Ground-truth dataset and baseline evaluations for intrinsic image algorithms
International Conference on Computer Vision, 2009
Abstract
The intrinsic image decomposition aims to retrieve “intrinsic” properties of
an image, such as shading and reflectance. To make it possible to quantitatively
compare different approaches to this problem in realistic settings, we present a
ground-truth dataset of intrinsic image decompositions for a variety of
real-world objects. For each object, we separate an image of it into
three components: Lambertian shading, reflectance, and specularities.
We use our dataset to quantitatively compare several
existing algorithms; we hope that this dataset will serve as a means for
evaluating future work on intrinsic images.
Project
Code and images available here.
Download
Cite
BibtexThis material is based upon work supported by the National Science Foundation under Grant No. 0739255. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.