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ABSTRACT
Image classification is a classical computer vision problem
with applications to semantic image annotation, querying, and
indexing. Recent and effective generative techniques assume
Gaussianity, rely on distance metrics, and estimate distribu-
tions, but are unfortunately not convex nor keep computa-
tional architecture in mind. We propose image content classi-
fication through convex linear programming using similarity
metrics rather than commonly-used Mahalanobis distances.
The algorithm is solved through a hybrid iterative method
that takes advantage of optimization space properties. Our
optimization problem uses dot products in the feature space
exclusively, and therefore can be extended to non-linear ker-
nel functions in the transductive setting.

1. INTRODUCTION

Image classifiers and content recognition is an age-old com-
puter vision problem, the most prominent applications be-
ing labeling and retrieving images semantically. The litera-
ture has consistently employed learning algorithms involving
parameter estimation built from training sets. Training and
classification methods almost universally rely on two compo-
nents: feature extraction and matching.

Both feature extraction and matching require low noise
levels in the training data, and therefore, significant manual
involvement in either labeling or segmentation. Addition-
ally, extensive cross-validation procedures must drive down
false alarms. Finally, there may be multiple instances of
a single concept that are not addressed. To ensure rele-
vant and accurate features at such massive scales, training
data fidelity and segmentation truth is often manually per-
formed with crowd-sourcing tools like Antonio Torralba’s La-
belMe [1],the now-retired Google labels, and most face/object
detection/recognition training sets [2, 3]. While effective, the
gain in accuracy has not yet offset the needed throughput.

This has inspired a more recent push towards multi-
instance, unsupervised learning [4, 5, 6], in which the pro-
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posed algorithm is grouped. The paradigm reflects the notion
that with enough quantity, where current data rates and acces-
sibility are outpacing processing capabilities, training quality
can be improved naturally via large numbers and through
noise integration.

Popular multi-instance learning techniques approach clas-
sifier construction generatively by modeling the conditional
distributions of various semantic classes [7, 8, 9]. The most
mature parameter estimation for distribution parameters were
effected with multi-modal Gaussian mixtures (GMM’s). Un-
fortunately, without correct choices in the number of clus-
ters, assumptions on noise behavior, and good initialization,
maximum likelihood parameter estimates through expecta-
tion maximization (EM, a.k.a, iterative annealing, [10]) will
produce irrecoverable and incorrect feature prototypes. Fur-
thermore, GMMs have small sample bias and are often insta-
ble with respect to parameterization. Subsequently, iteratively
determined optimal values are sensitive to initialization. On-
line or incremental clustering is also limited through EM and
may require respecification of variables. The problem is aug-
mented by the number of parameters to be updated, which
significantly impacts the objective function. Finally, conver-
gence speed depends on dimensionality as GMMs and similar
techniques traditionally (and logically) utilize difference met-
rics, often the Mahalanobis distance.

Instead of modeling the representation generatively, we
propose to determine prototype features for comparing im-
ages directly by finding a small subset through sparsity con-
straints in a linear programming (LP) problem. Replacing
distance metrics and using only dot products, nonlinearity
may be introduced with kernel matrices representing a pos-
itive definite kernel space. The resultant system classifier re-
lies on normalized cross-correlation (similarity) between fea-
tures derived from a query image and those from a trained
subset of prototypes. The implementation as matched filter
bank will fit many system architectures.

This paper will discuss these issues and the resultant clas-
sifying prototypes along with the many practical aspects that
allow minimal supervision. Sec. 2 describes the convex prob-
lem required to train images. Sec. 3 discusses associated the-
oretical results and problems, and Sec. 4 promotes more prac-
tical procedures.



2. TRAINING IMAGE CLASSIFIERS WITH
SIMILARITY METRICS

The empirical determination of optimal filters in a training
set is based on solutions that find the best prototype or feature
set that is least redundant. The optimal features are used as
templates, that can eventually serve as matched filters during
runtime. This section details the convex optimization problem
that can be used to determine both linear and nonlinear filters
for discrimination.

