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ABSTRACT
Stroke is the third leading cause of death and the principal
cause of serious long-term disability in the United States.
Accurate prediction of stroke is highly valuable for early in-
tervention and treatment. In this study, we compare the
Cox proportional hazards model with a machine learning
approach for stroke prediction on the Cardiovascular Health
Study (CHS) dataset. Specifically, we consider the common
problems of data imputation, feature selection, and predic-
tion in medical datasets. We propose a novel automatic fea-
ture selection algorithm that selects robust features based
on our proposed heuristic: conservative mean. Combined
with Support Vector Machines (SVMs), our proposed fea-
ture selection algorithm achieves a greater area under the
ROC curve (AUC) as compared to the Cox proportional haz-
ards model and L1 regularized Cox model. Furthermore, we
present a margin-based censored regression algorithm that
combines the concept of margin-based classifiers with cen-
sored regression to achieve a better concordance index than
the Cox model. Overall, our approach outperforms the cur-
rent state-of-the-art in both metrics of AUC and concor-
dance index. In addition, our work has also identified poten-
tial risk factors that have not been discovered by traditional
approaches. Our method can be applied to clinical predic-
tion of other diseases, where missing data are common and
risk factors are not well understood.

Categories and Subject Descriptors
J.3 [Computer Application]: Life and medical sciences;
I.2.6 [Artificial Intelligence]: Learning; I.5.2 [Pattern
recognition]: Design methodology

General Terms
Experimentation, Algorithms, Performance
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1. INTRODUCTION
Stroke is the third leading cause of death and the principal

cause of serious long-term disability in the United States [2].
Stroke risk prediction can contribute significantly to its pre-
vention and early treatment. Numerous medical studies and
data analyses have been conducted to identify effective pre-
dictors of stroke. The Framingham Study [6, 34] reported a
list of stroke risk factors including age, systolic blood pres-
sure, the use of anti-hypertensive therapy, diabetes mellitus,
cigarette smoking, prior cardiovascular disease, atrial fib-
rillation, and left ventricular hypertrophy by electrocardio-
gram. Furthermore, in the past decade, a number of other
studies [25, 23, 24, 26] have led to the discovery of more risk
factors such as creatinine level, time to walk 15 feet, and
others.

Most previous prediction models have adopted features
(risk factors) that are verified by clinical trials or selected
manually by medical experts. For example, Lumley et al. [24]
built a 5-year stroke prediction model based on the Cardio-
vascular Health Study [8] dataset using a set of 16 manually
selected features (given in [25]) from a total of roughly one
thousand features. With a large number of features in cur-
rent medical datasets, it is a cumbersome task to identify
and verify each risk factor manually. On the other hand,
machine learning algorithms are capable of identifying fea-
tures highly related to stroke occurrence efficiently from the
huge set of features; therefore, we believe machine learning
can be used to: (i) improve the prediction accuracy of stroke
risk and (ii) discover new risk factors.

Lumley et al.’s [24] 5-year stroke prediction model adopted
the Cox proportional hazards model, one of the most com-
monly used statistical methods in medical research [3]. It
has been extensively studied [1, 3] and applied to the predic-
tion of various diseases including stroke [16, 24, 21]. How-
ever, the performance of the original Cox model depends
heavily on the quality of the pre-selected features. To ad-
dress this problem, several approaches have been proposed
recently [9, 28].

Thus far, there have been very few studies on compar-
ing the Cox regression with machine learning methods in
making predictions on censored data. Kattan [18] compared
Cox proportional hazards regression with several machine
learning methods (neural networks and tree-based meth-
ods) based on three urological datasets. However, Kattan’s



study focused on datasets with only five features, while ma-
chine learning algorithms are expected to effectively han-
dle many more features. In addition, the paper considered
only some relatively simple machine learning algorithms and
high-performance machine learning algorithms such as SVM
and logistic regression were not explored.

This paper presents an integrated machine learning ap-
proach for stroke risk prediction. We investigated machine
learning algorithms to improve the prediction accuracy and
conducted extensive comparisons between our results and
those with the Cox proportional hazards model. Using the
CHS dataset as a benchmark, we first duplicated the re-
sults of Lumley et al. [24] as a baseline. We then compared
our machine learning approach with the baseline results and
an extended version of the Cox model with feature selec-
tion. According to our experiments, our approach consis-
tently outperformed the Cox model.

Our approach considers the problems of data imputation,
feature selection, and prediction in medical datasets. We
propose a novel automatic feature selection algorithm that
selects robust features based on our proposed heuristic: con-
servative mean. We combine this feature selection algorithm
with the popular SVM algorithm.

Furthermore, we present a margin-based censored regres-
sion algorithm that combines the concept of margin-based
classifiers with censored regression to achieve a better con-
cordance index than the Cox model. In addition, our work
has also identified potential risk factors that have not been
discovered by traditional approaches. Last, we note that
this method can be applied to clinical prediction of other
diseases, where missing data are common and risk factors
are not well understood.

