An Integrated Machine Learning Approach to Stroke Prediction

Aditya Khosla Yu Cao Cliff Chiung-Yu Lin
Hsu-Kuang Chiu Junling Hu* Honglak Lee

Stanford University

*eBay Inc. (formerly at Robert Bosch Corporation)
Outline

- Motivation
- Our Approach
 - Data imputation, feature selection, and prediction
 - A new algorithm for feature selection
 - A new algorithm for prediction
- Experimental Results
- Summary
Motivation
Importance of stroke prediction

- The third leading cause of death in the US
 - 137,000 die from stroke each year.
- Leading cause of long-term disability in the US
- Risk factors need to be discovered.
- Current research on stroke is on simple statistical models.

Our goal: Bring machine learning methods to stroke prediction.
Identifying risk factors

- Mostly based on clinical studies
- Known risk factors
 - Physical:
 - E.g.: Age, prior stroke, blood pressure, hypertension, time to walk 15 feet, cardiac injury score, diabetic status, atrial fibrillation, left ventricular mass, etc.
 - Behavioral:
 - E.g.: cigarette smoking, poor diet, alcohol abuse, etc.
Existing stroke prediction models

- Cox proportional hazards model
 - One of the most commonly used statistical methods in medical research
 - Applied to prediction of various diseases

Hazard function at time t

$$h(t \mid \mathbf{x}; \beta) = h_0(t) \exp(\beta^T \mathbf{x})$$

- \mathbf{x}: input features for an individual
- t: timing of stroke
- β: parameters of the model
Previous approaches

- Related work on stroke prediction
 - Lumley et al. (2002), Manolio et al. (1996); Longstreth et al. (2001); Chambless et al. (2004); Hitman et al. (2007), etc.

- Limitations
 - Use limited number of features
 - Manually selected
 - Small size (< 20)
 - Limited modeling methods
 - Most used Cox proportional hazards regression
 - Not utilizing modern machine learning methods
Our Approach
Existing approaches vs. Our approach

<table>
<thead>
<tr>
<th></th>
<th>Existing approaches</th>
<th>Our approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of features</td>
<td>~ 20</td>
<td>~ 1000</td>
</tr>
<tr>
<td>Feature selection</td>
<td>Manually selected</td>
<td>Automatic feature selection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(e.g., L1 logistic regression)</td>
</tr>
<tr>
<td>Prediction algorithm</td>
<td>Cox proportional hazards model</td>
<td>Machine learning methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(e.g., SVM)</td>
</tr>
</tbody>
</table>

Examples of existing approaches:
Lumley et al. (2002); Manolio et al. (1996); Longstreth et al. (2001); Chambless et al. (2004); Hitman et al. (2007), etc.
Overview of our approach

Data Imputation
- “Mean”
- “Median”
- Linear regression
- ...

Feature selection
- L1 logistic regression
- Conservative mean feature selection
- ...

Prediction
- SVM
- Margin-based Censored regression
- ...

Meanings of Symbols:
- X: Methods are not applicable or not used.
- Arrow: Method is used.
Our methods

- We evaluated several missing value imputation methods
 - Mean, median, linear regression, EM.
- We evaluated several feature selection methods
 - Forward feature selection
 - L1-regularized logistic regression
 - Conservative Mean feature selection (this paper)
- We evaluated several prediction methods
 - SVM (*SVM-perf* to directly optimize the AUC)
 - Margin-based Censored regression (this paper)
Feature selection: Conservative Mean

- For each feature \(j \), divide the training data into \(N \) folds and compute:

 \[
 AUC^k : \text{Area under the ROC curve for fold } k
 \]

 \[
 \mu_j = \frac{1}{N} \sum_{k=1}^{N} AUC^k
 \]

 \[
 \sigma_j = \sqrt{\frac{1}{N} \sum_{k=1}^{N} (AUC^k - \mu_j)^2}
 \]

- Use \(\mu_j - \sigma_j \) for ranking the features (i.e., more “conservative” estimate than \(\mu_j \)).
 - Details in the paper.
Margin-based Censored Regression (MCR)

- **Prediction function**
 - Want to learn: \(z \sim w^T x \)

- **Censored regression**
 - Want to predict timing of stroke only if it happens within a given timeframe.

