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Abstract—The estimation of material properties is important for scene understanding, with many applications in vision, robotics, and

structural engineering. This paper connects fundamentals of vibration mechanics with computer vision techniques in order to infer

material properties from small, often imperceptible motions in video. Objects tend to vibrate in a set of preferred modes. The

frequencies of these modes depend on the structure and material properties of an object. We show that by extracting these frequencies

from video of a vibrating object, we can often make inferences about that object’s material properties. We demonstrate our approach by

estimating material properties for a variety of objects by observing their motion in high-speed and regular frame rate video.
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1 INTRODUCTION

UNDERSTANDING a scene involves more than just recog-
nizing object categories or 3D shape. Material pro-

perties like density, stiffness, and damping can play an
important role in applications that involve assessing or
interacting with the world. In the field of non-destructive
testing (NDT), these properties are often recovered by ana-
lyzing the vibrations of an object. Typically, these vibrations
are measured with contact sensors or expensive laser vibr-
ometers, which limit sampling to only a small number of
discrete points on an object’s surface. We propose an alter-
native approach to vibration analysis that instead uses cam-
eras to measure vibrations and make inferences about the
object’s underlying physical properties.

Objects tend to vibrate in a set of preferred modes. These
vibrations occur in most materials, but often happen at scales
and frequencies outside the range of human visual percep-
tion. Bells, for instance, vibrate at distinct audible frequencies
when struck. We cannot usually see these vibrations because
their amplitudes are too small and their frequencies are too
high - but we hear them. Intuitively we know that large bells
tend to sound deeper than small ones, or that a bell made of
wood will sound muted compared to one made of silver.
This is because an object’s modes of vibration are closely
and predictably related to its material properties. We show

how this connection can be used to learn about the material
properties of an object by analyzing its vibrations in video.

In this paper we review established theory on modal
vibrations, and connect this theory to proposed features
that can be extracted from video. These motion spectra fea-
tures provide an ambiguous combination of structural
and material information that can be used directly to make
relative measurements, or in combination with structural
information to make absolute measurements. We present
three experiments showing how these features can be used
to estimate structural or material properties given some
prior information about an object. The first experiment,
using a set of clamped rods, is designed to resemble typical
engineering applications, and shows how our features can
be used to resolve material properties in situations where
geometry can be precisely measured. The second experi-
ment, using a set of hanging fabrics, explores the idea of
learning the relationship between our features and material
properties when objects naturally occur with similar geome-
try, demonstrating the potential for data-driven approaches
to material estimation. These first two experiments are sum-
marized in Fig. 1. The third experiment uses a set of wine
glasses to demonstrate how our technique can be used to
estimate relative properties, even without a prior on geome-
try, by comparing the resonance of objects within a group,
or the resonance of a single object over time (refer to Fig. 14).

Our previouswork [13] introduced the idea of using vibra-
tions extracted from video to estimate material properties of
objects. This paper expands on that approach with additional
results and analysis. In our rod experiments we perform new
analysis to evaluate damping, and show how geometry can
be inferred from vibrations when material properties are
known. In our study of fabrics, we include additional train-
ing/testing scenarios to further demonstrate the invariance of
our features to changes in viewpoint and excitation force. We
also present new experiments: one using wine glasses to
explore how our proposed features can be used in contexts

� A. Davis, K.L. Bouman, J.G. Chen, O. B€uy€uk€ozt€urk, F. Durand and
W.T. Freeman are with Massachusetts Institute of Technology, Cambridge,
MA 02139.W. T. Freeman is also with Google Research in Cambridge.
E-mail: {abedavis, klbouman, ju21743, obuyuk, fredo, billf}@mit.edu.
*A. Davis and K.L. Bouman contributed equally to this work.

� M. Rubinstein is with Google Research and also the part of this work was
done while was at Microsoft Research, Cambridge, MA 02142.
E-mail: mrub@google.com.

Manuscript received 27 Mar. 2016; revised 20 July 2016; accepted 12 Sept.
2016. Date of publication 31 Oct. 2016; date of current version 2 Mar. 2017.
Recommended for acceptance by K. Grauman, A. Torralba, E. Learned-Miller,
and A. Zisserman.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPAMI.2016.2622271

732 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 4, APRIL 2017

0162-8828 � 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



where information about geometry is not available, and an
experiment comparing our method to sensors traditionally
used for vibration analysis (a laser Doppler vibrometer, and
an accelerometer). Additional information and data can be
found on our project website (visualvibrometry.com).

2 RELATED WORK

This paper connects related works in computer vision,
graphics, and civil engineering through common theory
and uses these connections to extend existing methods.

2.1 Traditional Vibration Analysis

Vibration analysis is an established tool used in a variety of
engineering disciplines. Especially related to this paper is
work in the field of NDT, where techniques based on ultra-
sound are common. However, these techniques often require
direct contact with the object being measured [31]. Non-
contact vibrationmeasurement is usually accomplishedwith
a laser Doppler vibrometer, which computes the velocity
of a surface by measuring the Doppler shift of a reflected
laser beam [16]. Laser vibrometers have been used to non-
destructively examine valuable paintings [7], [11], detect
land mines [1], [20], test fruit [28], find defects in composite
materials [6], [8], [17], and even test vibration modes of small
structures [33]. However, laser vibrometers are active in
nature and generally only measure the vibration of a single
surface point. While scanning or multi-beam laser vibrome-
ters exist [1], [33], they are still active and can be prohibitively
expensive-costing several times more than even the most
expensive high-speed camera used in this work.

2.2 Material Property Estimation from Video

Previous work in computer vision has focused on estimat-
ing material properties from static images [19], [21], [25],
[30]. In contrast, our goal is to use video in order to estimate
material properties that characterize the motion of an object.

A number of works in vision and graphics have been
used to estimate properties of fabric, which we also do in
this paper. Early approaches worked by fitting the

parameters of cloth-specific models to video and depth
information [4], [22]. Bouman et al. [5] adopted a learning
approach to estimate material properties from a video of
fabric moving under wind forces. As with our experiments
in Section 7, [5] estimated material properties directly from
video statistics using a regression strategy. That work found
the local autocorrelation of optical flow to be especially pre-
dictive of a fabric’s area weight and stiffness, suggesting a
possible connection between material properties and the
spectrum of an object’s motion in video. Our work uses
established vibration theory to explain this connection and
improve on the features used in their paper.

2.3 Small Motions

Our approach to material property estimation is based on
linear approximations of object deformation that hold when
displacement is small. We build on several recent works in
vision and graphics that address small motions in video [27],
[34], [35], [37]. As with many of these works, our method
uses spatial phase variations of the complex steerable pyra-
mid [26], [32] to represent small local motions in video. In
recent work, Chen et al. [9], [10] use these phase variations to
quantify the vibration modes of pipes and cantilever beams.
Our features and analysis also bear some resemblance to the
work of Davis et al. [15], but where that work focuses on
using vibrations in video to recover sound, we use them to
learn about the physical properties of visible objects.

Our work is also closely related to [14], which uses pro-
jected vibration modes recovered from video to create plau-
sible image space simulations of objects. However, where
that work focuses on plausibility over accuracy (e.g., for
entertainment, film effects), ours focuses on accurate estima-
tion of properties for scientific and engineering applications.

3 THEORY OF VIBRATION

The object motion we consider in this paper is small by com-
puter vision standards. While this sometimes makes the
motion difficult to extract, it makes it simpler to analyze.
General deformations of an object may be governed by com-
plex nonlinear relationships, but small deformations from a

Fig. 1. We present a method for estimating material properties of an object by examining small motions in video. (A) We record video of different
fabrics and clamped rods exposed to small forces such as sound or natural air currents in a room. (B) We show fabrics (top) color-coded and ordered
by area weight, and rods (bottom) similarly ordered by their ratio of elastic modulus to density. (C) Local motion signals are extracted from captured
videos and used to compute a temporal power spectrum for each object. These motion spectra contain information that is predictive of each object’s
material properties. For instance, observe the trends in the spectra for fabrics and rods as they increase in area weight and elasticity/density,
respectively (blue to red). By examining these spectra, we can make inferences about the material properties of objects.
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rest state are often well-approximated by linear systems.
The theory of such linear systems is well established, and
used in work spanning a variety of disciplines. We review
eigenmode analysis, a subset of this theory that is especially
relevant to our work. In Section 4 we connect this analysis
to the features we extract from video, and use it to motivate
our approach for material property estimation. The goal of
this section is to provide intuition; for detailed derivations
we recommend [29]. A closely related analysis with greater
focus on vibration mode shapes can also be found in [14].

