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Abstract

Location-based context is important for many applica-
tions. Previous systems offered only coarse room-level fea-
tures or used manually specified room regions to determine
fine-scale features. We propose a location context mecha-
nism based on activity maps, which define regions of similar
context based on observations of 3-D patterns of location
and motion in an environment. We describe an algorithm
for obtaining activity maps using the spatio-temporal clus-
tering of visual tracking data. We show how the recovered
maps correspond to regions for common tasks in the envi-
ronment and describe their use in some applications.

1 Introduction

Location can provide context for many important appli-
cations. When specifying a device such as a printer or dis-
play, users would typically like a system to know which
device is closest or most easily viewed. A user may request
that email and other messages arrive at the place where the
user physically is, and that notification be consistent with
the task occurring in the space. Users may wish to have
music or other media follow them as they move in the envi-
ronment using the most appropriate display resources. For
each of these tasks, location context information is impor-
tant. [15]

Simply considering the instantaneous 3-D location of
users is useful, but alone is insufficient as context infor-
mation. Applications have to generalize context informa-
tion from previous experience, and an application writer
would like to access categorical context information, such
as what activity a user is performing. In addition, other fea-
tures such as motion and shape (configuration) of the user
are often important to distinguish activity: contrast a person
walking past a desk with a person sitting at that desk.

While location cues alone can’t fully determine what ob-
jects or tasks are being used in a particular activity, we have
found that activities are correlated with location cues. By
looking for patterns in these location cues, we can infer ac-
tivity behavior. We attempt to find an “activity map”, which

divides a physical space based on observed location features
(location, motion, shape, ...) into regions corresponding to
activities or sets of activities.

Previous approaches have partitioned space based on
simple proximity or relied on user specified maps for re-
gions. In contrast, we argue that location regions should be
learned from observed activity, including motion and shape
cues as well as position. Regions can overlap in space, since
motion or shape can indicate a different activity.

In this paper we describe an algorithm for computing lo-
cation context based on 3-D person tracking techniques and
the use of automatically generated activity maps. Our sys-
tem is robust to many of the issues that often plague com-
puter vision systems, such as dynamic illumination or fast
motions. We form activity regions using a spatio-temporal
clustering method and use the resulting regions to define
an activity map. This map is used at run time to contextu-
alize user preferences, e.g., allowing “location-sticky” set-
tings for messaging, environmental controls, and/or media
delivery.

In the following sections, we review related previous
work. We describe our real-time 3-D person tracker. Then
we introduce our activity map representation and its use
with location-context cues. A map generation algorithm is
then presented and map results in a “smart office” environ-
ment are shown. Finally, we show a prototype application
for location-sticky services using our activity map-based al-
gorithm. We conclude with a discussion of experiments in
progress and possible future extensions to the system.

2 Previous Work

Context cues for ubiquitous and pervasive computing
have been a topic of increasing interest recently, e.g.
[12]. Many systems that provide indoor location awareness
and/or location context cues have been proposed, including
schemes based on active badges [13], passive receivers [14]
and wireless networking systems. Many of these technolo-
gies require specific hardware to function and could not be
used by a person without an attached device and transmit-
ter. In contrast, our goal is to provide location awareness
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by means of computer vision techniques so that users are
not required to wear special purpose devices or to explicitly
provide a map of their environment.

Computer vision-based methods have been the subject
of much research in passive tracking in the past decade,
and systems are becoming reliable and cheap enough to de-
ploy in office and home research testbeds. Early vision-
based systems for tracking people indoors relied on simple
monocular color cues to separate the person from the back-
ground and were designed for interaction with games or vir-
tual environments [6, 18, 16, 9, 8]. However tracking using
monocular vision methods is difficult when there is signifi-
cant dynamic illumination from video monitors, video pro-
jectors, and changing levels of outdoor illumination (pass-
ing clouds, etc.).

To track people and objects visually despite dynamic il-
lumination, researchers have turned to methods that use ex-
tended regions of the spectrum and/or multi-view geometry.
Multiview and/or stereo methods are a popular way to over-
come illumination dependence in indoor tracking. The Ea-
syliving system used a set of stereo range cameras to track
people as they moved in an environment [4]. Similar sys-
tems were developed by [2]. Systems to estimate stereo de-
spite sparse background surfaces were developed in [5].

Much work has been done in the area of learning mod-
els of activity from vision. [10] has shown how to learn
characteristic motion maps which represent non-parametric
distributions of pedestrians trajectories. [3] introduced an
entropic estimation algorithm that yields a concise and com-
putationally lightweight HMM (Hidden Markov Model) of
office activity.

In this paper we present a method for automatically es-
timating activity zones based on observed user behaviors.
We use simple position, motion, and shape features, but our
work can be extended to include higher order features in-
cluding object and multi-person interaction.