In summary, our main contributions are:

1. An extensive evaluation of the problems of data im-
putation, feature selection and prediction in medical
data, with comparisons against the Cox proportional
hazards model.

2. A novel feature selection algorithm, Conservative Mean
feature selection, that outperforms both L1 regularized
Cox model and L1 regularized logistic regression on the
CHS dataset.

3. A novel risk prediction algorithm, Margin-based Cen-
sored Regression, that outperforms the Cox model given
the same set of features.

4. Discovery of new (previously unknown) potential risk
factors of stroke.

5. An integrated machine learning approach that signif-
icantly outperforms the current state-of-the-art algo-
rithm in stroke prediction.

This paper is organized as follows. Section 2 describes Cox
proportional hazards regression and the L1 regularized Cox
models that we use as the baselines in this study. Section
3 describes the various machine learning-based methods we
compare against the Cox models, and Section 4 provides
the experimental results of our approach. Finally, Section 5
presents our conclusions.

2. RELATED WORK
Cox proportional hazards model is widely adopted in clin-

ical studies and used heavily in stroke prediction. We briefly
compare the Cox model to some of our other approaches.

2.1 Cox proportional hazards model
The Cox proportional hazards model is given by

h(t|x) = h0(t) exp(βTx), (1)

where h(t|x) is the hazard value at time t given the feature
vector x ∈ Rd for an individual, h0(t) is an arbitrary baseline
hazard function, β ∈ Rd are the parameters that we are
trying to estimate for the model, and d is the number of
features for each individual.

This model is known as a semi-parametric model because
the baseline hazard function is treated non-parametrically.
Thus, we can see that the parameters have a multiplicative
effect on the hazard value which makes it different from the
linear regression models [20].

The Cox model is part of the Generalized Linear Model
(GLM) family. Another member of this family is the logistic
regression model, where the output takes the following form:

h(x) = (1 + exp(−βTx))−1 (2)

In this study, we investigated both the Cox model and
logistic regression model for stroke prediction. In addition,
we broadened our approach to other non-regression models
such as SVM, taking an agnostic view on what the best
model is for stroke prediction. We found that while the Cox
model performs reasonably well for stroke prediction, it is
inferior to more general machine learning models, such as
SVM or margin-based censored regression (proposed in this
paper).

2.2 Feature selection and L1 regularization
Finding the best estimate for β in equation (1) and (2)

is typically computationally difficult, particularly given a
large number of features. By introducing a complexity-based
penalty term, we can identify irrelevant features and remove
them from our model. The L1 regularized sparse learning
problem has the following general form:

min
β
g(β) + λ||β||1, (3)

where g(·) is a convex function, β is a vector of length d,
and λ > 0 is a regularization parameter.

In this study, we evaluated both L1 regularized Cox model
and L1 regularized logistic regression. We found that L1

regularized feature selection gives better performance over
the baselines (i.e., selecting features manually) by reducing
the feature set to the most relevant ones.

3. OUR APPROACH
We present an integrated machine learning approach to

stroke prediction. Our approach takes the following steps:

1. Apply a systematic method for imputing the missing
entries in the dataset.

2. Select the relevant feature subset based on an auto-
matic procedure.

3. Apply learning algorithms to evaluate the prediction
performance.



3.1 Performance Metrics
For evaluating the performance of our methods, we used

the following metrics: area under the ROC curve and con-
cordance index. To define these precisely, we first outline
the notation.

3.1.1 Notation
Consider a dataset {(x(1), y(1), t(1)), ..., (x(m), y(m), t(m))},

where x(i) ∈ Rd is the feature vector1 for individual i (i.e.,
d is the number of features), m is the number of individuals

in the dataset, y(i) is the occurrence of stroke within a pre-
defined time frame (y = 1 if stroke occurs and 0 otherwise),

and t(i) is the time of stroke. If the stroke does not occur
within the pre-defined time frame for individual i, we set
t(i) = tmax, where tmax is the duration of the time frame
(e.g., 5 years). Now, we define the set of indexes of all

positive and negative examples as Mp = {i|y(i) = 1} and

Mn = {i|y(i) = 0} respectively. Given a prediction function
f : Rd → R, we can compute the prediction estimate for
individual i as f(x(i)).2

3.1.2 Area under the ROC curve
The area under the ROC curve (or AUC) is one of the

most important metrics for evaluating the performance of
classifiers in the medical diagnosis domain (where positive
samples are usually small in number) as it considers both
sensitivity and specificity, providing a balanced measure for
classifier performance. Specifically, the AUC (associated
with the function f) is defined as follows [5, 14]:

AUC =
1

|Mp| · |Mn|
X
i∈Mp

X
j∈Mn

1f(x(i))>f(x(j)), (4)

where 1(·) is an indicator function. The AUC is used to eval-
uate the performance of the binary stroke classification task.
Essentially, this metric gives an estimate of how accurately
the model can answer the question, “is individual A likely
to have a stroke within the next 5 years?”.