3.1 Eigenmode Analysis

In modal analysis, a solid object is modeled as a system of
point masses connected by springs and dampers [29]. Intui-
tively, rigid objects are approximated with stiff springs,
highly damped objects are approximated with stiff damp-
ers, and dense objects are approximated with heavy masses.
Consider the mass matrix M of inertias between points, the
matrix C of viscous damping values between points, and
the matrix K of spring stiffnesses between points. The dif-
ferential equation of motion for this system is given by

M€xþ C _xþKx ¼ 0; (1)

where x, _x, and €x are vectors describing the displacement,
velocity, and acceleration of the points, respectively. Under
the common assumption of Rayleigh damping, the matrix C
is a linear combination of M and K given by C ¼ aMþ bK.
In this case, the eigenmodes of the system are the
solutions to the generalized eigenvalue problem given by

Kfi ¼ v2
iMfi. The eigenmodes f1 . . .fN define a modal

matrix F that diagonalizes the mass and stiffness matrices
into modal massesmi, and stiffnesses ki:

F ¼ ½f1 f2 . . . fN � (2)

FTMF ¼ diagðmiÞ (3)

FTKF ¼ diagðkiÞ: (4)

The matrix F defines modal coordinates qðtÞ, where
xðtÞ ¼ FqðtÞ, which decouple the system into single degree
of freedom systems defined by modal masses mi, stiffnesses
ki, and dampings ci ¼ ami þ bki. Defining the undamped

natural frequency of a mode as vi ¼
ffiffiffiffiffi
ki
mi

q
, we get the

decoupled equation of motion for each mode

€qðtÞ þ 2�ivi _qðtÞ þ v2
iqðtÞ ¼ 0; (5)

where �i is a modal damping ratio, defined as

�i ¼ ci
2mivi

¼ 1

2

� a

vi
þ bvi

�
: (6)

3.2 Transfer Functions of Modal Systems

The impulse response of the system can then be decoupled
into a superposition of the impulse responses for individual
modes. We obtain the unit impulse response for the ith
mode by solving Equation (5)

hiðtÞ ¼
� e��ivit

mivdi

�
sin ðvditÞ; (7)

where the damped natural frequency is vdi ¼ vi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2i

p
.

The Fourier transform of the unit impulse response, hiðtÞ in
Equation (7), results in the convolution

HiðvÞ ¼
� 1

mivdi

�ivi

�2iv
2
i þ v2

�
�
� dðv� vdiÞ � dðvþ vdiÞ

i

�
:

(8)

The transfer function of a single mode is thus the convo-
lution of a spike at its resonant frequency and a Lorentzian
distribution (the Fourier transform of the decaying expo-
nential), which has a width that depends on modal fre-
quency and damping.

3.3 Resonance and Material Properties

Both mode shapes and frequencies will depend on an
object’s geometry. If a piece of an object is removed, for
instance, it will change the sparsity of both M and K, poten-
tially changing both eigenmodes and eigenvalues of the sys-
tem. But if geometry is held constant and only material
properties are changed-say by making an object uniformly
heavier or stiffer-this can only scale M and K, scaling the
eigenvalues of the system but leaving the eigenmodes
unchanged. This implies that different objects with the same
geometry have the same set of mode shapes, but their resonant fre-
quencies scale in proportion to material properties. In our experi-
ments we use this property to estimate material properties
among objects with common geometry by observing their
modal vibrations. We also leverage the fact that resonant
frequencies vi are global properties of an object - meaning
they do not vary across the object’s surface; only the ampli-
tudes and local phases of vibration vary spatially, according
to the mode shapes, fi. This suggests that we can learn
about global properties of an object by observing vibrations
at any part of the object, even if these vibrations are affected
by hidden or occluded structure.

4 EXTRACTING MOTION FEATURES

We use small local motions in video to reason about the
modes of recorded objects. For each spatial point in a video,
we compute the local motion around that point over time.
Our analysis relates the spectra of these motion signals to
mode shapes, fi, and frequencies, vi.

4.1 Local Motion Signals

Local motion signals are derived from phase variations of the
complex steerable pyramid (CSP) [18], [26], [32]. A CSP is
computed for each input frame of video, breaking it into
complex-valued sub-bands for different scales and orienta-
tions. Previous work has shown that temporal variations in
the spatial phases of these sub-bands are an effective measure
of small motions in video [15], [34]. For our local motion
signals, weweigh the phase variation of each sub-band by the
squared amplitude of that sub-band, as in [15], and spatially
filter theseweighted signalswith aGaussian kernel to account
for noise in texture-less regions of video. We chose this repre-
sentation ofmotion for its simplicity and robustness, but alter-
natives such as optical flow could be equally valid.

4.2 Motion Spectra

Recall that the frequencies vi do not vary across an object’s
surface. This implies that the power spectra of local motions
across an object should have spikes at the same resonant fre-
quencies. Thus, we compute the global motion power
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spectrum for a video by averaging the power spectra of
local motions extracted at every pixel location, scale, and
orientation. This allows us to reduce noise, and leaves us
with a single temporal power spectrum describing the fre-
quencies of motion that exist in a video.

4.3 Viewpoint Invariance

An advantage of using temporal spectra as features is that
they offer invariance to changes in scale and viewpoint.
This invariance agrees with what we know from theory: the
resonant frequencies of an object are global to that object
and should not differ according to how it is viewed. In
Section 7 we use this to estimate the material properties of
fabrics in experiments where training and testing data sets
are taken from different viewpoints and cameras.

4.4 Damping

Under a broad-spectrum excitation force, the recovered
temporal motion spectra should take the shape of an object’s
transfer function. In Section 3 we showed that damping
determines the width of resonant spikes in this transfer
function. Therefore, by observing the width of resonant
spikes in recovered motion spectra we can reason about
damping in an object. The effect of damping can be learned
by observing many motion spectra, or it can be estimated
explicitly by fitting Lorentzian distributions to spikes in
these spectra (see Section 6.2).

4.5 Mode Shapes

The theoretical mode shapes fi describe spatially varying
amplitudes of a vibration mode across the surface of an
object. Positive and negative amplitudes vibrate with
opposite phase, and zeros indicate static nodal points in a
vibration mode. Therefore, by visualizing the phases and
amplitudes of our local motion spectra at a resonant fre-
quency, we can picture the shape of the corresponding
mode. While we do not use these shapes to estimate mate-
rial properties, visualizing them helps to verify the presence
of a vibration mode at a specific frequency, since spatial
coherancy is not likely to happen at random. We adopt the
visualization used in [15], where the image of local Fourier
coefficients at a given frequency is displayed by mapping
phase to hue and magnitude to brightness (see Fig. 13).

5 METHOD

Our task is to estimate the material properties of objects
using the motion spectra described in Section 4. Our method
has three components that vary depending on the object
being observed.

5.1 Excitation

An object must move in order for us to observe its vibration
modes and resonant frequencies. Some very deformable
objects, such as hanging fabric, may move enough with nat-
ural air currents for no additional forces to be necessary. For
more rigid objects, like wine glasses or metal rods, we use
sound to induce motion. The excitation should be strong
enough to create a recoverable motion signal, and should
contain energy at each of the objects resonant frequencies.

Sound excitation has been used for this purpose previously
in NDT [6], [8], [11], [17], [20].

5.2 Video Capture

To estimate an object’s resonant frequencies we need to
record at a high enough frame rate to place these frequen-
cies under the Nyquist limit. We should also ensure that
videos capture enough periods at each modal frequency to
sufficiently localize corresponding spikes in the Fourier
domain. For objects with high resonant frequencies this can
be accomplished with short clips of high-speed video.
Objects with low resonant frequencies (like hanging fabric)
can be captured with longer, lower-frame rate video.