3 3-D Person Tracker

This section introduces the 3-D person tracker developed
in our group. Our tracker uses multiple stereo cameras that
observe a particular space and provide such information as
the number of persons in the space, as well as a set of data
(location, height) attached to each person. By storing track-
ing data, the system also provides an history of location fea-
tures of every person in the space.

Our tracking system performs dense, fast range-based
tracking with modest computational complexity and is pre-
sented next (further details on the tracking system can be
found in [5]).

When tracking multiple people, we have found that ren-
dering an orthographic vertical projection of detected fore-
ground pixels is a useful representation (see Figure 1). A

Figure 1. Intensity, disparity, foreground and
foreground projection images.

“plan view” image facilitates correspondence in time since
only 2D search is required. Previous systems would seg-
ment foreground data into regions prior to projecting into
a plan-view, followed by region-level tracking and inte-
gration, potentially leading to sub-optimal segmentation
and/or object fragmentation. Instead, we develop a tech-
nique that altogether avoids any early segmentation of fore-
ground data. We merge the plan-view images from each
view and estimate over time a set of trajectories that best
represents the integrated foreground density. Trajectory es-
timation is performed by finding connected components in
a spatio-temporal filtered volume.

To estimate the trajectory of objects over time, we com-
bine information from multiple stereo views. The true ex-
tent of an individual object in a given image is generally dif-
ficult to identify. An optimal trajectory segmentation should
consider the assignment of an individual pixel to all possible
trajectories estimated over time. Systems which perform an
early segmentation and grouping of foreground data before
trajectory estimation preclude this possibility.

We adopt a late-segmentation strategy that finds the best
trajectory in an integrated spatio-temporal representation
by combining foreground pixels from each view. By as-
suming that objects move on a ground plane, a “plan-
view assumption” allows us to completely model instanta-
neous foreground information as a 2-D orthographic density
projection[1, 11]). Over time, we compute a 3-D spatio-
temporal plan-view volume.

We project(xj ; yj ; dj) from each foreground point~pj
into world coordinates(Uj ; Vj ;Wj). (See Figure 2.)U; V
are chosen to be orthogonal axes on the ground plane, and
W normal to the ground plane. We then compute the spatio-
temporal plan view volume (Figure 2), with

P (u; v; t) =
X

f~pj jUj=u;Vj=v;tj=tg

1

Each independently moving object in the scene gener-
ates a continuous volume in the spatio-temporal plan view
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Figure 2. Spatio-temporal representation of
projected foreground points.

volumeP (u; v; t). When the trajectories of moving objects
do not overlap, the trajectory estimation is easy and com-
puted by connected-component analysis inP (u; v; t) (each
component is then a trajectory).

When the trajectories of moving objects overlap (e.g.
crossing of two people), the volume associated with these
trajectories inP (u; v; t) also overlap and make the extrac-
tion of trajectories more difficult. In order to overcome this,
a graph is built from a piece-wise connected-component
analysis ofP (u; v; t). Nodes correspond here to trajec-
tory crossing and branches to non-ambiguous trajectories
between two crossings. A color histogram is then estimated
for each branch of the graph (using all images associated
with this branch). Trajectories are estimated by finding in
the graph the paths consisting of branches having the most
similar color histograms. This may be done instantaneously
using a greedy search strategy or using the slower but opti-
mal dynamic programming technique described in [5].

This stereo-based tracking system runs at about 12 Hz
on a standard computer (Pentium 4, 1.7GHz).

4 Activity Maps

Activity zones are represented in what we call an activity
map. This map is the key to our system’s ability to provide
context information to applications in an intelligent envi-
ronment. The zones represent regions of a physical space in
which observed activity features —location, motion (rep-
resented as velocity), shape (represented as height)—have
similar values. Ideally, each zone corresponds to a region in
which a person is likely to be engaged in similar activities.
A relatively still person sitting at a particular location, for
example, may be reading, writing, or typing. While know-

ing that a desk or book is near the person will allow us to
more accurately infer actual activity, simply knowing that
the person is in a work environment and located in a par-
ticular zone in a particular way provides valuable context
information for an application program in an intelligent en-
vironment.

Our system generates an activity map by clustering
spatio-temporal data gathered using our 3-D person tracker.
Later the activity map is used to determine what the loca-
tion context is for that user. As the person enters an activity
zone, for example, notification is sent to application pro-
grams running in the environment; the applications then re-
act accordingly. Notifications may be sent when the person
has been in an activity zone for a certain amount of time or
when he exits an activity zone.

An activity map may be thus used with observed real-
time features to provide location context for applications in
a pervasive computing environment.

4.1 Automatic Estimation of An Activity Map

The person tracker provides a history of 3-D information
of every person in the observed space. The 3-D information
consists of(x; y; h) where x,y is the coordinates of the per-
son in the ground plane andh is the relative height of the
person with respect to the floor.