3.1.3 Concordance Index
We would also like to measure how accurately the predic-

tions reflect relative risk of stroke of two randomly selected
individuals. A commonly used metric in survival models for
this evaluation is the concordance index [15, 29]. The con-
cordance index is a generalization of the concept of AUC
designed to handle (i) continuous values for prediction and
(ii) censored data. Similar to the AUC, it takes values from
0.5 (completely random) to 1.0 (perfect prediction). The
concordance index gives an estimate of how well the output
of a prediction model matches the relative time of the event
for all pairs of individuals that can be ordered. In essence,
it allows us to measure the ability of the model to answer
the question, “is individual A or individual B more likely to
have a stroke?”

Formally, the concordance index is defined as:

Concordance Index =
1

|ε|
X
i∈Mp

X
t(j)>t(i)

1f(x(i))>f(x(j)), (5)

1We extend the feature vector with a constant 1 as the in-
tercept term.
2Throughout this paper, we interpret the binary classifica-
tion output ŷ ∈ {0, 1} of the prediction function value f(x)
as follows: ŷ = 1 ⇐⇒ f(x) > 0.

where 1(.) is the indicator function as before, and |ε| denotes

the number of edges in the ordered graph of t.3 We assume
that a larger value of f corresponds to a higher risk of stroke.

In the following sections, we describe the details of data
imputation, feature selection, and prediction models.

3.2 Missing Data Imputation
Clinical data often has significant omissions due to indi-

viduals dropping out of the survey, errors in data collection
and so on. Missing data often leads to an inaccurate predic-
tive model. Data imputation can be used to remedy missing
data. We filled-in missing entries using the following meth-
ods:

• Column mean: replace each missing value with the
mean of the feature’s observed values

• Column median: replace each missing value with the
median of the feature’s observed values

• Imputation through linear regression [19]

• Regularized Expectation Maximization (EM) [31]

As a post-processing step to impute discrete-valued fea-
tures, we rounded the imputed values to the nearest discrete
value. The imputation algorithms were evaluated using the
following metrics:

1. Imputation accuracy (adopted from [7]):

(a) Root-Mean-Square Deviation (RMSD)

(b) Mean Absolute Deviation (MAD)

(c) Bias (mean of imputed values - mean of ground-
truth data)

2. Overall stroke prediction performance (measured by
the area under the ROC curve).

3.3 Feature Selection
Selecting relevant features [13] is crucial for building an ac-

curate model of clinical data. For example, the CHS dataset
has a large number of attributes, ranging from demographic
information and clinical history to biomedical and physical
measurements. However, only a small subset of attributes
is highly relevant to stroke prediction. The traditional ap-
proach to stroke prediction has been to use manually se-
lected features based on risk factors analyzed by medical
and clinical studies [4, 24, 33, 36]. Instead of manually se-
lecting features, we evaluate three machine learning-based
algorithms for selecting features automatically: forward fea-
ture selection, L1 regularized logistic regression, and “con-
servative mean” feature selection.

3.3.1 Forward feature selection
Forward feature selection [12] greedily adds one feature at

a time. The best subset of features was selected based on
cross-validation. Note that adding more features does not
necessarily improve the test performance since overfitting
may occur.

3An ordered graph G(N,E) of t = {t(1), ..., t(m)} is defined
on a set of m nodes, N = {n1, ..., nm}, and a set of edges,

E, where (ni, nj) ∈ E ⇐⇒ t(i) < t(j).
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Figure 1: An illustration of Algorithm 2 for K = 3.
We use the sets T1, T2 and T3 shown in the shaded
boxes as validation sets, and the corresponding sets
T−1, T−2 and T−3 for training to find cross-validation
estimates to optimize the value of the threshold, t.
CM(T ,K) refers to the ConservativeMean(D,K) func-
tion defined in Algorithm 1.

3.3.2 L1 regularized logistic regression
L1 regularized logistic regression [30] is a popular algo-

rithm for feature selection. L1 regularization has the bene-
ficial effect of regularizing model coefficients (as in L2 reg-
ularization), but yields sparse models that are more eas-
ily interpretable [27, 32, 35]. This model has a regulariza-
tion parameter that controls the “sparseness” of the weights.
Consequently, the features with nonzero weights are selected
for prediction.

3.3.3 Conservative mean feature selection
Here we present a novel and efficient feature selection algo-

rithm, Conservative Mean (CM) feature selection. Consider
a setting where positive examples are small in number and
non-homogeneous. Then, the prediction performance may
vary significantly depending on how the training and test-
ing examples are sampled. We want to select features that
are relevant, yet robust to variations due to sampling over a
small number of non-homogeneous examples.