5.3 Inference

The motion spectrum of an object provides us with an
ambiguous combination of structural and material informa-
tion. In some cases, this combination is directly useful (e.g.,
tuning an instrument or identifying a source of unwanted
noise). In others, it provides constraints from which we can
infer more specific properties. This inference depends on the
type of information available and the properties being
inferred.We explore three approaches to estimating physical
properties in this paper-each addressing a different scenario,
with different information available about the object being
filmed. The first method uses measured or known geometry
to directly estimate material properties. This method can be
very precise, but requires additional measurement (usually
through some means other than video). The second method
alleviates the need for careful measurement by learning the
relationship between recovered motion spectra and material
properties from training data. This approach is convenient,
but depends on the availability and accuracy of a learned
prior. Finally, the third method is to sidestep the need for
any prior on geometry by simply comparing spectra in order
to detect changes over time, or variations within a group of
objects. This approach is simple, and promising for applica-
tions in structural health monitoring, where any significant
change in resonance may indicate a problem, and reference
spectra are often available.

6 ESTIMATING PROPERTIES OF MATERIALS WITH

KNOWN GEOMETRY: RODS

In our first set of experiments we estimate the material
properties or geometry of various rods by extracting their
resonant frequencies from video. The simple geometry of a
clamped rod makes it easy to solve for vibration modes ana-
lytically as a function of length, diameter, density, and an
elastic modulus. While length, diameter, and density can all
be measured with a simple ruler and scale, the elastic mod-
ulus is usually measured with a tensile test, which requires
expensive equipment and usually damages the object being
tested. In these experiments we first show how this elastic
modulus can instead be measured with a speaker and high-
speed camera. Just as our recovered spectra can be used to
resolve unknown material properties (i.e., elasticity) given
known geometry, we also show that they can be used to
resolve unknown geometry given known material proper-
ties. This second case could be used to resolve an ambiguity
of scale when a filmed object is made of a known material.
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Setup. We filmed rods made from four different metals-
steel, aluminum, copper, and brass. Rods were clamped to a
block of concrete next to a loudspeaker (see Fig. 2), and each
rod was tested twice: once clamped to a length of 15 inches
and once clamped to a length of 22 inches. In Section 6.3 we
compare material properties derived from our observations
to estimates provided by the manufacturer. Recovered fre-
quencies andmode shapes for all of the rods, as well as birch
and fiberglass rods with unreported material properties, can
be found in the provided supplemental material, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2622271.

Excitation. The excitation signal should be broad spectrum
to ensure that multiple rod modes are activated. In [9], [10]
this is accomplished by striking the beam with a hammer.
To avoid damage to the rod, we instead use sound-
specifically, a linear ramp of frequencies from 15 to 2,250
Hz played through the loudspeaker at each rod. We found
that modes at frequencies below 15 Hz were still activated
by this signal, possibly due to the presence of some signal
components below 15 Hz and the relatively high sensitivity
of lower modes.

Video Capture. Rods were filmed with a Phantom v10
high-speed camera (80�2,016 pixel resolution). Given the
lengths and thicknesses of our rods, a conservative estimate
of material properties put the fourth mode of each rod well
below 1,250 Hz. We filmed at 2,500 fps to ensure a sampling
rate high enough to recover this mode for each rod.

6.1 Finding Resonant Frequencies

The vibrations of clamped rods are well studied [29]. A
rod’s fundamental frequency f1 (corresponding to its first
mode) is related to material properties by the equation

f1 ¼ 0:1399
d

L2

ffiffiffiffi
E

r

s
; (9)

where d is the diameter of the rod, L is its length, r is its
density, E is its Young’s modulus (measuring elasticity),
and v ¼ 2pf . Given the length and width of a rod, the task

of estimating
ffiffiffiffiffiffiffiffiffi
E=r

p
can then be reduced to finding its fun-

damental frequency. Under ideal conditions this would

amount to finding the largest spike in the rod’s motion spec-
trum. However, real spectra tend to also contain spikes at
non-modal frequencies (see Fig. 3). To distinguish these
from the rod’s resonant frequencies we recall from Sec-
tion 3.3 that changes in material properties only scale the
modal frequencies-leaving their ratios constant. In clamped
rods, ratios for the first four resonant frequencies can be
found analytically,1 and are given by

fi ¼ hif1;

h1 ¼ 1; h2 ¼ 6:27; h3 ¼ 17:55; h4 ¼ 34:39;
(10)

where again fi is the resonant frequency for the ith mode.
To distinguish modal frequencies from other spikes, we
look for energy in the recovered spectra that occurs in the
ratios given by Equation (10). We assume that the probabil-
ity of a rod mode at a given frequency is proportional to the
power at that frequency. Given the recovered spectrum S,
we then have

P f ¼ f1jSð Þ /
Y4
i¼1

SðhifÞ: (11)

Using Equation (11), we can find the most likely funda-
mental frequency using a simple voting scheme. In prac-
tice, since we operate in the discrete Fourier domain, we
achieve higher precision at the fundamental by using the
relations of Equation (10) to vote for the fourth resonant
frequency.

6.2 Estimating Damping

As discussed in Section 3, the damping of a mode appears in
an object’s transfer function as convolution with a Lorent-
zian distribution that depends on the damping ratio �. To
find �, we fit a Lorentzian distribution around the modes
identified by our voting scheme. Automatically fitting these
distributions using a fixed range of frequencies around
identified modes produces poor fits, as different damping
values affect different ranges of frequencies. We address
this using a manual selection strategy, inspired by the pro-
cedures set by the ASTM for measuring the material damp-
ing or loss factor in materials [2]. Our selection interface is
similar to the one used for mode selection in [14], where
users are presented with the motion spectrum of a video
and asked to click on peaks. However, our selection process
uses the frequencies predicted with our voting scheme as
an initial estimate, zooming in on each predicted frequency
one at a time. Users are then asked to select the range of fre-
quencies between the resonant peak and noise floor using
their mouse. A Lorentzian is immediately fit to the selected
region using non-linear least squares, and presented for the
user to evaluate (Fig. 4). If the fit looks good, the user pro-
ceeds to the next mode. If the fit does not look good, they
can press a button to indicate that the damping on the
corresponding mode cannot be accurately estimated, a
result often caused by mode masking. The full width at
half maximum, Df , of the Lorentzian can then be used to

calculate the modal damping ratio as �i = Df
2fdi

[2]. Note

that we measure the damped frequency, fdi, directly from

Fig. 2. Rods were clamped to a concrete block next to a loudspeaker
(shown left) and filmed with a high-speed camera. By analyzing small
motions in the recorded video, we are able to extract the locations of the
rod’s resonant frequencies and use these values to estimate the rod’s
material properties.

1. By solving the continuous analog to Equation (1) [29].
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our power spectrum. In Section 3.2 vdi ¼ 2pfdi is dis-
cussed in more detail.

6.3 Results

Young’s Modulus/Elasticity. Under fixed but unknown
geometry, the recovered locations of fundamental frequencies
provide a value proportional to

ffiffiffiffiffiffiffiffiffi
E=r

p
. From this we can use

Equation (9) with lengths and densities measured by a scale
and measuring tape to compute the modulus of each rod.
Fig. 5a shows a plot of Young’s moduli (in force per squared
inch) reported by the manufacturer against the values esti-
mated using our technique. Percent errors are given in Table 1.

Length. By rearranging Equation (9), we see that the length
of a rod can be estimated as a function of the fundamental
frequency, rod diameter, elasticity, and density

L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1399

dhi
fi

ffiffiffiffi
E

r

svuut : (12)

We can use this equation to estimate a rod’s length given the
measured resonant frequencies and the Young’s modulus
reported by the manufacturer. Fig. 5b shows a plot of the
measured length (in inches) of each rod verses the value
estimated in this manor. Percent errors are given in Table 2.

Error. Error bars in Fig. 5 are calculated for each Young’s
modulus and length estimate by propagating error bounds
for each measured variable. Error propagation was done
assuming independent variables [24]. Given a function
F ða; b; c; . . .Þ, the equation for the error sF depending on the
errors sa; sb; sc . . . is given as

sF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� @F
@a

�2
s2
a þ

� @F
@b

�2
s2
b þ

� @F
@c

�2
s2
c þ � � �

r
: (13)

Young’s modulus estimates were calculated by propagating
error from length, diameter, and density. Length estimates
were calculated by propagating error from only diameter
and density. The calculated errors for length estimation are
smaller than expected due to the lack of reported tolerances
on Young’s modulus values. Refer to the supplemental
material for further information on error approximation.

