable, medium memorable and least memorable objects from each of the 7 categories.

3.3.2 Exploring category-specific memorability

As demonstrated above, some object categories (i.e. ani-
mal, person, and vehicle) tend to be more memorable than
others. However, not all objects in the same category are
equally memorable. The examples in Figure 9 show the
most memorable, medium memorable, and least memo-
rable objects for each category. Across categories, medium
to high memorable objects tend to have little to no occlu-
sion. However, less memorable objects tend to be those
that are occluded and obstructed by other objects. What
other category-related factors could influence the memora-
bility of objects? Among the possible factors, we explore
how category-specific object memorability is influenced by
(i) the number of objects in an image and (ii) the presence
of other object categories.
Number of objects: Figure 10 shows the change in aver-
age memorability for the different categories when the min-
imum number of objects within an image is increased. Re-
sults indicate that the number of objects present in an im-
age is an important factor in determining memorability. For
example, as the number of objects in an image increases,
the memorability of animals and vehicles decreases sharply,
most likely as a result of competition for attention. Al-
though the memorability of vehicles starts to show a slight
increase for objects greater than 8, this arises only due to
insufficient data (number of images is less than 30). Inter-
estingly, the memorability of the person category does not
change significantly when an increasing number of objects
exist in the image. This suggests that people are not only
one of the most memorable object categories, but that their
memorability is the least sensitive to the presence of object
clutter in an image.
Inter-category memorability: How much is the memora-
bility of a particular object category affected when it co-
occurs with another object category (or another instance of
the same category)? To quantify the effect of one category
on another, we consider each pairwise combination of cate-
gories and gather all images that contain at least one object
from both categories. By taking one category as the refer-
ence and the other as the distractor, we compute the aver-
age memorability score mR|D of the reference in the im-
ages common to the reference and distractor. To isolate the

Figure 10: Object number affects category-specific memorability.
For each category, a curve is plotted that shows the change in average
memorability with an increase in the number of objects. The memorabil-
ity of objects belonging to categories like animals and vehicles goes down
significantly with an increase in object number.

effect of the distractor, we compute the memorability differ-
ence ∆m = (mR|D −mR), where mR is the memorability
score of the reference in all images where it exists. Fig-
ure 11 shows ∆m for all possible reference and distractor
pairs. It is clear that ∆m for low-memorability categories
(i.e. nature, furniture, device, and building) is not signifi-
cantly affected by the presence of other categories.

Also, the memorability of the animal category maintains
its high score in the presence of other categories, except ve-
hicles, people, and itself, where it decreases substantially.

Figure 11: Inter-category object memorability relationship. Effect
of distractor categories on the memorability of reference categories



Figure 12: Memorability of people in presence of other categories.
Top row: Images where a person co-occurs with other categories. Bottom
row: Ground truth object memorability maps. In the presence of build-
ings, the memorability of person can drop. In the presence of a vehicle or
animal, the person is usually more memorable.

The memorability of people tends to be unaffected by the
presence of most other categories including itself. However,
it decreases in the presence of vehicles and buildings. This
could be due to the fact that people in images containing
vehicles or buildings are usually zoomed out and smaller in
size (refer to Figure 12). The memorability of the vehicle
category is strongly affected by the presence of other object
categories. In particular, it drops significantly in the pres-
ence of other vehicles, people, and animals.

In summary, when an animal, vehicle, or person co-occur
in the same image, the memorability of all three categories
usually decreases. However, this pattern of change in mem-
orability is category-specific in general. For example, when
a vehicle and animal are present in the same image, the an-
imal is generally more memorable, even though both their
memorability scores drop significantly. When a vehicle or
an animal co-occurs with a person, the person is generally
more memorable (also shown in Figure 12).

3.4. How are object & image memorability related?
Until now, we have studied what objects people remem-

ber and the factors that influence their memorability, but to
what extent does the memorability of individual objects af-
fect the overall memorability of an image? Moreover, if
an image is highly memorable, what can we say about the
memorability of the objects inside those images (and vice
versa)? To shed light on these queries, we conducted a sec-
ond large-scale experiment on Amazon Mechanical Turk
for all images in our dataset to gather their respective im-
age memorability scores. For this experiment, we followed
the same strategy as the memory game experiment proposed
in [23]. A series of images from our dataset and Microsoft
COCO dataset [31] (i.e. ‘filler’ images) were flashed for
1 second each, and subjects were instructed to press a key
whenever they detected a repeat presentation of an image.
A total of 350 workers participated in this experiment with
each image being viewed 80 times on average. The rank
correlation after averaging over 25 random splits was 0.7,
determining consistency in the image memorability scores.

Using results from the previous experiments, we com-
puted the correlation between the scores of the single most
memorable object in each image and the memorability score
of each image. This correlation is moderately high with

Figure 13: Max object memorability predicts image memorability.
Top row: most memorable images taken from our dataset along with their
highest memorable object and their respective memorability scores. Bot-
tom row: least memorable images in the dataset along with their most
memorable object and their respective memorability scores. We notice
that maximum object memorability correlates strongly with image memo-
rability in both cases.