In order to incorporate the above intuition, we introduce
the heuristic of conservative mean (µ − σ), where µ and σ
refer to the mean and standard deviation of the AUC of a
feature4 respectively. The setting is similar to K-fold cross-
validation, but we also want to consider the variance across
different folds along with the average of the prediction per-
formance. In addition, we want to evaluate the performance
of each feature individually. Therefore, subtracting the stan-
dard deviation from the mean provides a more ‘conservative’
estimate of the performance of each feature as compared to
using the mean alone, which is the typical approach.5

4µ (or σ) refers to mean (or standard deviation) of the AUC
of a given feature over K-folds of the dataset. See Algo-
rithm 1 for precise definition.
5The same heuristic can be used to optimize any other met-
ric such as classification accuracy. Furthermore, this heuris-

Table 1: Notation for a dataset D with d features
and m examples, i.e., D = {(x(1), y(1)), ..., (x(m), y(m))}
(x(i) ∈ Rd, y(i) ∈ {0, 1}, ∀i)

Symbol Description

D.x(i) , x(i) i-th example in the dataset

D.y(i) , y(i) i-th label in the dataset

D.xj , (x
(1)
j , ..., x

(m)
j ) j-th features in the dataset

D.y , (y(1), ..., y(m)) set of all labels in the dataset

To describe the conservative mean heuristic formally, we
first introduce the notation in Table 1. The key observation
here is that when we consider monotonic prediction func-
tions over a single feature, then we only need to compute
the AUC over the feature values and the labels (without
considering the prediction functions). This is because AUC
is invariant under mapping from monotonic functions. For
example, this eliminates the need to compute the weight vec-
tor or intercept term for a linear SVM when using a single
feature as input. The AUC is only affected by the sign of
the weight vector which can be easily determined to be the
one that ensures the AUC is greater than or equal to 0.5.
Specifically, the following two Lemmas provide the formal
basis for the efficient computation.

Lemma 1. Given any monotonically increasing function
f : R→ R and a dataset D = {(x(1), y(1)), ..., (x(m), y(m))},
where x(i) ∈ Rd, y(i) ∈ {0, 1},∀i, the AUC for predicted
function values of j-th feature, f(D.xj), and the labels, D.y,
is equal to AUC(D.xj ,D.y).

Proof. For notational convenience, we define

f(D.xj) , (f(x
(1)
j ), ..., f(x

(m)
j )),

i.e., function values for j-th features. Then, the following
equalities hold (for all j’s):

AUC(f(D.xj),D.y) (6)

, AUC((f(x
(1)
j ), ..., f(x

(m)
j )), (y(1), ..., y(m))) (7)

= AUC((x
(1)
j , ..., x

(m)
j ), (y(1), ..., y(m))) (8)

, AUC(D.xj ,D.y)) (9)

The second step holds because a monotonically increasing
function does not affect the relative ordering of D.xj , caus-
ing the AUC to remain unchanged.

Lemma 2. Given a hypothesis space H of monotonic
(either strictly increasing or strictly decreasing) prediction
functions f : R→ R and a training set, Dtr, and a validation
set, Dval, we define f∗ as follows:

f∗ , arg max
f∈H

AUC(f(Dtr.xj),Dtr.y) (10)

Then, the following holds:

AUC(f∗(Dval.xj),Dval.y) (11)

=

(
AUC(Dval.xj ,Dval.y) if AUC(Dtr.xj ,Dtr.y) ≥ 0.5

AUC(−Dval.xj ,Dval.y) otherwise

tic could be applied to other feature selection algorithms
that use cross-validation for selecting features (e.g., forward
feature selection).



Algorithm 1 Computing the conservative mean vector

function ConservativeMean(D,K):
Input:
D: dataset with d features
K: number of folds
Output:
v: Conservative mean vector (of length d)

begin
Divide D evenly into K disjoint sets D1, ...,DK such that
D = D1 ∪ ... ∪ DK and Dk ∩ Dl = ∅,∀k, l.
Set D−k , D −Dk, ∀k.
for j := 1 to d do
s := ~0 ∈ RK
for k := 1 to K do

if AUC(D−k.xj ,D−k.y) ≥ 0.5 then
sk :=AUC(Dk.xj ,Dk.y)

else
sk :=AUC(−Dk.xj ,Dk.y)

end if
end for
vj := µ(s)− σ(s)

end for

where
AUC(predictions, labels) returns the area under the ROC
curve given the predictions and labels.
µ(s) , 1

K

PK
k=1 sk

σ(s) ,
q

1
K

PK
k=1(sk − µ(s))2

end

Proof. By definition of f∗, AUC(f∗(Dtr.xj),Dtr.y) ≥
0.5. Since we consider only monotonic functions, f∗ is either
monotonically increasing or monotonically decreasing. If f∗

is monotonically increasing, we have (from the Lemma 1):