Mode Shapes. For each rod, we can further verify recov-
ered modes by visualizing the recovered shapes corre-
sponding to estimated resonant frequencies (see Fig. 3).
Mode shapes are sometimes masked by vibrations from
other parts of the experimental setup-for instance, vibra-
tions of the camera or the frequency of lights powered by
AC current. However, it is unlikely that a majority of reso-
nant frequencies will be masked in any single rod. In prac-
tice we see the predicted shapes of multiple modes in the
data recovered for each rod. All 48 mode shapes recovered
in our experiments can be found in the provided supple-
mental material, available online.

Damping. Material damping properties are not as well
characterized as other mechanical properties, such as
Young’s modulus for stiffness. This is, in part, because it is
very difficult to control for external sources of damping.
Additionally, damping can vary across the different modes
of a given system. As a result, manufacturers do not typi-
cally report damping ratios. However, some general trends
are accepted for different materials. For example, metals
tend to have very low material damping compared to rub-
ber. In addition to our metal rods, for which the manufac-
turer reported Young’s moduli, we also tested a rod made
of wood (birch). While material property values for wood
are highly variable (likely the reason no Young’s modulus
was provided), wood is generally accepted to have higher
damping than most metals, and quantitative studies of dif-
ferent vibrating systems (e.g., [12]) have supported this

Fig. 3. Finding vibration modes of a clamped brass rod: (Left) We recover a motion spectrum from 2,500 Hz video of a 22 inch clamped aluminum rod.
Resonant frequencies are labeled. To distinguish resonant frequencies from other spikes in the spectrum, we look for energy at frequencies with
ratios derived from the known geometry of the rod. (Middle) A sample frame from the 80�2,016 pixel input video. (Right) Visualizations of the first
four recovered mode shapes are shown next to the corresponding shapes predicted by theory.

Fig. 4. Our damping selection interface, inspired by the standard proce-
dure defined in [2], presents users with a view of the recovered motion
spectra around a predicted rod resonant frequency and asks them to
click and drag over the spike region. A Lorentzian is then fit to the
selected region and presented to the user for evaluation of accuracy.
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claim. Fig. 6 shows our damping estimates of different rod
modes as a function of frequency (damping was evaluated
at each unmasked rod mode). As expected, we see that the
wooden rod has the highest damping ratio at every mode.

Discussion. Our estimated moduli are close to, but consis-
tently under, the reported values (Fig. 5a and Table 1). One
possible explanation for this is an incorrect estimate of
where the clamp grabbed each rod in our setup. Similarly,
Fig. 5b and Table 2 show that our length estimates are close
to, and correlated with, but consistently longer than our
measured values-which could be explained by the same
source of measurement error.

Our damping results show that our wooden rod has con-
sistently higher damping than the metal rods, which is
expected given their material differences. However, the rel-
ative damping ratios of our metal rods are less consistent
across different modes. These results suggest that we are
able to distinguish between materials with significantly dif-
ferent levels of damping (such as metal and wood), though
additional experiments would be needed to better under-
stand how well we distinguish damping between more sim-
ilar materials (e.g., among the different metals).

Our Young’s modulus and length results suggest both a
strength and weakness of an approach that pairs recovered

motion spectra with careful measurement for inference-
high precision that is very sensitive to accurate modeling of
the structure being tested. Our next experiments address
this issue by instead attempting to learn the relationship
between material properties and resonant frequencies.

7 LEARNING PROPERTIES OF MATERIALS WITH

UNKNOWN GEOMETRY: FABRICS

The inference described in Section 6.1 relies on knowing the
ratios between resonant frequencies, hi. These ratios are
simple to derive in clamped rods, but can be prohibitively
difficult to compute in more general structures. As a result,
many applications of vibrometry are limited to simple
geometries that can be precisely measured (as is the case
with rods) or man-made structures (airplanes, buildings,
cars, etc) with resonant frequencies that can be derived
from detailed CAD models through FEM analysis. The
ubiquity and passive nature of video offers the potential
to address this limitation by providing sufficient data
to learn relationships between motion spectra and the
material properties of objects. In this section, we explore
that potential by using a learning approach to estimate
the material properties of hanging fabrics from video.
We show that our technique outperforms a previous
video-based fabric property estimation method, even

Fig. 5. Estimating the elastic modulus and length of clamped rods: (a) Young’s moduli (force per squared inch) reported by the manufacturer plotted
against values estimated using our technique. Estimated values are close to those reported by the manufacturer, with the largest discrepancies
happening in 15 inch rods made of aluminum and steel. (b) The length (inches) of each rod measured to the base of the clamp plotted against values
estimated using our technique.

TABLE 1
Percent Error in Estimating the Young’s Modulus

(Force per Squared Inch) for Each Rod

% Error Brass Copper Aluminum Steel

22 inches 2.13 �0.40 �7.82 �10.40
15 inches �5.98 �4.69 �22.13 �14.53

TABLE 2
Percent Error in Estimating the Length (Inches) for Each Rod

% Error Brass Copper Aluminum Steel

22 inches �0.52 0.10 2.06 2.78
15 inches 1.55 1.21 6.45 4.00

Fig. 6. The damping ratio estimated from the recovered motion spectra
for each automatically identified resonant frequency. While reported
damping ratios for different materials vary greatly, general trends are
recognized. Our recovered rod damping ratios show recognized trends
of higher damping in wood than in metals [12], and higher damping in
lower fundamental modes due to their high amplitude [3].
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when trained using data captured from different view-
points or different excitation forces.

A number of metrics exist to describe the material prop-
erties of fabrics. These properties can be measured using
setups such as the Kawabata system [23], [36]. In the work
of Bouman, et al. [5], a dataset of 30 fabrics along with
ground truth measurements of stiffness and area weight
were collected. We extend this dataset to predict the mate-
rial properties from videos exhibiting small motions that
are often invisible to the naked eye, in contrast to [5] that
relied on much larger motions produced by fans.

Setup. Each fabric specimen from [5] (width of appro-
ximately 43.5 to 44.5 inches across) was loosely draped
over a bar and hung a length of approximately 29.25 to
32.25 inches from the top of the bar. Notice that although
the geometry was kept relatively constant, these measure-
ments vary a great deal compared to those used in Section 6.

Excitation. We explore two different types of excitation
forces in estimating the material properties of fabric.

Ambient Forces. Even without an explicit excitation force
applied, hanging fabric is almost always moving. Ambient
forces, such as air currents in the room or small vibrations
in the building induce small motions in fabric. Fig. 8a shows
a space-time slice of a fabric moving due to ambient forces
in the room.

Sound. As an alternative, we also tested sound as a source
of excitation. Sound was used to provide a small, controlled
“kick” to the hanging fabric.We excited each fabricwith a one
second, logarithmic frequency ramp from 15 to 100Hz. Fig. 8b
shows a space-time slice of a fabricmoving due to this “kick.”

Video Capture. Each combination of fabric and excitation
force was captured simultaneously by two cameras: an RGB
SLR camera (Canon 6 D, 1,920�1,080 pixel resolution) at

30 fps, and a grayscale Point Grey camera (800�600 pixel
resolution) at 60 fps. The cameras recorded different view-
points (see Fig. 7), which we use to test the invariance of our
trained models to changes in perspective. Each video is
approximately one-minute long and can be found, along
with the corresponding fabric measurements (width and
height), on our project website.

7.1 Property Estimation

Feature Extraction. Due to their comparatively high damp-
ing, fabric motion spectra do not contain the same clean,
narrow peaks seen in rods. Damping causes the bandwidth
around resonant frequencies to overlap, making it difficult to
identify individual modes (see Fig. 1). As a result, the infer-
ence strategies we used for rods will not work. However, the
distribution of energy in the motion spectrum is still predic-
tive of the fabric’s material properties. For example, note how
in Fig. 1 the location of a fabric’s resonant band shifts to the
right with increasing area weight. Our approach is to use the
motion spectra directly as features, and learn a regression
model thatmaps these features tomaterial properties.