Since tracking data are time-stamped, the instantaneous
velocity (vx; vy; vh) can be derived. We determine a per-
sons features’ from the history of spatio-temporal track-
ing data of a person. We characterize a person at location

(x; y) are: f(x; y) = (h; v; vlt) wherev =
q
v2x + v2y is

the instant ground plane velocity norm andvlt , the average
ground plane velocity norm over a certain amount of time.
By using the featuresf(x; y), we can capture the configu-
ration (sitting, standing) and motion of a person over both
short and long period of time.

4.2 Segmentation Algorithm

By tracking people in a space for a long period of time,
a dense set of observed location featuresfi(x; y) can be
gathered. We define an activity zone as a connected region
where observed location featuresfi(x; y) have similar val-
ues. An activity zoneZk is defined by a connected region
Rk in the 2-D space defined by(x; y) and a characteristic
featureFk = (h; v; vlt) representing the typical activity in
this area. As different activities may happen at the same
location(x; y), activity zones may overlap as well.

Estimating the activity maps involves segmenting ob-
served featuresfi(x; y) into activity zonesZk. In order to
perform the segmentation, we use a 2-step approach:

Step 1 Classification of featuresfi(x; y) where each class
corresponds to a specific activity with characteristic
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featureFk. In order to group featuresfi(x; y), we per-
form an unsupervised classification using a standard
k-means algorithm. This algorithm classifies features
fi(x; y) into N classes, where each class has a mean
featureFk. This step does not take into account the
location(x; y) of the features.

Step 2 Estimation of connected regionsRk by grouping
points(x; y) corresponding to the same activity. This
step consists of finding connected components in each
of the classes from step 1. For each classFk , a feature
fi(x; y) is selected. A region is then grown from the
seed(x; y) by searching for points(x0; y0) such that
there is a featurefj(x0; y0) in classFk and the distance
between(x; y) and (x0; y0) is close. When a region
cannot be grown further, all features used for the re-
gion growing are removed fromFk . If Fk is not empty,
a new seed(x; y) is picked as a seed to grow a new re-
gion.

At the end of Step 2, regions corresponding to small
numbers of location features are removed (these re-
gions correspond either to non frequent person’s be-
haviors or to errors from the person tracker). The re-
maining regions define the activity map.

4.3 Person’s Activity Zone Detection

Using an activity map and run time data from the person
tracker, the estimation of a person’s activity is performed as
follow.

Let (x; y) be the location andf = (h; v; vlt), the loca-
tion feature of a person estimated by the tracker. The cor-
responding activity zoneZ is found by first finding the re-
gionsRk close to location(x; y). This gives a subset of
activity zonesfZkg. The correct activity zoneZ is found
as the one from the subsetfZkg whose featureFk is the
closest to the person’s location featuref .

5 Experiments and Applications

5.1 Experiments

We describe two experiments in which our system au-
tomatically generated activity maps for different environ-
ments, a one-person office and a two-person office. Each of-
fice is equipped with a single stereo camera mounted on the
wall in a standard surveillance camera configuration. For
each experiment, tracking data was recorded over a long pe-
riod of time and activity maps were estimated off-line using
the approach previously described (due to the high number
of data, the segmentation algorithm takes several minutes to
run). In all of the experiments, the initial number of classes
N for step 1 was set toN = 10, and at the end of step 2,

Figure 3. A one-person office.

Figure 4. A two-person office.

regions corresponding to small numbers of location features
were removed.

Results are shown Figures 3 and 4. In each experi-
ment, the automatically generated activity maps segment
the space into zones related to structures in the environment
(chairs, desk, file cabinet, corridors...). (In the next section,
we discuss experiments in using these zones.)

In the case of the one-person office ( Figure 3), the esti-
mated activity map contains 4 zones. Zone 1 corresponds to
the “walking context”, zone 2 corresponds to the “working
context” (desk), zones 3 and 4 correspond to the “resting
context” (chair on the bottom right of the picture). Zone 3
could be associated to the transition between zone 1 and
zone 4 (chair). The location features (velocity, height) cor-
responding to the different zones are not shown here but we
observed that they correspond to expected values: regular
standing heights in zones 1 and 3, low heights in zones 2
and 4. Velocities were large in zone 1, medium in zone 3
and small in zones 2 and 4.

The activity map estimated for the two-person office
(Figure 4) contains 5 zones. Zone 1 corresponds to the
“walking context”, zone 2 corresponds to the “working con-
text” (desk) of user A and zones 3 and 4 correspond to the
“working context” (desk) of user B (zone 3 is included in
zone 4 and corresponds to smaller velocities). Zone 5 cor-
responds to the file cabinet.
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Figure 5. The light and the computer screen
are turned on as Sara is sitting in zone 2.