AUC(f∗(D.xj),D.y) = AUC(D.xj ,D.y)), ∀D (12)

⇒ AUC(f∗(Dval.xj),Dval.y) = AUC(Dval.xj ,Dval.y))

Similarly, if f∗ is monotonically decreasing, we have

AUC(f∗(D.xj),D.y) = AUC(−D.xj ,D.y)),∀D (13)

⇒ 0.5 ≤ AUC(f∗(Dtr.xj),Dtr.y) = AUC(−Dtr.xj ,Dtr.y))

⇒ AUC(Dtr.xj ,Dtr.y)) ≤ 0.5, and

AUC(f∗(Dval.xj),Dval.y) = AUC(−Dval.xj ,Dval.y))

Therefore, we can efficiently compute a robust estimate
of prediction performance for each feature (summarized as
conservative mean vector v) as described in Algorithm 1.

Based on the conservative mean heuristic for ranking the
features, we can now describe an algorithm to select the
appropriate number of features. The overall procedure is
described in Algorithm 2 (see Figure 1 for illustration). The
training data is initially split into K folds, and we com-
pute the conservative mean vector by holding out the k-th
fold each time, resulting in a total of K vectors. We then
compute the vector v̄ by taking the average of the conser-
vative mean vectors to select a robust set of features that
generalize well across all folds. Finally, given a threshold
value t ∈ [0, 1], we select all features I , {j|v̄j ≥ t}.6 This

6Note that selecting a threshold is equivalent to selecting a
number of features ranked according to their value of the v̄
vector.

Algorithm 2 Conservative mean feature selection

Input:
T : dataset with d features
K: number of folds
t: threshold ∈ [0, 1]
Output:
I: Set of selected feature indexes ⊂ {1, ..., d}.
begin
Divide T evenly into K disjoint sets T1, ..., TK such that
T = T1 ∪ ... ∪ TK and Tk ∩ Tl = ∅,∀k, l.
Set T−k , T − Tk, ∀k.
v̄ := ~0 ∈ Rd
for k := 1 to K do
D := T−k
v̄ := v̄ + 1

K
ConservativeMean(D,K)

end for
I := {j|v̄j ≥ t}
end

threshold value can be determined using cross-validation, as
described in the caption of Figure 1.

3.4 Learning Algorithms for Prediction
In this section, we describe the learning algorithms that

we used for stroke prediction: Support Vector Machines and
Margin-based Censored Regression (MCR).

3.4.1 Support Vector Machines
SVM is a popular machine learning algorithm that is widely

used for classification. Conceptually, SVM optimizes the
“margin” between positive and negative examples. We can
formulate the stroke prediction problem as predicting the
occurrence of stroke over a pre-defined time frame, which
makes it a binary classification problem that fits into the
framework of SVM. Furthermore, SVM solvers can be used
to optimize the area under the ROC curve directly, so they
are well suited for the task of stroke prediction. We used lin-
ear SVMs implemented using SVM-perf [17] in this study.

3.4.2 Margin-based Censored Regression
Since the SVM is in principle developed for classification,

we use it to predict whether or not a stroke would occur
within a given time frame while ignoring the information
about when the stroke occurred. However, the time of stroke
is indicative of the relative risk level of an individual. Incor-
porating this information would enable us to answer ques-
tions such as “is individual A or individual B more likely
to have a stroke?” and “when is a stroke likely to occur?,”
whereas SVM predictions are generally unable to address
these concerns.

To address these concerns, we propose the Margin-based
Censored Regression algorithm that unifies linear regres-
sion with an SVM-like classifier on censored data. More
specifically, we propose a convex optimization problem as
described below.

Consider a dataset {(x(1), y(1), t(1)), ..., (x(m), y(m), t(m))},
where x(i) ∈ Rd, y(i) ∈ {0, 1} and t(i) ∈ R, as described
in Section 3.1. The time of stroke is then normalized as
t̃(i) = t(i)/tmax. We then use a monotonically decreasing
function to transform the normalized time of stroke to a
“hazard value,” as in the Cox model. We use the function
z(t̃(i)) = − log(t̃(i)) in our experiments. With this trans-



formation, we have z(t̃(i)) = 0 for i ∈ {i|y(i) = 0} and

z(t̃(i)) > 0 for i ∈ {i|y(i) = 1}.7
Given the above transformation, our goal is to find a

weight vector w such that wTx(i) is “close to” z(t̃(i)). In
addition, we want to be able to distinguish between positive
and negative examples; in other words, we want to find w
such that the individuals who experienced a stroke are well
separated from the individuals who did not. This is achieved
by imposing wTx(i) ≤ −ε for the individuals who did not
have a stroke, where ε is the desired margin between positive
and negative examples (set to 1 in our experiments). Finally,

similar to SVM, we introduce a penalty term
P
i ξ

(i) to al-
low for non-separable datasets, and to reduce the sensitivity
to outliers.