As feature vectors we chose N ¼ 150 uniform samples of
the normalized motion spectra from 0 to 15 Hz. To reduce
the effect of noise, we smooth the recovered motion spectra

using a Gaussian with standard deviation 15
2ðN�1Þ Hz.

Inference. We learn regression models that map the motion
spectra to the log of ground truth stiffness or area weight
measurements provided in [5]. Models are fit to the log of
measurements in order to directly compare with results pre-
sented in [5]. Fitting a regression model directly to the proc-
essed motion spectra results in overfitting. Instead, we have
explored two standard regression methods that reduce the
dimensionality of the data: Principal Components Regression
(PCR) and Partial Least Squares Regression (PLSR). Both
methods perform comparably, suggesting that the power of
our algorithm is in the features, the recoveredmotion spectra,
rather than the regression model. In this paper, we show res-
ults of the trained PLSR model. Additional results from PCR
can be found in the supplementalmaterial, available online.

Cross Validation. Due to the small number of fabrics in the
dataset, we use a leave-one-out method for training and
testing. Precisely, all data corresponding to a fabric are
removed from training of the regression parameters when
predicting the material properties of that fabric. Using this
method, we estimate the performance of our model on pre-
dicting the material properties of a previously unseen

Fig. 7. Videos were recorded of the fabric moving from (c) a grayscale Point Grey camera (800�600 pixel resolution) at 60 fps and (d) an RGB SLR
Camera (Canon 6D, 1,920�1,080 pixel resolution) at 30 fps. The experimental layout (a,b) consisted of the two cameras observing the fabric from
different points of view.

Fig. 8. Videos of fabric excited by two different types of force were
recorded. Here we see space � time slices from minute long videos of a
fabric responding ambient forces (b) and sound (c). The motion is espe-
cially subtle in (b), but still encodes predictive information about the fab-
ric’s material properties.
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fabric. Performance was evaluated using a varying number
of PLSR components. From this evaluation we chose a
reduced number of PLSR dimensions,M, that is both robust
and results in high accuracy for both material properties.
For results presented in this paper, we used M ¼ 2 and
M ¼ 5 for the ambient force model and acoustic model
respectively. Refer to Fig. 9.

Testing Invariance. We saw in Section 4 that our features
should be invariant to changes in viewpoint. Here we test
this invariance by training and testing on videos captured
under different conditions. In total we have four conditions
for fabrics: ambient (A) and acoustic (S) excitations, each
captured from two different viewpoints (the left point grey
(L) and right SLR (R) cameras). We used the same leave-
one-out validation strategy when training and testing data
were taken from different conditions.

7.2 Results

Our estimates of material properties are well correlated with
the log of ground truth measurements (refer to Table 4). In

all cases, even when testing under conditions with different
viewpoints and excitation forces from the training data, our
estimates outperform previous video-based fabric measure-
ments [5] in predicting both stiffness and area weight.

Fig. 10 contains correlation plots corresponding to the
conditions presented in Table 4. These plots compare our
algorithm’s predicted measurements of stiffness and area
weight to the log of ground truth measurements when mod-
els were trained and tested on videos of fabrics excited by
ambient forces and acoustic waves separately.

We test the invariance of an object’s extracted motion
spectra to excitation and viewpoint change by training the
regression model on the extracted features from one excita-
tion/viewpoint combination and testing on the extracted
features from another combination. Table 3 shows that cor-
relation results across all combinations of training and test-
ing data are comparable to training and testing on the same
viewpoint and excitation. Fig. 11 visually shows our esti-
mates are still well correlated with ground truth measure-
ments when the training and testing is performed using
different cameras, viewpoints, and excitation forces.

Fig. 9. The Pearson product correlation value between predicted results
and the ground truth measured properties when fitting a model with a
varying number of components (dimensionality). The number of compo-
nents,M, was selected for each model by choosing a value that resulted
in good accuracy for both material properties (stiffness and area weight).
These selected M values are specified above and are indicated on the
plots as a vertical red line.

Fig. 10. Comparisons between ground truth and PLSRmodel predictions
on material properties estimated from videos of fabric excited by
ambient forces and acoustic waves. Each circle in the plots repre-
sents the estimated properties from a single video. Identical colors
correspond to the same fabric. The Pearson product-moment correla-
tion coefficient (R-value) averaged across video samples containing
the same fabric is displayed.

TABLE 3
The Pearson Correlation R Value Obtained When Training and Testing a PLSR Model

on Videos Captured under Different Excitation and Viewpoint Conditions

The testing and training shorthand notation specifies excitation/viewpoint using abbreviations for the four possible conditions: ambient excitation (A), acoustic
excitation (S), left camera viewpoint (L) and right camera viewpoint (R). Results are comparable to training and testing on the same viewpoint, suggesting that
our features are somewhat invariant to the direction in which the material is observed. Note that all combinations of excitation and viewpoint perform better than
results reported in [5].
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Frequency Sensitivity and Modes. The theory in Section 3
describes a predictable relationship between resonant fre-
quencies and material properties. However, our regression
model has no explicit notion of resonant frequencies; it sim-
ply looks for predictive patterns in the spectra of training
data. By analyzing the sensitivity of our recovered regression
models we can see which frequencies are most predictive of
material properties in our fabrics. From the estimated regres-
sion coefficients (bm) and dimensionality reducing basis vec-
tors (Em), the sensitivity (S) is computed as

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
m¼1

bmEm

 !2
vuut : (14)

The testing and training shorthand notation specifies
excitation/viewpoint using abbreviations for the four possi-
ble conditions: ambient excitation (A), acoustic excitation
(S), left camera viewpoint (L) and right camera viewpoint
(R). Results are comparable to training and testing on the
same viewpoint, suggesting that our features are somewhat
invariant to the direction in which the material is observed.
Note that all combinations of excitation and viewpoint per-
form better than results reported in [5].

Since the regression model for each of our fabrics is
recovered using leave-one-out cross validation, we average
the computed sensitivities across models to obtain a single
measure of sensitivity for each material property.

Fig. 12 shows that frequencies in the 0-5 Hz range were
most predictive of material properties in our fabrics. By
visualizing the pattern of relative pixel motion recovered
for a specific frequency, we see that the fabrics’ dominant
vibration modes often appear in the frequency range of
0-5 Hz (see Fig. 13). This suggests that our models use
the same relationship between resonant frequencies and
material properties predicted by modal analysis.

8 DETECTING CHANGES IN RESONANCE:
GLASSES OF WATER

There are many cases where changes in an object’s resonant
frequencies may be useful even when the contributions of
material and geometry are left ambiguous. For example, the
resonant frequencies of a leaking container will change over
time as the container empties. In such a case, the changing
resonance indicates a leak, regardless of specific structural
or material properties. Similarly, a change in the resonance
of a load-bearing structure may call for close attention,
regardless of whether the change is caused by material
weakening or an unseen change in geometry. One advan-
tage of using resonance in such a scenario is that the source
of the problem, or change, does not have to be visible-
shifting frequencies at visible parts of the object may reveal
hidden or occluded changes. In this section we show an
experiment, analogous to the example of a leaking con-
tainer, to demonstrate how our recovered motion spectra
could be used to detect hidden changes to an object.

The following experiment demonstrates that we can infer
when a wine glass is empty or full by observing the vibra-
tions of its rim. For this to be the case, the changes in resonant
frequencies that result from adding liquid to a glass must be
significant compared to natural variations over time, or natu-
ral variations in resonant frequencies among the glasses.
We compare motion spectra extracted from two videos and
show that the addition of water results in a shift of the
spectra’s peaks. In the first video, all three glasses were left
empty. In the second, themiddle glass was filledwithwater.