ρ = 0.4, suggesting that the most memorable object in an
image plays a crucial role in determining the overall memo-
rability of an image. To investigate this finding in relation to
some extreme cases, we repeated the same analysis as above
but on a subset of the data containing the 100 most mem-
orable images and the 100 least memorable images. The
correlation between maximum object memorability and im-
age memorability for this subset of images increased sig-
nificantly to ρ = 0.62. This means that maximum object
memorability serves as a strong indicator of whether an im-
age is highly memorable or not memorable at all. In other
words, images that are highly memorable contain at least
one highly memorable object and images with low memo-
rability usually do not contain a single highly memorable
object (refer to Figure 13).

To study the effect of maximum object memorability
across categories, we computed the correlation between
maximum object and image memorability for each indi-
vidual object category. The correlation for the categories
were: animal (ρ = 0.38), building (ρ = 0.22), device
(ρ = 0.47), furniture (ρ = 0.53), nature (ρ = 0.64), per-
son (ρ = 0.54), and vehicle (ρ = 0.30) which shows that
certain categories are more strongly correlated than others.
For example, images containing animals, buildings, or ve-
hicles as the most memorable objects tend to have varying
degree of image memorability (indicated by their lower ρ
values). On the other hand, device, furniture, nature, and
person are strongly correlated with image memorability, in-
dicating that if an image’s most memorable object belongs
to one of these categories, the object memorability score is
strongly predictive of the image memorability score. We
can imagine scenarios in which this information is poten-
tially useful. For example, in vision systems that are tasked
to predict scene memorability, a single object and its cate-
gory can serve as a strong prior in predicting this score.

4. Predicting Object Memorability
This work makes available the very first dataset contain-

ing ground truth memorability of constituent objects from a



highly diverse image set. In this section, we show that our
dataset can be used to benchmark computational memora-
bility models and serve as a stepping stone in the direction
of automated object memorability prediction.
Baseline models: As a first step, we propose a simple base-
line model that utilizes a conv-net [28, 20] trained on the
ImageNet dataset [37]. Since object categories play an im-
portant role in determining object memorability (Section
3.3), and deep learning models have recently been shown to
achieve state-of-the-art results in various recognition tasks,
including object recognition [14, 29], we believe that this
simple model can serve as an adequate baseline for object
memorability prediction. We first generated object seg-
ments by using MCG, a generic object proposal method
proposed in [2]. Next, we trained a support vector regres-
sor (SVR) using 6-fold cross-validation on the original ob-
ject segments to map deep features to memorability scores.
We used this model to predict memorability scores for the
top K = 20 object segments obtained using the MCG algo-
rithm. After predicting these memorability scores, memora-
bility maps were generated by averaging the scores of these
top K segments at the pixel level. Since image features
like SIFT [33] and HOG [10] have previously been shown
to achieve good performance in predicting image memora-
bility [18], we built a second baseline model using these
features for comparison. Training and testing of this model
was performed similar to the conv-net model.
Evaluation: To evaluate the accuracy of the predicted
object memorability maps, we computed the rank correla-
tion between the mean predicted memorability score inside
each of the object segments and their ground truth mem-
orability scores. These results are reported in Figure 14.
Clearly, the conv-net baseline, DL-MCG, performs consid-
erably well (ρ = 0.39). In contrast, the baseline trained
using HOG and SIFT, H+S, achieves a much lower perfor-
mance (ρ = 0.27). Saliency maps generated from saliency
algorithms are also likely to have some degree of overlap
with memorability and are therefore worth comparing to our

Figure 14: Rank correlation of predicted object memorability. Ac-
curacy of the baseline and saliency algorithms on proposed benchmark.

baseline, especially given the absence of other memorabil-
ity prediction methods. To this end, we included 8 state-of-
the-art saliency methods (top performing methods accord-
ing to benchmarks in [5, 4]): GB [15], AIM [7], DV [16],
IT [19], GC [9], PC [35], SF [36], and FT [1] to our com-
parison. Figure 14 shows that the H+S baseline is outper-
formed by most saliency methods. Thus, even though mod-
els using SIFT and HOG have previously demonstrated high
predictive power for image memorability, they may not be
as well suited for the task of predicting object memorabil-
ity. The deep-net baseline model, DL-MCG performs better
than all other saliency methods with only PC (ρ = 0.38),
SF (ρ = 0.37), and GB (ρ = 0.36) showing compara-
ble performance. A common factor between these saliency
methods is that they explicitly add center bias to their im-
plementation. Although object memorability exhibits less
center bias when compared to eye fixations, it still tends
to be biased somewhat towards the center due to photogra-
pher bias (see Section 3.2), which could be a reason for the
high performance of these saliency methods. While DL-
MCG performed favorably in predicting object memorabil-
ity, its accuracy is highly dependent on the quality of the
segmentations used. To illustrate this fact, we redo the pre-
diction task but with the ground truth segments replacing
the MCG segments. The resulting baseline is referred to as
DL-UL, which can be considered the gold standard or the
upper bound on automated object memorability prediction.
Its correlation score is very high and close to human perfor-
mance (ρ = 0.7), which suggests that the conv-net model
does have high predictive ability but that it is sensitive to
the image segmentations it is applied to.
5. Conclusion

In this paper, we propose the problem of understanding
the memorability of objects in images. To this end, we ob-
tained ground truth data that helps to study and analyze this
problem in depth. We show that the category of an object
has meaningful influence on its memorability, and that vi-
sual saliency can predict object memorability to some de-
gree. Moreover, we studied the relationship between image
and object memorability and compiled a benchmark dataset
for automated object memorability prediction. Future work
will involve studying the influence of non-object image re-
gions and scene context on memorability.
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