To sum up, we formulate the problem as

minimize
w,ξ

X
i:y(i)=1

φ(wTx(i) − z(t̃(i))) + C
X

i:y(i)=0

ξ(i) + γ||w||22

subj. to wTx(i) ≤ −ε+ ξ(i), ∀i ∈ {i|y(i) = 0}, (14)

ξ(i) ≥ 0, ∀i,

where C and γ are the hyperparameters for the misclassifi-
cation loss penalty and for regularization respectively, and
φ : R → R is the regression loss penalty, which we fixed
as the Huber function [11]8 in our study. To solve prob-
lem (14), we used CVX, a package for specifying and solving
convex programs [11, 10].

Note that we can easily apply the kernel trick to this
model, as in SVM. Furthermore, the objective function can
be modified to optimize the AUC directly in the same way
as SVM-perf [17].

4. EXPERIMENTAL RESULTS

4.1 Dataset and Preprocessing
The Cardiovascular Heart Study [8] is a study of risk fac-

tors for cardiovascular diseases in people over the age of 65.
According to the Centers for Disease Control and Preven-
tion, nearly three-quarters of all strokes occur in people over
the age of 65.9 This makes CHS an invaluable resource for
the investigation of risk factors and the prediction of stroke.
In the original cohort recruited in the first phase of the CHS,
5,201 individuals were examined yearly from 1989 to 1999,
with a total of about one thousand attributes collected an-
nually through medical examinations, questionnaires, and
phone contacts. Events such as stroke and hospitalization
were verified by specialists and recorded for each individual.

The comprehensiveness of the CHS dataset makes it one
of the most widely used benchmarks for studying risk fac-
tors for cardiovascular diseases, including stroke. However,
it is also very challenging to use the CHS dataset effectively
due to a significant fraction of missing values and a large
number of features in the dataset. For example, about 25%
of the baseline measurements in the CHS dataset are miss-
ing, and some entries are recorded as “unknown” or “refuse
to answer.”

7For the CHS dataset, z(t̃(i)) roughly ranges from 0 to 5.
8The Huber function φ(x) is defined as 2|x| − 1 for |x| ≥ 1,
and |x|2 for |x| ≤ 1.
9http://www.cdc.gov/Stroke/facts.htm

In our experiments, we considered the 5-year stroke pre-
diction10 problem on the original cohort. To begin with, we
removed the individuals with pre-baseline stroke (as done
in [24]) and the features with more than 60% missing en-
tries.11 This criterion was chosen because features with too
many missing entries often turn out to be irrelevant. Af-
ter preprocessing, the final dataset consisted of 796 features
and 4, 988 examples with 299 occurrences of stroke. Then
the data was divided randomly with a ratio of 9 : 1 for
training and testing respectively, while keeping the ratio of
the positive and negative examples constant. This process
was repeated to obtain a fixed set of 5 randomly sampled
train and test sets.12 In the remaining sections, “average
test AUC” refers to the average of AUC obtained by eval-
uating the prediction algorithm on the test set over these
5 random trials. We also define “average test concordance
index” in a similar way.

4.2 Data Imputation
The data imputation quality was evaluated using 10-fold

cross-validation. For each feature j, we first removed all
the examples that contained missing values for the particu-
lar feature. Then, we divided the examples in the resulting
data into training and validation sets with the ratio of 9:1
respectively. Treating feature j of the validation set as being
unobserved, we used the training data to impute the values
of the particular feature of the validation data.13 The im-
puted values were then compared with the actual values in
the validation dataset to obtain the performance metrics de-
scribed in Section 3.2. This process was repeated for every
feature and the results were averaged. The summary results
are shown in Table 2.14 For the computation of the area
under the ROC curve, we used conservative mean feature
selection and SVM for stroke prediction.15

Among the imputation methods, linear regression gave
the smallest RMSD and MAD values, which suggested that
it achieved the highest imputation accuracy. However, the
overall stroke prediction quality with column median was
the best with an area of 0.774 under the ROC curve. In
the following sections, we report the results using column
median as the default imputation method.

4.3 Feature Selection

4.3.1 Forward feature selection
As this method is computationally very expensive, the

number of features was initially reduced from 796 to about
200 using L1 regularized logistic regression. Then we ran for-

10Only the cases of stroke that occurred within 5 years after
the baseline measurements were considered positive exam-
ples.

11Some features represented “refuse to answer” values as 9
or 99. We replaced these entries with “missing” before data
imputation.

12These random trials were used for all the remaining exper-
iments to ensure all the results are directly comparable.

13For the linear regression imputation, any missing values in
the other features were filled in using the column mean.