Setup. Three wine glasses were placed on a table (Fig. 14
left) next to a loudspeaker and partially occluded so that
their contents were hidden from view (Fig. 14 middle, top).
The tops of these wine glasses were filmed to recover vibra-
tions caused by a loudspeaker-once with all three glasses
empty and once with only the center glass filled

TABLE 4
Performance in Estimating Fabric Properties

[5] Ambient Sound

Stiffness
R ¼ 0:71 R ¼ 0:89 R ¼ 0:90
% ¼ 17:2 % ¼ 12:3 % ¼ 12:5

t ¼ 0:70 t ¼ 0:74

Area Weight
R ¼ 0:86 R ¼ 0:95 R ¼ 0:96
% ¼ 13:8 % ¼ 15:7 % ¼ 13:3

t ¼ 0:86 t ¼ 0:85

The pearson correlation value (R), percentage error (%), and kendall
tau (t) measures of performance for our PLSR model compared to the
performance of a previous video-based fabric property estimation
method [5]. The model was trained and tested separately on videos of
fabric excited by acoustic waves (Sound) and ambient forces (Ambient).

Fig. 11. The features we use to estimate material properties are some-
what invariant to changes in excitation force and viewpoint. Here we
show a comparison between ground truth material properties and PLSR
model predictions when using models trained on Point Grey (left view-
point) videos of fabric exposed to acoustic waves, but tested on SLR vid-
eos (right viewpoint) of fabric exposed to ambient forces. Although the
training and testing conditions are different, there is still a strong correla-
tion between our results and the ground truth properties.

Fig. 12. The sensitivity of each acoustically trained model to frequency
regions in the motion spectrum. These sensitivity plots suggest that
energy in the 0-5 Hz range is most predictive of a fabric’s area weight
and stiffness.
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approximately two-thirds with water. Our goal was to see
whether the hidden addition of water to the center glass
could be easily detected in our recovered motion spectra.

Excitation. We played a 15 second linear chirp of frequen-
cies ranging from 200 to 800 Hz through the loudspeaker.

Video Capture. The tops of the glasses were filmed with a
Phantom v10 high-speed camera at 2,500 fps for approxi-
mately 17.3 seconds. The video was captured at a resolution
of 1,248�153 pixels (an example frame is given in Fig. 14
middle, bottom). To evaluate the motion spectrum for each
glass separately, a mask that segmented a single glass from
the video frame was applied to the local, pixel motion spec-
tra before averaging down to a single spectrum.

8.1 Results

Fig. 14 (right) shows the motion spectra recovered from
each glass in each of the two videos. In the spectra recov-
ered from the first video, we see that the empty glasses have
resonant peaks within 30 Hz of one another. In the spectra
recovered from the second video, we don’t see noticeable
changes in the resonant frequencies of the empty glasses,
but the water has shifted the resonant frequencies of the
middle glass by approximately 76 Hz.

9 COMPARISON WITH TRADITIONAL VIBROMETRY

The motion spectra we recover from video are analogous to
spectra derived from laser vibrometers and accelerometers
for traditional vibration analysis. To compare these different
types of sensors we conducted an experiment where a steel
cantilever beam was measured simultaneously with a high-

speed camera, a laser vibrometer, and a piezoelectric accel-
erometer (refer to Fig. 15). A shaker was mounted to the top
of the beam, and driven with a sum of sinusoids at resonant
modes of the beam. The accelerometer was mounted
directly to the beam, the laser vibrometer measured the
motion of the accelerometer, and a high-speed camera
recorded a video of the accelerometer and beam motion. All
three measurement methods were used concurrently in
time, measuring the same vibrations of the beam at the
same location. The laser vibrometer and accelerometers
sampled at 9,000 Hz, while the video captured 2,000 fps.
Each sensor recorded for approximately 15 seconds.

The work of [34] also compared accelerations measured
with a laser vibromater with video measurements, focusing

Fig. 13. A sample of the recovered motion patterns for predictive frequencies identified by the regression models. These recovered motion patterns
often resemble a fabric’s mode shapes. Phase specifies the relative direction of the motion signal. Pixels moving in opposite directions are colored
with hue from opposite sides of the color wheel.

Fig. 14. (Left) Three wine glasses are set on a table. They are filmed twice-once with all three glasses empty and once with the middle glass partially
filled with water (shown left). (Middle, top) The glasses are partially occluded to that their contents are not visible, and a nearby loudspeaker plays a
15 second linear chirp of frequencies ranging from 200 to 800 Hz. (Middle, bottom) The rims of the glasses are filmed at 2,500 Hz. (Right) Masks are
used to extract the motion spectra of each glass from each video separately. (Right, top) When all glasses are empty, they show resonant peaks
within the range of 500-530 Hz. (Right, bottom) When only the middle glass is filled with water, resonant frequencies of the empty glasses remain
unchanged, while the resonant peak of the glass containing water shifts by 76 to 428 Hz.

Fig. 15. Example frame from our video of a forced beam, captured
simultaneously with a video, laser vibrometer, and accelerometer.
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on a time domain analysis. Here, we study differences in the
spectra of recovered motions. It is natural for each sensor to
produce slightly different spectra, as each tests a different
derivative of position (the accelerometer measures accelera-
tion, the vibrometermeasures velocity, and ourmethodmeas-
ures position). However, we focus specifically on comparing
the resonant frequencies and damping estimated in each case.

9.1 Frequency and Damping Estimates

Spectra recovered using each of the three techniques can be
seen in Fig. 16. Mode frequencies for each of these spectra
were detected as the local maximum around each resonant
peak, and are shown in Table 5. As all three sensors were
recording the same object, we used the same range of fre-
quencies to fit damping around each peak (�3 Hz). Recov-
ered damping values can be found in Table 6.

Fig. 16 shows that the overall shape of spectra recovered
using each of the three methods is very similar, though
some harmonic artifacts are present in the spectra recovered
using our technique. Table 5 shows that all three methods
agree on the locations of resonant frequencies to within
quantization errors. Table 6 shows that our method dis-
agrees with the accelerometer and vibrometer on two out of
three of the modes, with our strongest disagreement in the

fundamental, where our estimate is approximately 39 per-
cent higher. This amount of error is large relative to the dif-
ferences in damping ratios for similar metals, but small
compared to the differences between metals and materials
like wood or rubber.

10 DISCUSSION

We have shown that it is possible to learn about the material
properties of visible objects by analyzing subtle, often
imperceptible, vibrations in video. This can be done in an
active manner by recording video of an object responding
to sound, or, in some cases, even passively by observing an
object move naturally within its environment.

The rod experiments in Section 6 demonstrate how our
technique can be used as a low cost alternative to laser vibr-
ometers in settings that are typical for testing manufactured
parts (e.g., for airplanes and automobiles). Our technique
also offers an affordable way to apply established methods
from structural engineering to applications that require
more than single point measurements.

The fabric experiments in Section 7 address a relatively
unexplored area of potential for vibration analysis. While
traditional applications of vibrometry are often limited
by the need for detailed measurements and analysis of
geometry, the ubiquity and passive nature of video offers
unique potential as a way to enable data-driven alternative
approaches. Our results on fabrics demonstrate that the
relationship between motion spectra and material proper-
ties can be learned, and suggests that traditional vibration
analysis may be extended to applications where geometry is
unknown and only loosely controlled.

The simple wine glass experiment in Section 8 highlights
a use case that could be applicable to structural health moni-
toring and quality control in manufacturing. In these sce-
narios, precise geometry and material properties are not
necessary; by directly comparing the motion spectra of simi-
lar objects, or of one object over time, it may be possible to
detect failures or defects.

Our work offers cameras as a promising alternative to the
specialized, laser-based equipment that is traditionally used
in many applications in civil engineering and manufactur-
ing. The presented results suggest that the motion spectra
we extract from video can be a powerful feature for scene
understanding. Vibration theory in Section 3 suggests that
even when geometry is ambiguous, the spectra constrain
the physical properties of visible objects. These constraints
could be useful for many tasks in computer vision-just as
color is often useful despite being an ambiguous product of
reflectance and illumination. We believe that a video’s

Fig. 16. Recovered motion spectra from our beam experiment using our
visual vibrometry technique (top), a laser Doppler vibrometer (middle),
and an accelerometer (bottom).

TABLE 5
Comparison of Recovered Beam Mode Frequencies

Estimated Frequency Mode 1 Mode 2 Mode 3

Visual Vibrometry 7.3 Hz 58.3 Hz 128 Hz
Laser Vibrometer 7.3 Hz 58.3 Hz 128 Hz
Accelerometer 7.3 Hz 58.3 Hz 128 Hz

Recovered beam mode frequencies using our technique, a laser doppler vibrom-
eter, and an accelerometer. All mode frequencies agree to within the quantiza-
tion error of our sampling.