Figure 6. Another light is turned on as James
sits in zone 4. Information is displayed on the
wall between zone 2 and zone 4.

5.2 Evaluation in Prototypical Applications

In addition to experimenting with the automatic gener-
ation of activity zones, we have begun testing the use of
our system in an “intelligent” environment. We created
two simple scenarios that illustrate a context-aware environ-
ment, and used the scenarios to implement a prototype ap-
plication that we then evaluated. The scenarios are informed
by previous work on activity zones, in particular private and
public zones [17].

Scenario A: In the morning Sara arrives at work and en-
ters her office. The room lights turn on automatically and
the computer screen starts up when she sits down by her
desk. While organizing her day and reading her emails, she
is listening to morning news on the radio.

Scenario B: James is walking by Sara’s office. Seeing
Sara working on her computer reminds him about a pre-

sentation that they are to give next week. James opens the
door and greets her. Sara swivels her chair around and wel-
comes him. The volume of her radio goes down and after
some small talk they decide that they would like to look over
the last presentation that they gave on the topic. James sits
down in the chair next to Sara’s desk and the ambient light
in the room increases. Sara asks the room to display the
presentation information so that both she and James can see
it, and the presentation slides appear on the wall display be-
tween them. They then start to work on their presentation.
After a short time, the calendar system reminds Sara about
the weekly staff meeting, and it also informs her that she
has one voice mail that was recorded during her meeting.

Our prototype application focuses on three tasks from
the above scenarios: control of light, audio, and display of
information in an office.

We used our person tracking system to generate an ac-
tivity map, added preferred light and audio settings to par-
ticular activity zones, then gathered context information for
people working in the offices.

In Figure 5 and Figure 6 show two scenes from our proto-
type system in use. Figure 5 illustrates the light having been
turned on when someone is working in zone 2. Figure 6 il-
lustrates the light having been turned on when a visitor is
sitting in zone 4. Figure 6 also shows the automatic choice
of display (computer screen or projector) between a person
sitting in zone 2 (at the desk) and a person sitting in zone 4
(in the chair).

Our preliminary experiments revealed four primary
lessons. First, our system does a good job at automatically
partitioning a space into zones; a person does not have to
specify bounds or characteristics of activities that take place
in the zones. Second, the zones provide fine-grained enough
partitions of space for certain applications. We can still get
“intelligent” behavior in an environment without providing
more specific information about either the physical environ-
ment (e.g. identifying furniture locations) or a person’s ac-
tual activities (e.g. reading). Third, our system does a good
job at triggering relevant applications by matching a per-
son’s location to a particular activity zone without requiring
that they wear sensors. Fourth, the sum total of changes in
environment state (light and music) and information display
state proved useful even in our preliminary user studies.

6 Discussion

In this paper, we show how location context can be ob-
tained with a purely passive observation system. Our sys-
tem can see location regions that are much smaller than the
usual room-level location abstraction without requiring that
users wear special purpose devices. Location regions are
defined by user activity, and are automatically estimated by
observing user behavior.
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Our system tracks groups of users with a multi-view
stereo trajectory estimation method, then automatically
generates an activity map. Our experiments on different
environments show that our system is able to generate ac-
tivity maps that give an improved understanding of a per-
son’s context over previous approaches to sub-room loca-
tion modeling which required that users explicitly define
physical regions [4]. The improvement is due to our sys-
tem’s ability to use fine-scaled features that include po-
sition, motion and height, making the identification of a
person’s context more accurate than one based on position
along.

There are many avenues of future work planned for our
system. In addition to making the system more accurate and
fast, we plan to add a statistical estimation formulation to
the region estimation process. This will make the estimated
regions more stable to noise in the sensing process. We
also wish to include higher-level information about the tasks
users are performing in the environment and the objects they
are manipulating to aid in determining activity. We are de-
veloping an articulated body tracker [7] that estimates the
body pose of a user (arms, torso and head positions). By
using the body pose information in our approach (instead
of using location only) we think that many sub-classes of
activity will automatically emerge from the segmentation
process. We also speculate that more complex application
behavior can be achieved by augmenting the system with
knowledge of objects (e.g. desk, computer) and human be-
havior (e.g. people generally read, write at a desk). Adding
a simple object recognition system and task knowledge base
is planned future research.

We have also shown that even with purely perceptual
information about context, interesting and useful applica-
tions can be developed for intelligent environments. Ac-
tivity maps lay a good groundwork for further exploration
of richer definitions of context: these definitions might in-
clude information about sound, objects in an environment
(e.g. furniture), and “typical” activities that take place us-
ing or near objects. Adding richer information to our sys-
tem will enable inference about what a person is doing (e.g.
reading, writing), thus enabling even more “intelligent” be-
havior. Finally, we intend to explore issues of privacy in an
environment augmented with a person tracking system such
as ours,
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