- **“Margin-based”**
 - If stroke does not happen, we want to predict it as “negative” with a margin.

\[
\begin{align*}
 &x: \text{features} \\
 &z: \text{“inverse” of stroke timing} \\
 &z > 0: \text{stroke happened} \\
 &z \leq 0: \text{stroke did not happen}
\end{align*}
\]
Optimization problem for MCR

- We solve the following optimization problem:

\[
\begin{align*}
\text{minimize} & \quad w, \xi \\
& \quad \sum_{i:y(i)=1} \phi(w^T x^{(i)} - z(\tilde{t}^{(i)})) + C \sum_{i:y(i)=0} \xi^{(i)} + \gamma ||w||_2^2 \\
\text{subject to} & \quad w^T x^{(i)} \leq -\epsilon + \xi^{(i)}, \quad \forall i \in \{i | y^{(i)} = 0\}, \\
& \quad \xi^{(i)} \geq 0, \quad \forall i,
\end{align*}
\]

regression error for stroke events
classification error for "non-stroke" cases
margin constraints
Experimental results
Experimental setup

- Cardiovascular Heart Study (CHS) data
 - Annual examinations for elderly people (+65 years)
 - Study conducted from 1989 for 10+ years
- After preprocessing, we have 796 features, 4988 examples (299 positives/ 4689 negatives)
- Our task
 - Use baseline (first year) measurement as features and perform 5 year prediction
 - Train over 9/10 of data and test on 1/10 of data (random split and repeat 5 times).
Results – missing data imputation

- Used Conservative Mean for feature selection and SVM for prediction.
 - For each missing value, substituting with the median (over the observed feature values) performed the best

<table>
<thead>
<tr>
<th>Imputation Method</th>
<th>Test AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Median</td>
<td>0.774</td>
</tr>
<tr>
<td>Linear Regression (with rounding)</td>
<td>0.768</td>
</tr>
<tr>
<td>Regularized EM</td>
<td>0.765</td>
</tr>
<tr>
<td>Column Mean (with rounding)</td>
<td>0.765</td>
</tr>
</tbody>
</table>
Prediction results - AUC

- Best performance achieved using Conservative mean + MCR
 - 15% error reduction over Lumley et al.’s method

<table>
<thead>
<tr>
<th>Test AUC</th>
<th>Prediction algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature selection algorithm</td>
<td>SVM</td>
</tr>
<tr>
<td>Conservative Mean</td>
<td>0.774</td>
</tr>
<tr>
<td>L1 logistic regression</td>
<td>0.764</td>
</tr>
<tr>
<td>Manually selected 16 features*</td>
<td>0.753</td>
</tr>
</tbody>
</table>

Baseline: Cox + 16 features*: 0.734

* used in Lumley et al. (2002)
Prediction results – Concordance Index

- Similar results as AUC

<table>
<thead>
<tr>
<th>Test Concordance Index</th>
<th>Prediction algorithm</th>
<th>SVM</th>
<th>MCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature selection algorithm</td>
<td></td>
<td>SVM</td>
<td>MCR</td>
</tr>
<tr>
<td>Conservative Mean</td>
<td>0.760</td>
<td>0.770</td>
<td></td>
</tr>
<tr>
<td>Manually selected 16 features*</td>
<td>0.747</td>
<td>0.757</td>
<td></td>
</tr>
</tbody>
</table>

Baseline: Cox + 16 features*: 0.730

* used in Lumley et al. (2002)
Discovering potential risk factors

- Top features selected by our algorithm from a set of 796 features (or measurements)

<table>
<thead>
<tr>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.606</td>
</tr>
<tr>
<td>Number of symbols correctly coded*</td>
<td>0.583</td>
</tr>
<tr>
<td>Maximal inflation level*</td>
<td>0.582</td>
</tr>
<tr>
<td>Systolic blood pressure</td>
<td>0.574</td>
</tr>
<tr>
<td>Calculated 100 point score*</td>
<td>0.568</td>
</tr>
<tr>
<td>Total medications*</td>
<td>0.563</td>
</tr>
<tr>
<td>Isolated systolic hypertension</td>
<td>0.559</td>
</tr>
<tr>
<td>General health*</td>
<td>0.552</td>
</tr>
<tr>
<td>Calculated hypertension status</td>
<td>0.550</td>
</tr>
<tr>
<td>Time (in sec) to walk 15 feet</td>
<td>0.549</td>
</tr>
</tbody>
</table>

* These represent newly discovered potential risk factors.
Summary

- Integrated approach to stroke prediction
 - Imputation, feature selection, and prediction
- Novel feature selection/prediction algorithms
 - Conservative Mean feature selection
 - Margin-based Censored Regression
- Outperform the existing methods
- Discovery of new potential risk factors
Thank you!