TABLE 6
Comparision of Recovered Damping Ratios

Damping Ratio Mode 1 Mode 2 Mode 3

Visual Vibrometry 6:1� 10�3 6:5� 10�4 3:9� 10�4

Laser Vibrometer 4:4� 10�3 6:5� 10�4 2:9� 10�4

Accelerometer 4:4� 10�3 6:5� 10�4 2:9� 10�4

Damping ratios computed using spectra derived from the three different
sensors. Each damping ratio was computed by fitting a Lorentzian to a 6 Hz
region around each identified mode frequency.
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extracted motion spectra can be a powerful tool for reason-
ing about the physical properties of objects, in controlled
settings as well as in the wild.

ACKNOWLEDGMENTS

Dr. Dirk Smit of Shell Research proposed to us the analysis of
small displacements for structural health monitoring. We
would also like to thank Neal Wadhwa, Gautham J. Mysore,
and Danny M. Kaufman. This work was supported by US
National Science Foundation Robust Intelligence 1212849
Reconstructive Recognition, NSF CGV-1111415, Shell
Research, and Qatar Computing Research Institute. A. Davis
and K. Boumanwere partially supported byUSNational Sci-
ence FoundationGRFP fellowships.

REFERENCES

[1] V. Aranchuk, A. Lal, J. M. Sabatier, and C. Hess, “Multi-beam
laser doppler vibrometer for landmine detection,” Optical Eng.,
vol. 45, no. 10, pp. 104302–104302, 2006.

[2] Standard Test Method for Measuring Vibration-Damping Properties of
Materials, ASTM Standard E756–05, ASTM International, West
Conshohocken, PA, 2010.

[3] W. E. Baker, W. E. Woolam, and D. Young, “Air and internal
damping of thin cantilever beams,” Int. J. Mech. Sci., vol. 9. no. 1,
pp. 43–766, 1967.

[4] K. S. Bhat, C. D. Twigg, J. K. Hodgins, P. K. Khosla, Z. Popovi�c,
and S. M. Seitz, “Estimating cloth simulation parameters from
video,” in Proc. ACM SIGGRAPH/Eurographics Symp. Comput. Ani-
mation, 2003, pp. 37–51.

[5] K. L. Bouman, B. Xiao, P. Battaglia, and W. T. Freeman,
“Estimating the material properties of fabric from video,” in Proc.
IEEE Int. Conf. Comput. Vis., 2013, pp. 1984–1991.

[6] O. Buyukozturk, R. Haupt, C. Tuakta, and J. Chen, “Remote
detection of debonding in FRP-strengthened concrete struc-
tures using acoustic-laser technique,” in Nondestructive Testing
of Materials and Structures. Berlin, Germany: Springer, 2013
pp. 19–24.

[7] P. Castellini, N. Paone, and E. P. Tomasini, “The laser doppler
vibrometer as an instrument for nonintrusive diagnostic of works
of art: Application to fresco paintings,” Optics Lasers Eng., vol. 25,
no. 4, pp. 27–246, 1996.

[8] J. G. Chen, R. W. Haupt, and O. Buyukozturk, “Acoustic-laser
vibrometry technique for the noncontact detection of discontinu-
ities in fiber reinforced polymer-retrofitted concrete,” Mater. Eval.,
vol. 72, no. 10, pp. 1305–1313, 2014.

[9] J. G. Chen, N. Wadhwa, Y.-J. Cha, F. Durand, W. T. Free-
man, and O. Buyukozturk, “Structural modal identification
through high speed camera video: Motion magnification,” in
Topics in Modal Analysis I. Berlin, Germany: Springer, 2014,
pp. 191–197.

[10] J. G. Chen, N. Wadhwa, Y.-J. Cha, F. Durand, W. T. Freeman, and
O. Buyukozturk, “Modal identification of simple structures with
high-speed video using motion magnification,” J. Sound Vibration,
vol. 345, pp. 58–71, 2015.

[11] L. Collini, R. Garziera, and F. Mangiavacca, “Development, exper-
imental validation and tuning of a contact-less technique for the
health monitoring of antique frescoes,” NDT E Int., vol. 44, no. 2,
pp. 52–157, 2011.

[12] L. Cremer and M. Heckl, Structure-Borne Sound: Structural Vibra-
tions and Sound Radiation at Audio Frequencies. Berlin, Germany:
Springer, 2013.

[13] A. Davis, K. L. Bouman, J. G. Chen, M. Rubinstein, F. Durand, and
W. T. Freeman, “Visual vibrometry: Estimating material proper-
ties from small motion in video,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2015, pp. 5335–5343.

[14] A. Davis, J. G. Chen, and F. Durand, “Image-space modal bases
for plausible manipulation of objects in video,” ACM Trans.
Graph., vol. 34, no. 6, pp. 39:1–239:7, Oct. 2015.

[15] A. Davis, M. Rubinstein, N. Wadhwa, G. J. Mysore, F. Durand,
and W. T. Freeman, “The visual microphone: Passive recovery
of sound from video,” ACM Trans. Graph., vol. 33, no. 4,
pp. 9:1–79:10, Jul. 2014.

[16] F. Durst, A. Melling, and J. H. Whitelaw, “Principles and practice
of laser-doppler anemometry,” NASA STI/Recon Tech. Rep. A,
vol. 76, 1976, Art. no. 47019.

[17] T. Emge and O. Buyukozturk, “Remote nondestructive testing of
composite-steel interface by acoustic laser vibrometry,” Mater.
Eval., vol. 70, no. 12, pp. 1401–1410, 2012.

[18] D. J. Fleet and A. D. Jepson, “Computation of component image
velocity from local phase information,” Int. J. Comput. Vis., vol. 5,
pp. 77–104, 1990.

[19] R. W. Fleming, R. O. Dror, and E. H. Adelson, “Real-world
illumination and the perception of surface reflectance properties,”
J. Vis., vol. 3, pp. 347–368, 2003.

[20] R. W. Haupt and K. D. Rolt, “Standoff acoustic laser technique
to locate buried land mines,” Lincoln Laboratory J., vol. 15, no. 1,
pp. 3–22, 2005.

[21] Y.-x. Ho, M. S. Landy, and L. T. Maloney, “How direction of illu-
mination affects visually perceived surface roughness,” J. Vis.,
vol. 6, pp. 634–648, 2006.

[22] N. Jojic and T. S. Huang, “Estimating cloth draping parameters
from range data,” in Proc. Int. Workshop Synthetic-Natural Hybrid
Coding 3-D Imag., 1997, pp. 73–76.

[23] S. Kawabata and M. Niwa, “Fabric performance in clothing and
clothing manufacture,” J. Textile Inst., vol. 80, pp. 19–50, 1989.

[24] H. Ku, “Notes on the use of propagation of error formulas,” J. Res.
Nat. Bureau Standards, vol. 70, no. 4, 1966, Art. no. 263.

[25] C. Liu, L. Sharan, E. Adelson, and R. Rosenholtz, “Exploring fea-
tures in a Bayesian framework for material recognition,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2010, pp. 239–246.

[26] J. Portilla and E. P. Simoncelli, “A parametric texture model based
on joint statistics of complex wavelet coefficients,” Int. J. Comput.
Vis., vol. 40, no. 1, pp. 9–70, Oct. 2000.

[27] M. Rubinstein, “Analysis and Visualization of Temporal Varia-
tions in Video,” PhD dissertation, Dept. Electr. Eng. Comput. Sci.,
Massachusetts Inst. Technol., Cambridge, MA, USA, Feb. 2014.

[28] C. Santulli and G. Jeronimidis, “Development of a method for
nondestructive testing of fruits using scanning laser vibrometry
(SLV),”NDT. Net, vol. 11, no. 10, 2006.

[29] A. A. Shabana, Theory of Vibration, vol. 2. Berlin, Germany:
Springer, 1991.

[30] L. Sharan, Y. Li, I. Motoyoshi, S. Nishida, and E. H. Adelson,
“Image statistics for surface reflectance perception,” J. Optical Soc.
America A Optics Image Sci. Vis., vol. 25, pp. 846–865, Apr. 2008.