2.1. Linear Classification in Euclidean Space

Let a d dimensional feature be denoted by x, and X be the
collection ofN features, and xi is organized as the ith column
of X . Then an LP problem that determines the vectors for a
data set that are the most representative and least redundant
can be specified as follows.

arg min
β,t

−tr
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XTXβ

)
+ λ ·

∑
i

ti

such that 0 ≤ βij ≤ ti ≤ 1

and βT 1 = 1 (1)

In (1), the selector matrix to determine which features to use
as prototypes is embedded in β; the tuning parameter λ deter-
mines the extent to how much we’d like to reduce redundancy
by inducing sparsity; and the training set for a single class
is written in matrix form, X ∈ Rd×N . Intuitively, the solu-
tion matrix β will indicate the smallest set of features in X
that best represent it by indicating them with nonzero values.
Each column vector βi ∈ β selects the candidate prototypes
for every xi. As the full paper will discuss, the natural ten-
dency of the elements of β will tend toward 1 or zero, but oc-
casionally it can take on a value v in between. In such cases,
a single “best” vector is chosen through maximum likelihood.
Regardless of the values in βi, the final matrix β will have a
rank equal to the number of classes as its optimum value.

Correctly framed sparsity solutions not only induce ef-
ficiency in computation and class depiction, but can reduce
noise and improve error rates. Optimization in (1) is reminis-
cent of research on sparse feature representation (i.e., dictio-
nary learning techniques)1. While classifying images is often
formulated with the construction of learned features, recent
surveys on such work has proven such methodology unnec-
essary and inefficient. Nevertheless, similar techniques to en-
force sparse class structure 2, have appeared in convex group-
ing problems [11], though are less efficient and intuitive as
seen in Fig. 2.1.

1It is important to note that the proposed algorithm does not solve this
problem

2As opposed to feature representation, our problem addresses this prob-
lem instead.
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Fig. 1. Fig. 1(a) is the proposed algorithm while Fig. 1(b) is the `2
Group Lasso penalty

2.2. Nonlinear Classification via Kernel Matrix

Note that (1) consists solely of dot products with respect to
vectors in X , which we can use to improve and extend the
proposed problem in (1). Similar to SVM’s, nonlinearity
may be introduced in the form of kernel optimization with
the reproducing kernel Hilbert space (RKHS) in the general
form of (2), where K is a positive definite kernel function
(or convex grouping of kernel functions) in the RKHS. The
logical extension to (1) is the straightforward assignment of
K(xi, xj) = 〈φ(xi), φ(xj)〉, where we can bypass the cal-
culation and knowledge of the high-dimensional mapping of
φ : Rd → Rt in the transductive setting. When t � d, (2) is
exceedingly useful.

arg min
β

∑
ij

βijK(xi, xj) + λ ·
∑
i

ti

such that 0 ≤ βij ≤ ti ≤ 1

and βT 1 = 1 (2)

3. CLASSIFIER ANALYSIS

For most learning frameworks, an instance x is classified by
comparing to prototypes or probabilistic models to determine
the likeliest solution based on a distribution in some feature
space. That is, the feature vector x belongs to class i of C
classes if it is closest to the prototypes in the set {yj}i charac-
terizing the ith class. Take a simplistic view of classification
in GMMs, where each mixture component relates to a single
class:

arg max
i∈{1,...,C}

K exp
[
(x− yi)

T Σ−1(x− yi)
]

(3)

= arg min
i∈{1,...,C}

−2xT Σ−1y + ‖yi‖2Σ−1 . (4)

Solutions to (4) are the same as (3); that is, the classification
of an input x relies on the Mahalanobis distance to all class
prototypes. It is not uncommon to normalize yTi Σ−1yi to a
scalar value (say unity) for every class, though we constrain
feature vectors to the unit ellipse (or ball, depending on Σ).



One will find normalized class representations in many appli-
cations in biological datasets, image processing applications,
detection-theory, etc., where a signal processing paradigm
places significant emphasis on the relationship between fea-
ture dimensions rather than the actual values themselves. For
example, pre-processing in images for computer vision-based
applications often involves DC subtraction and division by
pixel variance.