14Imputation methods without rounding have been left out
as the results were very similar.

15Imputation with regularized EM was computationally ex-
pensive, so we used L1 logistic regression on data imputed
with column median to reduce the number of features to
about 200 before applying EM.



Table 2: Data Imputation Results
Imputation Method RMSD MAD Bias Avg. Test AUC

Column Median 0.0755 0.0125 0.0039 0.774

Linear Regression (with rounding) 0.0526 0.0114 < 10−4 0.768
Regularized EM 0.9563 0.5537 0.0002 0.765
Column Mean (with rounding) 0.0747 0.0129 0.0032 0.765

ward feature selection on this reduced set to obtain the final
set of features. Using SVM for prediction, we selected the
optimal number of features through 10-fold cross-validation.
The final prediction performance was an average test AUC
of 0.751, which is slightly worse than that of using SVM
and the 16 features used in [24]. In our experiments, this
method selected a much larger number of features than other
feature selection algorithms, which indicates that it may be
susceptible to overfitting.

4.3.2 L1 regularized logistic regression
The L1 regularized logistic regression (L1LR) was used

for feature selection, followed by SVM for prediction. The
implementation of L1LR was done using the SLEP pack-
age [22]. The optimal regularization parameter λ∗ was as-
signed to be the value that maximized the area under the
ROC curve for 10-fold cross-validation. The value of λ∗ was
then used to run L1LR on the entire training set to select
the final set of features for testing. The average test AUC
was 0.764, which is better than that of the L1 regularized
Cox feature selection algorithm.

4.3.3 Conservative mean selection
Conservative mean selection was run using 10-fold cross-

validation for both the generation of the conservative mean
vectors as described in Algorithm 1, and to obtain the subset
of optimal features as described in Algorithm 2. As observed
for the forward search feature selection, using the maximum
cross-validation AUC may result in overfitting, and thus we
propose a simple method to reduce this effect.

Throughout our experiments, we observed that overfit-
ting may occur when the performance on the training set
increases with increasing number of features while the cross-
validation performance decreases or remains fairly constant.
An example of this can be seen in Figure 2. Hence, we can
say that the ‘extent of overfitting’ increases as the gap be-
tween the cross-validation AUC (CV AUC) and train AUC
increases. Therefore, we estimated this extent of overfitting
by subtracting the cross-validation AUC from the training
AUC. Then, we computed a more conservative estimate of
the CV AUC as ‘CV AUC’ − (‘train AUC’ − ‘CV AUC’).16

In Figure 2, we can see that the CV AUC remains fairly con-
stant after about 30 features. If the CV AUC was maximized
without accounting for the overfitting, we would select 120
features instead of 30.

Furthermore, we compare the effect of using conservative
mean (“vj = µ(s)− σ(s)”) against using mean (“vj = µ(s)”)
in Algorithm 1 while keeping the remaining algorithms un-
changed. The average test AUC decreases from 0.774 (con-
servative mean) to 0.759 (mean) when using SVM for pre-
diction. The difference in performance clearly shows that
conservative mean selects more robust features as compared

16This method improved average test AUC by about 0.5%
for all the algorithms.
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Figure 2: Plot showing the cross-validation AUC
and train AUC as features are added. We used CM
feature selection with SVM for prediction on a ran-
dom trial.

Table 3: Average test AUC combining various fea-
ture selection algorithms with our prediction algo-
rithms

Feature selection algorithm SVM MCR

Conservative Mean 0.774 0.777
L1 logistic regression 0.764 0.771
16 features (used in [24]) 0.753 0.765

to mean alone. Furthermore, we note that the best per-
formance for both SVM and MCR are obtained using the
conservative mean feature selection algorithm.

Also note that the conservative mean selection algorithm
is significantly more computationally efficient than the for-
ward feature selection algorithm. On the same machine,
forward feature selection took about 60 hours to select fea-
tures from a set of about 200 features, while conservative
mean took less than 10 minutes to select from a set of 796
features.

4.4 Stroke Prediction
First, we evaluated the performance of our prediction al-

gorithms based on the area under the ROC curve. The
prediction performance when using the feature selection al-
gorithms (described in the previous sections) is compared
against the set of 16 manually selected features used by Lum-
ley et al., as shown in Table 3. When using SVM or MCR17

for prediction, we found that all the feature selection al-
gorithms except forward feature selection performed better
than using manually selected features. Overall, CM feature
selection performed the best for both prediction methods.
We also found that MCR performed better than SVM for
all the feature selection methods.

In Table 4, we compare the performance of our algorithms
against the current state-of-the-art Cox proportional haz-

17In our experiments, we added a small L1 regularization
penalty to the MCR objective function.