[31] P. Shull, Nondestructive Evaluation: Theory, Techniques, and Applica-
tions, vol. 142. Boca Raton, FL, USA: CRC Press, 2002.

[32] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger,
“Shiftable multi-scale transforms,” IEEE Trans. Inf. Theory, vol. 2,
no. 8, pp. 87–607, Mar. 1992.

[33] A. Stanbridge and D. Ewins, “Modal testing using a scanning
laser doppler vibrometer,” Mech. Syst. Signal Process., vol. 13,
no. 2, pp. 55–270, 1999.

[34] N. Wadhwa, M. Rubinstein, F. Durand, and W. T. Freeman,
“Phase-based video motion processing,” ACM Trans. Graph.,
vol. 32, no. 4, 2013, Art. no. 80.

[35] N. Wadhwa, M. Rubinstein, F. Durand, andW. T. Freeman, “Riesz
pyramid for fast phase-based video magnification,” in Proc. IEEE
Int. Conf. Comput. Photography, 2014, pp. 1–10.

[36] H. Wang, J. F. O’Brien, and R. Ramamoorthi, “Data-driven elastic
models for cloth: Modeling and measurement,” Proc. ACM
SIGGRAPH, 2011, Art. no. 71.

[37] H.-Y. Wu, M. Rubinstein, E. Shih, J. Guttag, F. Durand, and
W. Freeman, “Eulerian video magnification for revealing subtle
changes in the world,” ACM Trans. Graph., vol. 31, no. 4, 2012,
Art. no. 65.

Abe Davis received theBS (Hons.) degree in com-
puter science from Stanford University, in 2010,
and theMSdegree in computer science and electri-
cal engineering from MIT, in 2013. He is working
toward the PhD degree in the Computer Science
and Artificial Intelligence Laboratory (CSAIL), Mas-
sachusetts Institute of Technology (MIT), where he
is advised by Fr�edo Durand. His research spans
computer vision, graphics, and computational pho-
tography, as well as nondestructive testing and
structural health monitoring. His PhD dissertation

focuses on the analysis of vibrations in video, with a broad range of applica-
tions. He received the US National Science Foundation Graduate
Research Fellowship, and theMathWorks Fellowship.

744 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 4, APRIL 2017



Katherine L. Bouman received the BSE degree
in electrical engineering from the University of
Michigan, Ann Arbor, Michigan, in 2011, and the
SM degree in electrical engineering and com-
puter science from MIT, Cambridge, Massachu-
setts, in 2013. She is working toward the PhD
degree in the Computer Science and Artificial
Intelligence Laboratory (CSAIL), Massachusetts
Institute of Technology (MIT), under the supervi-
sion of William T. Freeman. Her master’s thesis
on estimating material properties of fabric from

video won the Ernst A. Guillemin Thesis Prize for outstanding S.M. the-
sis in electrical engineering with MIT. She received the US National Sci-
ence Foundation Graduate Fellowship, the Irwin Mark Jacobs and Joan
Klein Jacobs Presidential Fellowship, and is a Goldwater Scholar. Her
research interests include computer vision, computational photography,
and computational imaging.

Justin G. Chen received the BSdegree in physics
fromCalifornia Institute of Technology, in 2009, the
SM degree in civil and environmental engineering
from MIT, in 2013, and the PhD degree in struc-
tures and materials from Massachusetts Institute
of Technology, in 2016. He is currently working as
a post-doctoral associate with MIT and his main
research interests include application of novel
sensor systems to structural health monitoring and
non-destructive testing. He received an American
Society for Nondestructive Testing (ASNT) Fellow-
ship Award in 2011.

Michael Rubinstein received the PhD degree in
computer science from MIT, in 2013. He is a
research scientist with Google, Cambridge,
Massachusetts. His research is at the intersec-
tion of computer vision and graphics, and focuses
on areas in image and video processing, and
computational photography. He received the
Microsoft Research PhD Fellowship in 2012,
and the NVIDIA Graduate Fellowship in 2011.
His doctoral dissertation on analysis and visuali-
zation of temporal variations in video won the

George M. Sprowls Award for outstanding doctoral thesis in computer
science with MIT. Prior to joining Google, he was a postdoctoral
researcher with Microsoft Research.

Oral B€uy€uk€ozt€urk received the PhD degree in
structural engineering from Cornell University, in
1970. He joined the Massachusetts Institute of
Technology (MIT), Cambridge, Massachusetts,
in 1976, where he is a professor of civil and
environmental engineering, and director of the
Laboratory for Infrastructure Science and Sus-
tainability. His early work prior to joining MIT
involved design and safety analysis of nuclear
power structures, and with Brown University,
development of non-linear finite element models

and computational engineering capabilities. His early research with MIT
involved design and analysis of major energy facilities such as nuclear
energy and offshore oil production structures, and thermo-mechanical
analysis of coal gasification vessels. His recent and current research
focuses on infrastructure sustainability, design for durable and energy
efficient materials through multiscale analysis using molecular dynamics
(MD), intelligent structures and materials, structural health monitoring
(SHM), and nondestructive testing (NDT). His work also includes design
and assessment of concrete structures, nuclear containment systems,
durability of materials, earthquake engineering, interface fracture mech-
anics, and fiber-reinforced polymer (FRP) composites in structural reha-
bilitation. He has extensively published through refereed journals
and edited books, made more than 200 invited and keynote presenta-
tions around the world, and served in different capacities in more than
20 technical committees. His awards include Golden Mirko Ro Medal of
the Swiss Federal Research Laboratory for Materials Science and Tech-
nology; Fellow (non-resident) Royal Society of Edinburgh, Scotland’s
National Academy of Science and Letters; 2008 and 2011 ASNT
National Faculty Fellowship Awards; Fellow, American Concrete Insti-
tute (ACI), and various Best Paper Awards jointly with his students.

Fr�edo Durand received the PhD degree from
Grenoble University, France, in 1999, supervised
by Claude Puech and George Drettakis. He is an
associate professor in the Department of Electri-
cal Engineering and Computer Science, Massa-
chusetts Institute of Technology (MIT) and a
member of the Computer Science and Artificial
Intelligence Laboratory (CSAIL). From 1999 till
2002, he was a postdoctoral research in the MIT
Computer Graphics Group with Julie Dorsey. He
works both on synthetic image generation and

computational photography, where new algorithms afford powerful
image enhancement and the design of imaging system that can record
richer information about a scene. His research interests span most
aspects of picture generation and creation, with emphasis on mathe-
matical analysis, signal processing, and inspiration from perceptual
sciences. He coorganized the first Symposium on Computational Pho-
tography and Video in 2005, the first International Conference on
Computational Photography in 2009, and was on the advisory board of
the Image and Meaning two conference. He received an inaugural Euro-
graphics Young Researcher Award in 2004, an US National Science
Foundation (NSF) CAREER award in 2005, an inaugural Microsoft
Research New Faculty Fellowship in 2005, a Sloan fellowship in 2006, a
Spira award for distinguished teaching in 2007, and the ACM SIG-
GRAPH Computer Graphics Achievement Award in 2016.

William T. Freeman is the Thomas and Gerd
Perkins professor of electrical engineering
and computer science with MIT, and a member of
the Computer Science and Artificial Intelligence
Laboratory (CSAIL) there. He was an associate
department head from 2011-2014. His current
research interests include machine learning
applied to computer vision, Bayesian models of
visual perception,and computational photogra-
phy. He received outstanding paper awards at
computer vision or machine learning conferences

in 1997, 2006, 2009 and 2012, and test-of-time awards for papers from
1990 and 1995. Previous research topics include steerable filters and
pyramids, orientation histograms, the generic viewpoint assumption,
color constancy, computer vision for computer games, and belief propa-
gation in networks with loops. He is active in the program or organizing
committees of computer vision, graphics, and machine learning confer-
ences. He was the program co-chair for ICCV 2005, and for CVPR 2013.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

DAVIS ET AL.: VISUAL VIBROMETRY: ESTIMATING MATERIAL PROPERTIES FROM SMALL MOTIONS IN VIDEO 745



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