Under such an assumption, (4) can be written as the dot
product of x and yi:

arg max
i∈{1,...,C}

< x, yi > (5)

This is an important result because the classifier is broken
down to a simple cross-correlation between x and yi, where
yi ∈ {y1, y2 · · · yC}, each vector a known prototype of a
given class. The process of matching x with a bank of fil-
ters is frequently called categorization by matched filters,
where the Cover and Hart inequality holds, R∗ ≤ R ≤
R∗
(

2− C
C−1R

∗
)

, where R∗ is the Bayes error rate.

3.1. Asymptotic Consistency

The infinity norm regularization in the proposed optimiza-
tion relies on naturally clustered events, where xi is not
unique within X , suggesting inconsistent (and initialization-
dependent) β estimators. For example, take X(ξ) = Y + ξ,
where ξ is additive noise. If Y contains several instances
of the same vector, then β̂ can represent X(ξ) with any yi,
where β̂ is the estimated solution. Or, it can represent all of
them in the unlikely event that X(ξ)TY = 11T with λ im-
properly chosen. This scenario is rare for sufficiently large λ
since the `1-norm of `∞-norms tends toward a single selector
value as opposed to the 2-norm, seen in Fig. 2.1.

However, there are sufficient conditions for asymptotic
consistency, which may not necessarily satisfy ‖β̂ − β‖2 =
oP (1), but may guarantee properties about the grouping of
features for a given λ and the total number of clusters C(λ).
Under our penalization in (1), β promotes a unique and con-
sistent grouping, namely that rank(βg) = 1, with βg being a
submatrix of β for group g. Therefore, the number of clusters
C(λ) equals rank(β).

4. APPLICATION CONSIDERATIONS

In order to apply the algorithm to discriminate between
classes (in either one versus all scenario) and at scale, we
can apply simple yet effective common methodologies. Pre-
viously, Sec. 2 proposes a solution to create within-class
filters. This section discusses best filters to use between the
classes as well as how to train filters hierarchically.

4.1. Between Class Filter Optimization

Clustering for each class will naturally yield similar recurrent
filters among classes that, while representative of a portion
of a single class, are not discriminative between them. For
example, one will often find that a large portion of most im-
ages contain the sky. This is true whether or not one wishes
to differentiate between images of, say, mountains or build-
ings, two completely unrelated concepts that happen to share
a similar feature in the images. Analogously, the discrim-
inating power in “sky features”, which the within feature
optimization will invariably produce, will be low because
P (mountain|sky) and P (buildings|sky) values are small.

Deletion of similar filters is then a logical step, and the
choices of which filters to remove are simply those with high
correlation occurring across a pair of classes. We can define a
threshold tkeep for features that we wish to keep. Let X(r) ⊆
X and Y (r) ⊆ Y be the collection of within-class repre-
sentative features for classes c1 and c2, respectively, where
xi ∈ X(r), yj ∈ Y (r). The final set of pair-wise between-
class filters discriminating c1 and c2 is:

{(fc1 , fc2)} =

{
(xi, yi) :

(
max

yj
xT
i yj

)
< tkeep

}
(6)

4.2. Hierarchical Filters

As discussed in [8], hierarchical methods are especially useful
for groupings that may appear different in different situations.
Filter hierarchies address scenarios where groupings reflect
some semantic organization. In [12], image patch-based clus-
tering of objects taken at several angles, times of days, etc.,
may appear different for each instance. Furthermore, mix-
ture hierarchies are useful for complexity reasons because we
have relied on the covariance matrix, where memory can grow
according to MN . Since the proposed algorithm aims to re-
move redundancy, we prune especially large data sets (M and
N on the order of millions) to a few relevant features to take
advantage of central limit behavior, a property enabling [8] to
automatically segment images without explicitly specifying
boundaries.

Hierarchical training operates over several data subsets
(e.g., images), effectively partitioning the class data. We opti-
mize over each subset, and then between each subset. Accord-
ing to [9], irrelevant features (noise) will occur infrequently
while class features will arise; normalization will asymptoti-
cally integrate noise to zero in distribution. The procedure is,
then, to first find β in data subsets and between data subset.
After this optimization, the rows of β corresponding to the
highest frequency features relate to class structure.