Table 4: Average test AUC using different algo-
rithms with comparison to the Cox models

Algorithm Avg. Test AUC

MCR + CM feature selection 0.777
SVM + CM feature selection 0.774
SVM + 16 features (used in [24]) 0.753
SVM + forward selection 0.751
Cox + L1 feature selection 0.747
Cox + 16 features (used in [24]) 0.734

Table 5: Average test concordance index of Cox
model and MCR using different sets of features

Method Concordance Index

MCR + CM feature selection 0.770
MCR + 16 features (used in [24]) 0.757
SVM + CM feature selection 0.760
SVM + 16 features (used in [24]) 0.747
Cox + CM feature selection (for MCR) 0.737
Cox + 16 features (used in [24]) 0.730

ards model and L1 regularized Cox model. All our methods
outperformed these baseline models. The best method was
combining CM feature selection with MCR for prediction,
which achieved a 16% error reduction in the average test
AUC as compared to the Cox model (as used in [24]).

Second, we evaluated the concordance index to compare
the ability of MCR, SVM and Cox model to predict the
relative risk of stroke. From Table 5, we observe that the
MCR algorithm outperforms the other models when using
the same set of features. Also, the features selected using
CM significantly increased the concordance index for all the
models. It is interesting to note that the SVM performs bet-
ter than the Cox model even though it does not use infor-
mation about the relative risk of stroke. The combination of
CM feature selection and MCR for prediction gave the best
performance with a concordance index of 0.770.

4.5 Identifying risk factors
In addition to achieving better results, our method can

automatically identify potential risk factors without carry-
ing out extensive medical studies to understand each one in
detail. This would allow for a quick method of characteriz-
ing a new disease and identifying its predictors before other
studies confirm them. Furthermore, this procedure could
also be used to suggest risk factors that might have been
previously unexplored.

In our experiments, we found the top features by ranking
the average of the conservative mean vectors over multiple
random trials in descending order. Table 6 shows a repre-
sentative set of features found among the top 40 features.
Note that there is a large overlap between the top features
selected by our feature selection algorithm and those iden-
tified by medical studies. This verifies that our algorithm is
reliable in identifying risk factors. Thus, the features that
are highly ranked but have not been clinically tested might
be probable risk factors.

For example, “any ECG abnormality” is a highly ranked
factor, whereas “atrial fibrilliation by ECG” is a commonly
accepted risk factor of stroke. It may be possible that all
ECG abnormalities are more indicative of stroke than just
atrial fibrilliation. Also, “minimental score” could be an im-
portant risk factor because it gives an indication of the cere-

Table 6: A representative set of features obtained
from the top 40 features selected by CM feature
selection

Feature description Average (µ− σ)

Age† 0.6064
Number of symbols correctly coded* 0.5828
Maximal inflation level* 0.5820

Systolic blood pressure† 0.5738
Calculated 100 point score* 0.5681
Total medications* 0.5634

Isolated systolic hypertension† 0.5588
General health* 0.5519

Calculated hypertension status† 0.5500

Time (in sec) to walk 15 feet† 0.5485
Any ECG abnormality* 0.5461

Right/left % Stenosis† 0.5444

Cardiac Injury Score† 0.5426
Min. ankle arm ratio* 0.5374

Diabetic status defined by ADA† 0.5342
Minimental score 35 point* 0.5337

Left ventricular mass† 0.5337

Creatinine† 0.5273
FVC percent predicted* 0.5239

* Potential risk factors that are not found in previous work
(to the best of our knowledge)
† Clinically established risk factors of stroke

brovascular activity of an individual, which could be corre-
lated to stroke risk. In addition, our results suggest a few
other potential risk factors for stroke, such as total num-
ber of medications and FVC percent predicted. Further in-
vestigation of these features could lead to improved stroke
prediction.

5. DISCUSSIONS AND CONCLUSION
As we have shown in this study, the conservative mean fea-

ture selection performs very well for the CHS dataset. How-
ever, we realize that this feature selection algorithm may not
work well in other datasets with highly correlated features
as it evaluates the performance of each feature individually.
To address this problem, we could use an L1 regularized
feature selection algorithm (e.g., L1 regularized logistic re-
gression) to prune the features before applying conservative
mean feature selection for fine-tuning.

In this paper, we have presented an integrated machine
learning approach combining the elements of data imputa-
tion, feature selection and prediction. We provide an ex-
tensive comparison of machine learning methods with the
Cox proportional hazards model and show that the machine
learning methods significantly outperform the Cox model in
terms of both binary stroke prediction and stroke risk es-
timation. Specifically, we propose the conservative mean
heuristic for feature selection, which gives us the best per-
formance as compared to other methods. In addition, we
present a novel prediction algorithm, Margin-based Cen-
sored Regression, that achieves a better concordance index
than the Cox model. Further, our method can be used for
identifying potential risk factors for diseases without per-
forming clinical trials. We hope that this paper will motivate
the application of machine learning methods in healthcare
data analysis.
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