5. RESULTS

Of the large set of features to choose from (e.g. SIFT [13],
SURF, Cosine Transforms, GIST [14]), our classification



leverages uniformly extracted, multi-channel (RGB/YBR)
DCT feature vectors, much like Carneiro et al. [4]. Though it
is an isometric transform (with DCT/pixel `2-distance equal),
we take advantage of DCT’s energy compaction property
with the first 45 dimensions while weighting color compo-
nents higher to improve illumination-invariance. Classifi-
cation accuracy for individual image patches are shown in
Table 1. A separate application in Table 2, the localization
of images, stresses the multiple instance learning potential of
the proposed algorithm by classifying images into particular
locations. The latent features (which we have conceptually
labeled) underscore another capability that by training for se-
mantic concepts, image segmentation is gained for free. The
segmentation and labeling of a location is visually shown in
Fig. 5. This is further evidenced by the automatic extraction
of faces in Fig. 5.

Table 1. Classification accuracy for synthetic and corel image
datasets [5]. Below are the performances under various initialization
conditions. The metrics are probability values of Correct Detection,
Correct Rejection, False Alarm, and Misses.

HC1 vs HC2 Performance (%)
Methodology Pdet Prej Pfa Pmiss

Synth GMM X-Val’d Init 97.24 92.51 7.49 2.76
GMM Under-Init 87.84 17.95 82.05 12.16
GMM Over-Init 85.24 86.25 13.75 14.76
Best k-means 89.84 90.49 9.51 10.16
Group Lasso 93.17 90.05 9.95 6.83
LP Estimate 94.84 92.04 7.96 5.16

Corel Best GMM (26 inits) 87.24 76.76 23.24 12.76
GMM Under-Init 70.36 64.09 35.81 29.64
GMM Over-Init 75.57 65.92 34.18 24.43
LP Estimate 87.32 74.51 25.49 12.68

Table 2. An example application of semantic or concept image
classification is the geo-location problem, where a collection of im-
ages at various locations are gathered for training. The performance
is based on how well a classifier places the images at the correct loca-
tions in the training set. Below is the Multi-class Cross-validation
Confusion Matrix.

Training Set Locations
Test Set MIT Kendall Lubbock, TX Dubrovnik Vienna
MIT Kendall 0.930 0.062 0.028 0.083
Lubbock, TX 0.019 0.902 0.039 0.041
Dubrovnik 0.014 0.024 0.879 0.038
Vienna 0.036 0.013 0.057 0.838

6. CONCLUSIONS

We have proposed a sparse data representation procedure that
can determine prototypes quickly and efficiently. This repre-
sentation can be used for clustering, classification, and feature
selection with the advantages of fast matched filtering. The
algorithm has several contributions which are enumerated as
follows.

(a) Kendall Square (b) Kendall Prototypes

(c) Indoor Room (d) Room Prototypes

Fig. 2. In the classification of scenes, different prototypes typically
dominate in identifying different portions of a scene. The segmenta-
tion seen in the scene is a natural result of correlation and relevancy.
The top scene is classified as the Kendall Square area of Cambridge,
MA, 1,237 low-resolution images trained from Table 2. The bot-
tom scene is an example derived from training data in the Corel data
set [5].

(a) Single image (b) Class/Cluster #14 (c) Overlaid Class

Fig. 3. Completely unsupervised clustering trained on a single im-
age in Fig. 3(a) of a crowd producing several selected features: in-
cluding one of faces Fig. 3(b) and Fig. 3(c)

• An approximation to the LP relaxation solves an opti-
mization problem to obtain representative features.

• Class prototypes based on their covariance matrix are
sparse and can be tuned with a λ parameter.

• Filter hierarchies can be built and similar filters be-
tween classes should be removed.

• Results generalize well to several data sets.

Further research is still warranted in understanding and char-
acterizing our solution, most notably selection of λ and con-
sistency modeling. Rigor and statistical justification will also
be the subject of extended papers in the future. Finally, as
evident in recent talks by Google and Torralba et. al, clas-
sification performance is directly associated with the context



in which is applied, where assessing global properties of the
feature space could boost performance.
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